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ABSTRACT

The RecA protein is an ATPase that mediates
recombination via strand exchange. In strand
exchange a single-stranded DNA (ssDNA) bound to
RecA binding site I in a RecA/ssDNA filament pairs
with one strand of a double-stranded DNA (dsDNA)
and forms heteroduplex dsDNA in site I if homology
is encountered. Long sequences are exchanged in a
dynamic process in which initially unbound dsDNA
binds to the leading end of a RecA/ssDNA filament,
while heteroduplex dsDNA unbinds from the lagging
end via ATP hydrolysis. ATP hydrolysis is required to
convert the active RecA conformation, which cannot
unbind, to the inactive conformation, which can
unbind. If dsDNA extension due to RecA binding in-
creases the dsDNA tension, then RecA unbinding
must decrease tension. We show that in the
presence of ATP hydrolysis decreases in tension
induce decreases in length whereas in the
absence of hydrolysis, changes in tension have no
systematic effect. These results suggest that de-
creases in force enhance dissociation by promoting
transitions from the active to the inactive RecA con-
formation. In contrast, increases in tension reduce
dissociation. Thus, the changes in tension inherent
to strand exchange may couple with ATP hydrolysis
to increase the directionality and stringency of
strand exchange.

INTRODUCTION

Universally-conserved RecA family proteins mediate
DNA recombination and recombinational repair (1–4).
RecA presents two binding sites, sites I and II that can

each bind to either double-stranded DNA (dsDNA) or
single-stranded DNA (ssDNA) (5,6). The binding of
either dsDNA or ssDNA to either binding site results in
an average extension of �0.51 nm/bp (7,8), which is sub-
stantially larger than the B-form extension of 0.34 nm/bp.
This 0.17 nm/bp change in extension of DNA by RecA
protein is believed to play an important role in strand
exchange (9). Earlier work on Rad51, a eukaryotic
analog of RecA, has suggested that the extension of the
dsDNA by the protein results in a tension in the dsDNA
that spring loads the filament (10). Such spring loading
may promote the unbinding of the protein from the
dsDNA-Rad51 filaments.
The initial step in strand exchange is the formation of

RecA/ssDNA filaments due to binding of an incoming
ssDNA to site I in RecA, which has a higher binding
affinity than site II (11,12). The RecA in the filament is
in the active state with bound ATP. In strand-exchange
the RecA/ssDNA filament searches for homologous
dsDNA by binding to dsDNA (13–15). If the dsDNA is
not homologous to the ssDNA in the filament, then the
RecA/ssDNA filament rapidly unbinds from the dsDNA
(14,15). If the dsDNA is homologous, one strand of the
dsDNA switches partners and pairs with the incoming
ssDNA strand bound in site I. This pairing yields
heteroduplex dsDNA in site I and the left-over outgoing
ssDNA strand in site II (13–15). Though RecA is an
ATPase, the exchange in Watson–Crick pairing that
creates the heteroduplex dsDNA during recombination
occurs in the absence of ATP hydrolysis (16,17). ATP hy-
drolysis promotes certain complex RecA-mediated reac-
tions, e.g. progression of strand exchange through short
non-sequence matched regions (18,19) and repair of
stalled replication forks (20), as well as the release of the
heteroduplex dsDNA in site I. Observations of hydrolysis
waves have been reported in vitro, but their role in vivo is
unclear (21).
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The initial binding of the RecA/ssDNA filament to
�10 bp (22–24) on a homologous dsDNA strand is
followed by an extension of the RecA/ssDNA filament
along the dsDNA until �80 bp (25) or more (26) are
incorporated in the RecA/ssDNA–dsDNA complex.
This RecA/ssDNA–dsDNA complex is referred to as the
strand exchange window. In the presence of ATP hydroly-
sis, if a longer sequence is participating in strand
exchange, then the heteroduplex dsDNA at the lagging
end of the strand exchange window is ejected from the
filament as dsDNA is bound at the leading edge of the
strand exchange window (25). This allows for strand
exchange to proceed along the dsDNA for many thou-
sands of base pairs even though fewer base pairs are
bound in the strand exchange window at any given time.
In contrast, in the absence of hydrolysis, the RecA/
ssDNA–dsDNA complex continues to incorporate more
dsDNA at the leading end without releasing anything at
the lagging end, resulting in RecA/ssDNA–dsDNA
complexes that can contain thousands of base pairs (27).
ATP hydrolysis is required for the release of

heteroduplex dsDNA from site I of the RecA filament
following strand exchange (28) because RecA in the
active state cannot unbind from dsDNA (21). Only
RecA in the inactive state with bound ADP can unbind
from the dsDNA. Thus hydrolysis is required to convert
the active form with bound ATP to the inactive form with
bound ADP. Earlier work on Rad51 has shown that both
the active and inactive forms can be bound simultaneously
to the same dsDNA molecule (10,29). It has been sug-
gested that dsDNA bound to Rad51 is spring loaded
when it is extended by Rad51 (10). Similarly if dsDNA
bound to RecA is spring loaded, then changing the tension
on the dsDNA may alter the function of the protein.
Earlier work on Rad51 has already shown that the un-
binding rate for Rad51 bound to dsDNA is reduced if a
tension is applied to the dsDNA indicating that constant
tension affects protein function (10). If the bound dsDNA
is under tension because the dsDNA is extended, then
during strand exchange the tension on the dsDNA must
not be constant: the tension at the leading end is
increasing as dsDNA is incorporated into the filament,
whereas the tension at the lagging end is decreasing as
the newly formed heteroduplex dsDNA is released from
the strand exchange window. In this work, we consider the
possibility that such changes in tension can affect RecA
function.
We use our magnetic tweezers apparatus (30,31) to

measure the extension of dsDNA as a function of a
time-dependent force in the absence and in the presence
of free RecA to probe for functional changes in the
protein resulting from changes in the tension on the
dsDNA. Rather than considering the full complexity of
the strand exchange window, we simply consider the
effect of tension on dsDNA bound to site I, which is the
position of the dsDNA after strand exchange. We note
that the unbinding of the dsDNA that occurs at the
lagging end of the strand exchange window is the unbind-
ing of dsDNA from site I. In this work, we consider two
types of temporal changes in force: stepwise and
quasi-continuous. We also consider two different

filament states: (i) dsDNA molecules that are completely
or nearly completely covered by RecA; and (ii) dsDNA
molecules that are only partially covered by RecA, where
RecA polymerization and depolymerization may be
occurring. In addition, we performed experiments on fila-
ments in the absence of free RecA, so RecA binding from
solution is not possible, and in the presence of free RecA
in solution.

MATERIALS AND METHODS

Our magnetic tweezers apparatus exerts forces on dsDNA
constructs by pulling from labels attached to ssDNA tails
at the ends of the dsDNA (30,31). Here, we use dsDNA
pulled from the 3050-ends of one strand. Each ssDNA tail
has six biotin labels which enable one dsDNA end to bind
to an extravidin coated 4.5mm superparamagnetic bead
while the other end binds to an extravidin coated glass
capillary surface. The beads and 3050-DNA constructs
are incubated in a solution of RecA buffer pH 7.6
(70mM Tris, 10mM MgCl2 and 5mM dithiothreitol)
with 1 mM RecA protein (NEB) and either 1mM ATP
or 1mM ATPgS for �10min, after which the desired
force regime is imposed. In some experiments that
examine the effects of reduced hydrolysis, MgCl2 is
replaced by CaCl2 to reduce the hydrolysis rate (32).
The force exerted on the magnetic beads by a magnet is
controlled by the distance between the magnet and the
capillary surface. The extension of the dsDNA is
measured by monitoring the separation between the
surface of the capillary and the surface of the magnetic
bead using an inverted optical microscope (30,31).

Flow experiments are performed by connecting the ca-
pillary containing the sample to polypropylene tubing and
a syringe with buffer. The typical flow rates are 1–3 ml/min
and at least one or two full capillary volumes are
exchanged in between measurements. One dsDNA
molecule was overstretched in the presence of 1 mM
RecA and 10mM ATP until a complete filament was
obtained. Then the solution in the capillary was fully
exchanged by RecA buffer containing a mixture of
10mM ATP and 10 mM ATPgS.

RESULTS

Experiments on fully covered dsDNA molecules in the
presence of free RecA

Polymerization of RecA in the active state extends the
structure of B-DNA by �1.5 times (7,8,33); however, the
extension of the dsDNA bound to the inactive state is less
well known with crystallographic data for RecA/ADP fila-
ments giving values from 1.2� to 1.4� (34). Thus, if the
bound RecA is all in the active state; i.e. in the presence of
a non-hydrolyzable form of ATP, then the number of
active RecA molecules bound to one dsDNA can be
determined by measuring, L, the extension of dsDNA
single molecules. In contrast, if both active and inactive
conformations of RecA are simultaneously bound to
dsDNA, then measurements of L are not sufficient to de-
termine the number of bound RecA.
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At high ATP concentrations, RecA rapidly binds to
stretched dsDNA resulting in complete or nearly
complete filaments. Even for a full filament, where all of
the RecA remains bound, length changes are possible if
the bound RecA makes transitions between the active
(circles) and inactive (ovals) states as illustrated in
Figure 1A and Supplementary Figure S1. Figure 1B
shows the measured extension versus force curves for par-
ticular single molecules. The curves are obtained by
increasing and decreasing the force at a rate of
�1 pN/sec. The gray curve corresponds to a control
sample in the absence of free RecA, where there is a
sudden change in extension at 65 pN resulting in a
length increase �Loverstretch of �11.5 microns, known as
the overstretching transition. In contrast, dsDNA com-
pletely covered by RecA does not overstretch, as
illustrated by the magenta curve which corresponds to a
complete RecA filament formed in buffer containing
ATPgS. In general, the fraction of dsDNA covered by
RecA can be estimated by measuring �Loverstretch since
B-DNA participates in the overstretching transition,

whereas dsDNA covered by RecA does not. We note
that at forces below the overstretching transition, the ex-
tension of B-dsDNA is shorter than the extension of
dsDNA bound to RecA, whereas at forces above the over-
stretching transition the extension of dsDNA not bound
to RecA is longer than the extension of dsDNA bound to
RecA.
In ATPgS, conversion to the inactive state is almost

negligible; therefore, conformational changes and unbind-
ing do not play a role and the amount of bound RecA at
any force can be determined by measuring the extension at
that force. In contrast, in buffers where hydrolysis is sig-
nificant, RecA binding and unbinding and/or conversions
between the active and inactive states of bound RecA may
play a substantial role in altering the measured extension.
Thus, if hydrolysis takes place, at most forces the
measured extension does not determine the amount of
bound RecA; however, the fraction bound at the over-
stretching transition can still be determined by measuring
�Loverstretch.
The purple and green curves in Figure 1B correspond to

cycles in buffer containing 4 and 10mM ATP, respective-
ly, where the arrows indicate the change in force with time
and the darker curves correspond to the first half of each
cycle. For both curves, the rate of change of the force was
�1 pN/s except for the several minute pauses at the lowest
force. The curve taken in a buffer containing 4mM ATP
shows net RecA unbinding during the first part of the
force cycle during which the force is decreasing with
time (dark purple) since �Loverstretch is larger for
the increasing force part of the cycle (light purple).
Figure 1B shows that �Loverstretch is 4.5 mm during the
increasing force part of the cycle versus 2 mm for the
decreasing force cycle consistent with bound RecA
having been lost when lower forces were applied. Thus,
significant RecA unbinding was observed at low forces.
In contrast, the curve taken in a buffer containing

10mM ATP corresponds to dsDNA completely covered
by RecA at 65 pN. Neither the decreasing force cycle
(dark green) nor the increasing force cycle (light green)
show any overstretching transition suggesting that both
curves represent dsDNA fully covered by RecA at 65
pN; however, the light green curve is consistently shorter
suggesting that more RecA is in the shorter ADP state.
We note that at forces >30 pN, the 10mM ATP curves
match the slope of the magenta curve, which corresponds
to a full dsDNA–RecA filament in ATPgS. This similarity
between the slopes suggests that at forces >30 pN both
curves represent full filaments that are not showing signifi-
cant net RecA binding or unbinding. In addition, the same
filaments are not making significant net transitions
between conformations. Finally, in this force range, the
change in extension versus force for dsDNA with RecA
bound in the inactive state is similar to the extension
versus force for dsDNA with RecA bound in the active
state. At forces <30 pN there are differences between the
slope of the curve in 10mM ATP and the slope in ATPgS
that may indicate conformational changes and/or unbind-
ing. Similar results were obtained for other molecules.
Interpretations of changes in extension with time are

complicated if the applied force is also changing with

Figure 1. Effects of dynamics on dsDNA molecules completely and
partially covered by RecA. (A) Schematic representation of dsDNA
(black lines) bound to RecA (blue) where the circles represent the
ATP-RecA conformation and the ovals the ADP-form. (B) Extension
versus force curves for a control in the absence of RecA (gray), a full
filament in ATPgS (magenta) and 1 mM RecA, and cycles in buffer
containing 4mM ATP (purple) and 10mM ATP (green) and 1mM
RecA, where the dark colors show the first half of the cycles. The
arrows indicate the direction of the force change.
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time. Thus, we did experiments in which the force was
changed in a step-wise manner. We then observed the ex-
tension as a function of time during intervals where the
force was held constant. The extension versus time curves
for full filaments in the presence of free RecA and 10mM
ATP in solution show increases in extension after force
increases and decreases in extension after force decreases,
as shown in Supplementary Figure S2A and B. The initial
extension changes are very rapid, but the rates quickly
decrease as the extension approaches asymptotic values.

Results for dsDNA only partially covered by RecA in
the absence of free RecA: filament formation and
buffer exchange

The results presented above show that the length of a
complete dsDNA/RecA filament depends on the history
of the molecule. In particular, decreases in force reduce
the length of full filaments. From the data, one cannot tell
whether the length increases that accompany increases in
force are due to conversions of bound RecA from the
inactive state to the active state, to free RecA rebinding
from solution or to a combination of both. Thus, we con-
ducted experiments where we created full filaments in ATP
and RecA, and then replaced the original buffer to remove
any free RecA thus leaving the filament in a buffer
solution containing 10mM ATP and 10 mM ATPgS,
which is known to prevent RecA unbinding while
preserving full ATPase activity (35).
Figure 2A shows additional results for molecules

exposed to a stepwise series of constant forces (orange)
where the force at each step is varied by at least 10 pN/s.
The black curve represents the extension measured after
the buffer was exchanged (complete series shown in
Supplementary Figure S2C). The black curve corresponds
to a partially covered filament since some RecA unbound
during the flow exchange.
The complete extension versus time curve for this

molecule is shown in Supplementary Figure S2C. For
such full filaments that are formed in the presence of
RecA and then undergo an exchange of buffer to a
buffer without RecA, the extension versus time curves
measured in the buffer without free RecA do not
approach asymptotic values on the timescale of
hundreds of seconds. Thus, we cannot simply compare
asymptotic extensions to determine changes in the
bound RecA; however, we can compare the extension
rate, dL/dt, at a given constant force, Fc, as a function
of time after a stepwise force increase (�F> 0) with
dL/dt after a stepwise force decrease (�F< 0). If
dynamics plays no role and the amount of bound RecA
has no effect, then the two rates should be the same since
the applied force is the same, even if the off-rate is force
dependent. Instead, we observe that dynamics does play a
role and the rates consistently depend on the previous
change in force, though they are insensitive to the
amount of bound RecA.
Changes in the number of nucleation sites can change

the observed extension rates, but comparisons of cases
where the number of nucleation sites remains constant
show that the observed dynamic effect is not simply a

function of a change in the number of nucleation sites.
Similarly, in the quasi-continuous protocol we compare
the extension rate at a given force Fc when the force is
increasing with the extension rate at the same force Fc

when the force is decreasing, and for a range of Fc

values we observe consistent differences (see below and
Supplementary Data).

Figure 2A shows that at �4140 s, the force is increased
from 40 to 56 pN resulting in a linear extension increase
with time at a rate of 4.0±0.02 nm/s. Some RecA that
unbound during the low force cycle might subsequently
rebind to the dsDNA; however, diffusion should rapidly
move unbound RecA away from the dsDNA resulting in a
rebinding rate that becomes negligible in less than a
second. In contrast, we observe constant extension rates
for times >100 s, which strongly suggests that the
observed length increase cannot be attributed to the re-
binding of RecA that diffused back to the DNA after
unbinding. Similar results occur after additional washing
cycles, confirming that the results were not due to residual
free RecA that remained in solution after the wash. Thus,
the observed length increases must be due to a transition
in the bound RecA from the inactive state to the active
state.

Observed length decreases are more difficult to interpret
than length increases since both RecA unbinding and tran-
sitions from the active to inactive state produce length
decreases; however, we have demonstrated above that a
length increase must be due only to a conformational
change from the inactive to the active state and not
released RecA rebinding. Thus, if such a length increase
returns the total extension to a value close to the extension
before the previous length decrease, then the previous
length decrease must have been dominated by bound
RecA making conformational changes from the active
state to the inactive state. One example of such a restor-
ation in length is given by the force cycle that begins with
the force decrease from 40 to 19 pN that occurs at �4030 s
for the molecule whose extension versus time curve as
shown in Figure 2A.

Checking that there is almost no free RecA in solution
after the buffer exchange

The gray curve in Figure 2A corresponds to a control
experiment for a partial filament obtained in 1 mM RecA
and 1mM ATPgS after the buffer was replaced by a buffer
containing 1mM ATPgS and no RecA, in order to wash
out the RecA protein in solution. When free RecA was
present, the ATPgS sample showed increases in extension
at constant force, corresponding to the binding of free
RecA from solution (see below). In contrast, after
removing free RecA with flow, the ATPgS sample
showed no change in extension when a constant force
was applied even though only a partial filament had
been formed. Thus, for molecules in ATPgS, no binding
or unbinding is observed after flow confirming that RecA
was effectively removed from solution, and no dynamic
effects are detected at any force for force changes at
rates up to 10 pN/s (see below). This result also shows
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that in the absence of hydrolysis and free RecA, the
observed extension at a given constant force is constant.

Results for dsDNA partially covered by RecA in the
presence of free RecA

During strand exchange, dsDNA is only partially covered
by RecA. Strand exchange involves both the binding and
unbinding of RecA from dsDNA, so it is important to
consider the effect of force changes on filaments that are
not completely covered in a buffer where the binding of
free RecA is possible. In this case, net polymerization and
depolymerization can occur as well as changes between
bound state conformations.

Figure 2B is analogous to Figure 2A for a single
molecule partially covered by RecA in the presence of
1 mM RecA and 1mM ATP in RecA buffer (black line)
and without RecA (gray line). An initial quasi continuous
overstretching cycle creates nucleation sites (36–39), and
then a step-wise force regime is imposed. The complete
series of steps is shown in Supplementary Figure S3.
Figure 2B shows a detailed examination of cycle 2,
concentrating on Fc=30 pN with �F values of
±25 pN. The negative control in the absence of RecA
(gray line) shows force dependent changes in extension,
but no significant extension change when the force is con-
stant. In contrast, in the presence of RecA (black line),

significant changes in extension occur when the applied
force is constant, suggesting that the RecA is binding
and unbinding and/or changing conformation.
Additionally, Figure 2B shows that the changes in exten-
sion depend strongly on the time that has elapsed since the
last force change. Thus, unlike the results in the absence of
free RecA, the results in the presence of free RecA cannot
be characterized by a single extension rate that applies
throughout the time during which the force is constant.
In order to characterize the results in the presence of free
RecA, we divide the 120-s interval after each force change
in two intervals: (1) the first 30 s after a force change, �F;
and (2) the remaining 90 s. We will suggest that for the
buffer conditions considered here, dynamics are most im-
portant during the first 30 s.
The expanded plots in Figure 2B show that the

measured slopes and the standard deviations in the
slopes are 12.1±0.25 nm/s for the first 30 s after
the force is increased to 30 pN and 4.6±0.09 nm/s for
the following 90 s. Similarly, the values for the first 30 s
and last 90 s after the force is decreased from 55 to 30 pN
are �2.6±0.25 and 4.4±0.07 nm/s, respectively. During
the intervening 120-s interval when the applied force was
55 pN, dL/dt=7±0.3 nm/s for the first 30 s and
4.3±0.06 nm/s for the remaining 90 s. This suggests that
in the absence of dynamics the extension rates for all three

Figure 2. Dynamics effects take place during sequences of constant force steps. (A) Extension (black) and force (orange) versus time data in 10mM
ATP and 10 mM ATPgS after exchanging the buffer containing 1 mM RecA and 10mM ATP using flow, along with a gray curve showing the
corresponding extension for a control flow experiment in 1mM ATPgS. Expanded views are shown in the circles. Linear fits to the curves shown in
red and blue are �0.4±0.05 nm/s and �6.4±0.14 nm/s, respectively. The slope during the intervening 120 s is 4.0 nm±0.02 nm/s. (B) Plot analo-
gous to that shown in (A) for dsDNA partially covered by RecA in 1mM ATP and 1 mM RecA. Expanded views are shown in the circles with the
y-axis offset between the two views; the black lines show the fits to the slopes during the last 90 s. The measured slopes and the standard deviations in
the slopes are 12.1±0.25 nm/s for the first 30 s after the force is increased to 30 pN, and 4.6±0.09 nm/s for the following 90 s. Similarly, the values
for the first 30 s and last 90 s after the force is decreased from 55 to 30 pN are �2.6±0.25 and 4.4±0.07 nm/s, respectively. The slopes for the
corresponding time interval of the 55 pN second force are 7±0.3 and 4.3±0.06 nm/s.
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intervals are the same despite the difference in force. This
is consistent with previous results that showed that the
extension rate/nucleation site is independent of force
(39). Given that earlier work demonstrated a force insensi-
tive RecA binding rate/nucleation site corresponding to
length increases of 0.48±0.05 nm/s (39), the data shown
in Figure 2B suggests that there were nine nucleation sites
present during the entire time shown since the growth
rates 30 s after a force change were �4.5 nm/s, for both
forces during all three time intervals. Thus, though the
number of nucleation sites is the same, the extension
rates show a significant dependence on previous force
changes, indicating that the observed dynamic effect is
not due to a change in the number of nucleation sites.
In addition, this result also implies that a force dependent
off-rate is not playing a significant role in the results since
the same extension rates were observed at both 30 and 56
pN. Supplementary Figure S4 shows that the dynamic
effect occurs even when filaments are depolymerizing at
all forces.

Dynamic effects in dsDNA molecules partially covered by
RecA are absent in buffers where hydrolysis is negligible

Figure 3A and B is analogous to Figure 2 where the
measured force (gray) and extension (black) as a
function of time are shown for a molecule in ATPgS, a
poorly hydrolysable analog of ATP. In ATPgS, a nearly
complete filament is formed after several force cycles,
where no decrease in extension is observed even at an
applied force of 10 pN. Spontaneous slope changes
occur, but they are not correlated with changes in force.
In ATPgS, RecA will continue to bind until a full filament
is formed. The extensions of full filaments in ATPgS are

highly insensitive to changes in applied force as can be
seen in Supplementary Figure S5.

Figure 3C and D is also analogous to Figure 2 where
the measured force (gray) and extension (black) of
dsDNA molecules partially covered by RecA as a
function of time in a buffer containing CaCl2 are shown.
ATP hydrolysis is known to be suppressed in this buffer
(32).

Many measurements of dsDNA partially covered by
RecA with different force steps and Fc values in the
presence of free RecA

Figure 4 shows the effect of dynamics on the extension
rates for many partially covered molecules with Fc

values from 10 to 55 pN and |�F| values from 10 to 30
pN. Figure 4A and B shows the results for the first 30 s
and the remaining 90 s, respectively. Each point in the
figure represents two successive measurements made at
the same Fc: the x and y coordinates are the measured
extension rates after a �F> 0 and �F< 0, respectively.
The negative controls (black points) obtained in RecA
buffer and no RecA lie within a �1.5 nm/s circle
centered at the origin during all time periods as is shown
in more detail in Supplementary Figure S6A and B, which
are expanded views of Figure 4. If RecA binds but force
changes played no role, all the points on the graph would
lie along the diagonal x= y line (dotted line), indicating
that dL/dt is insensitive to force changes. The ATP results
during the first 30 s fall well below the x= y line. In
contrast, the rates during the remaining 30–120 s are
much smaller and show little clear departure from the
x= y line. These results suggest that in most cases the
number of nucleation sites was the same for measurements

Figure 3. Extension versus time for dsDNA pulled by a sequence of constant forces in conditions where hydrolysis is negligible. (A) Extension
(black) and force (gray) as a function of time data in RecA buffer, 1mM RecA and 1mM ATPgS. (B) A more detailed sequence during �F=+25
pN and �F=–25 pN. (C) Extension (black) and force (gray) as a function of time in 1mM RecA, 10mM CaCl2 and 1mM ATP. (D) More detailed
sequence during �F=+20 pN and �F=–20 pN.
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at Fc. Thus, the observed dynamic effect is probably not
due to a change in the number of nucleation sites. The
observed extension rates during the last 90 s are similar
to the rates observed for molecules held at constant
force for hundreds of seconds (39), suggesting that the
increased slopes observed in the first 30 s are due to tran-
sitions between conformations. We note that the effect
could not simply be due to a force modulated off- rate
since the Fc values are the same. In general, the dynamic
effect is more marked at higher cycles.

In contrast, experiments on incomplete filaments in
buffers with suppressed hydrolysis show little or no
dynamic effect as illustrated by the magenta and gray
points in Supplementary Figure S6A and B, where the
magenta and gray points represent data at all forces
taken in buffer containing ATPgS and in buffer contain-
ing ATP where MgCl2 was replaced by CaCl2,
respectively.

Quasi-continuous experiments on dsDNA molecules
partially covered by RecA in the presence of free RecA

In these experiments each dsDNA molecule is subjected to
a force that is cycled in order to measure the change in
extension due to RecA binding while the applied force
changes at a rate of �1 pN/s. Figure 5A and B shows
selected cycles in ATP and ATPgS, respectively, from
the data shown in Supplementary Figure S7, where �L
is the measured extension at a given force minus the ex-
tension at the same force in the absence of RecA. The
black, orange and blue colors represent the first, second
and fourth complete cycles, respectively.

Figure 5C and D shows d�L/dt as a function of force
for the data shown in Figure 5A and B, where the up
cycles are shown by the solid lines and the down cycles
are shown by the dashed lines. In ATP both force direc-
tions show significant �L increases at forces >30 pN,
whereas at forces <30 pN, the down cycles show large
�L decreases and the up cycles show much smaller
changes in �L. Some samples eventually reached a condi-
tion where successive cycles showed the same force

extension behavior as illustrated in Supplementary
Figure S8A. In contrast, in ATPgS, Figure 5D shows
that d�L/dt is insensitive to both force and changes in
force. In ATPgS, the amount of bound RecA increases
with each cycle until a full filament is formed.
We note that even in a buffer containing ATP, if the

applied force is constrained to be between 30 and 50 pN,
as long as the force is varied at 1 pN/s, d�L/dt does not
change significantly with force or cycle number. In
addition, the observed d�L/dt values are similar to the
rates observed in ATPgS for all cycles, suggesting that
the number of nucleation sites does not increase much
with cycle number and that no significant effects
associated with a force dependent off-rate are observed.
Finally, consistent with earlier results for full filaments,
faster force changes or the application of higher or
lower forces do result in dynamic effects and those
dynamic effects increase with cycle number.
A different way of analyzing these quasi-continuous

results is presented in Figure 5E and F, where the x-co-
ordinate of each point is the increase in �L for a cycle
when the force is increasing and the y-coordinate is the
corresponding �L value for a cycle when the force is
decreasing, where each point represents a different force
value. Again, the d�L/dt values associated with
decreasing forces are less than the d�L/dt values
associated with increasing forces. One can see that in the
presence of ATP the dynamics effect was small during
the early cycles, but became more prominent as the cycle
number increased. The effect really depends on cycle
number, not extension as shown in Supplementary
Figure S8. In contrast, the d�L/dt in the presence of
ATPgS is similar for all cycles, and no significant
dynamic effects are observed in any cycle.
Figure 6 shows the measured extension rates for the

quasi-continuous case for forces ramped at �1 pN/s.
Since the applied force is constant dL/dt=d�L/dt,
Figure 6 is analogous to Figure 4, which showed dL/dt
at a constant force after stepwise increases in force.
Figure 6 shows two successive measurements of d�L/dt
at the same Fc: the x and y coordinates are the measured
d�L/dt when the force is increasing and when the force is
decreasing, respectively. The black circles and squares rep-
resent data taken in buffer containing ATP, at forces <30
and �30 pN respectively. The gray diamonds represent
data taken in ATPgS at all forces.
Typical extension versus time results for many cycles of

typical molecules are shown in Supplementary Figure S7.
We note that at the force minimum there is a large change
in d�L/dt. Hundreds of cycles of tens of molecules have
been examined with many different minimum force values,
rates of force change and covered filament fractions. If the
minimum force is <20 pN, the extension rates at the force
minimum show significant negative rates on the decreasing
force side and near zero slopes on the increasing force side.
For partially covered filaments, if the force is paused at
the minimum value, the observed d�L/dt is much slower
than d�L/dt measured while the force was decreasing
(Supplementary Figure S9). Thus, the observed difference
in the absolute values d�L/dt is not dominantly due to an
approach to the steady state extension at the minimum

Figure 4. Effect of dynamics on many incomplete filaments.
(A) Results for 0–30 s. (B) Results for 30–120 s. The x and y coordin-
ates are dL/dt after a �F> 0 and after a �F< 0, respectively. In ATP,
the Fc ranges are orange �20 pN, green 20–30 pN and blue >30 pN.
All forces for controls, samples in ATPgS and ATP/CaCl2 are shown as
black squares, magenta triangles and gray triangles, respectively. The
standard deviations for the individual slopes vary, but the average
standard deviation is 0.17 nm/s.
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force, though such an effect may make a contribution to
the observed result.
Figure 7 shows that the dynamic effect occurs when the

dsDNA is pulled by both ends or by the 3030, 5050 and
3050-ends. Moreover the effect can be observed when the
force is initially increased (3030 and 5050) or initially
decreased (3050 and both ends). Thus, the effect seems to
depend on the tension on the dsDNA and not on the dis-
tribution of the tension. The curves also demonstrate that
the dynamic effect is observed whether the increasing force
cycle is considered first or the decreasing force cycle is
considered first, demonstrating that the temporal order
of the cycles is not important.

Quasi-continuous experiments on dsDNA molecules
partially covered by RecA in the absence of free RecA

Quasi-continuous experiments were also done on partial
filaments in the absence of free RecA. The results are
shown in Supplementary Figure S10. These results are
very similar to the results for partial filaments in the
absence of RecA shown in Figure 5A, C and E, except
that in the absence of free RecA significant length de-
creases are observed when the force is being decreased
from 55 to 30 pN, whereas in the presence of free RecA
the extension remains constant until the force is lowered
<30 pN. At forces <30 pN, d�L/dt values of approxi-
mately �120 nm/s were observed.

Figure 5. Quasi-continuous measurements. (A) Selected cycles of the complete sequence shown in Supplementary Figure S7 (1mM RecA and 1mM
ATP), where the extension as a function of force in the absence of RecA has been subtracted. The up cycles are shown with solid lines and the down
cycles with dashed lines. (B) Same as (A) but in 1 mM RecA and 1mM ATPgS. (C) Change in extension as a function of force in 1mM ATP for the
curves shown in (A), where the solid lines correspond to the up cycles and the dashed lines correspond to the down cycles. (D) Same as (C) but in
1mM ATPgS. (E) Each point corresponds to two successive measurements of the slope at a given force Fc, where the x and y values corresponds to
the slopes when the force is increasing and decreasing, respectively, in ATP. (F) Same as (E) in ATPgS. The colors correspond to the cycle number of
the complete series of cycles shown in Supplementary Figure S7: black (first), orange (second) and blue (fourth). The variations in slope are �±3nm/s.
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Estimate of the tension on dsDNA inside RecA–dsDNA
filaments in the absence of external force

In order to determine whether the results presented above
are relevant to the motion of the strand exchange window
in vivo, it is important to estimate the tension present
inside dsDNA–RecA filaments in the absence of external
force. Such an estimate can be made by examining the
extension of full filaments as a function of force in

ATPgS, such as the graph shown in Supplementary
Figure S11. In ATPgS, conformational changes and un-
binding are strongly suppressed. Thus, changes in length
provide measurements of the elasticity of the filament. If
the protein is inextensible, then changes in extension must
result from changes in the extension of the dsDNA inside
the filament, possibly having an effect at the interfaces
between RecA monomers. If the internal tension in the
filament is much larger than the tension due to an
external force applied on the ends of the dsDNA, then
the observed extension should be insensitive to the value
of the force once entropic effects are overcome.
Supplementary Figure S11 shows no change in extension
for forces between 10 and 30 pN. At forces >40 pN, the
extension increases linearly with force.

DISCUSSION

The results above suggest that the response of RecA to
changes in tension on dsDNA depends on the applied
force, the rate of change of the force and the number of
previous force cycles experienced by each molecule. The
biological relevance of the results depends on whether the
experimental conditions are similar to those that occur
in vivo in the absence of any external force. In particular,
it is important to consider whether the tension and rates of

Figure 7. Extension versus force curves for different pulling techniques in 1mM ATP showing significant dynamics effects and large changes in slope
at the force minimum. (A) Pulling from 3030-ends. (B) 5050-ends. (C) 3050-ends. (D) Both ends. For these cycles force was initially increased in (A) and
(B) and initially decreased in (C) and (D).

Figure 6. Results for quasi continuous force changes. The gray
diamonds show data for measurements in 1 mM RecA and 1mM
ATPgS. Black circles and squares correspond to forces <30 pN and
�30 pN in 1mM RecA and 1mM ATP, respectively. The variations in
slope are �±3nm/s.
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change of tension used in these experiments are similar to
those that occur in vivo during strand exchange.
The results shown in Supplementary Figure S11 suggest

that the internal tension on dsDNA in a RecA filament is
�30 pN. As the strand exchange window moves, dsDNA
dissociates from the RecA/ssDNA filament at the lagging
edge of the strand exchange window. Similarly, the RecA/
ssDNA filament binds to new dsDNA at the leading edge
of the strand exchange window. Given that the strand
exchange window propagates at a rate of of �2 nt/s (25)
or �0.7 RecA/s, the maximum change in dsDNA tension
at the end of the filament would be of the order of 20 pN/s.
The detailed distribution of tension along the length of the
ssDNA/RecA–dsDNA complex is unknown, but the
change in tension is probably largest at the ends. Thus,
the responses of RecA to changes in dsDNA tension that
are described in this work are probably of the order of
those observed in vivo during strand exchange.
In a buffer with no free RecA, force changes produce

consistent reproducible linear extension rates. At high
forces, (>40 pN) the extensions increase slowly and at
low forces (<25 pN) the extensions decrease quickly. At
�40 pN, the extensions decrease after a force decrease and
remain approximately constant after a force increase. A
given single molecule can be cycled many times with
similar results. Thus, changes in the conformation of
bound RecA must be the dominant source of the
observed extension changes.
This conclusion is also supported by earlier work that

showed that the unbinding rate at low force or zero force
is of the order of 1 RecA/s (21,35,38), whereas the
observed decrease in extension shown in Figure 2A
would correspond to 300 RecA/s. It is believed that
RecA can only unbind from the ends of filaments
(21,35), where each nucleation site results in at most two
filament ends. Results presented in this article suggest that
under conditions similar to those in Figure 2A there are
�10 nucleation sites present. Thus, the �150 nm/s
decreases in extension are probably dominantly due to
conformational transitions in the bound RecA rather
than RecA unbinding.
In this work, we have shown that if the applied force is

varied within the range between 30 and 50 pN at a rate of
1 pN/s, full filaments (Supplementary Figure S12) show
no change in �L, and partial filaments show no change in
d�L/dt (Figure 5C). At forces <30 pN, the situation is
more complicated since unbinding of RecA is observed
even in filaments that were initially complete. At 10mM
ATP concentrations in the absence of free RecA
(Supplementary Figure S12), the change in extension due
to conformational changes is of the order of or larger than
the change due to unbinding, so the measured extension
changes are indicative of conformational changes. At
lower ATP concentrations, length changes at low forces
may be dominated by unbinding.
Comparisons of the measured d�L/dt at given Fc< 30

pN show that decreases in force promote decreases in �L
and increases in force stabilize �L. These observed de-
creases in �L may include transitions in bound RecA
from the active conformation to the inactive conform-
ation, as well as unbinding. Transitions from the active

state to the inactive state will of course promote future
unbinding; therefore, the experimental results presented
here suggest that decreases in force promote RecA un-
binding and increases in force stabilize RecA binding.
This result holds for both stepwise and continuous force
changes. The comparison was made between results at the
same Fc, so the results are not affected by a force depend-
ence in koff.

In sum, as the strand exchange window progresses
along a dsDNA molecule, if the dsDNA tension at the
leading end of the strand exchange window is increasing,
as suggested by the measurements above that implied that
the internal tension is of the order of the tension due to an
external force of �30 pN, then the tension at the lagging
end must be decreasing. The results reported above
suggest that increases in dsDNA tension result in con-
formational changes in the bound RecA from the
inactive state to the active state. Similarly, decreases in
dsDNA tension result in conformational changes in
bound RecA from the active state to the inactive state.
Given that RecA in the active state does not unbind
from dsDNA, whereas RecA in the inactive state can
unbind, the functional response of RecA to changes in
dsDNA tension could enhance the motion and direction-
ality of the strand exchange window. This effect would be
lost if a non-homologous region resulted in a pause in the
motion of the strand exchange window. Such a pause
might possibly increase sequence stringency by stalling
strand exchange when it reaches a non-homologous
region.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

Harvard University (to M.P.). N.K.’s research is sup-
ported by NIH (grants RO1-GM025326 and
R01-GM044794). Funding for open access charge:
Harvard University.

Conflict of interest statement. None declared.

REFERENCES

1. Kowalczykowski,S.C., Dixon,D.A., Eggleston,A.K., Lauder,S.D.
and Rehrauer,W.M. (1994) Biochemistry of homologous
recombination in Escherichia coli. Microbiol. Rev., 58, 401–465.

2. Lusetti,S.L. and Cox,M.M. (2002) The bacterial RecA protein
and the recombinational DNA repair of stalled replication forks.
Annu. Rev. Biochem., 71, 71–100.

3. Cox,M.M. (2007) Regulation of bacterial RecA protein function.
Crit. Rev. Biochem. Mol. Biol., 42, 41–63.

4. Kowalczykowski,S.C. (2000) Initiation of genetic recombination
and recombination-dependent replication. Trends Biochem. Sci.,
25, 156–165.

5. Müller,B., Koller,T. and Stasiak,A. (1990) Characterization of the
DNA binding activity of stable RecA-DNA complexes.
Interaction between the two DNA binding sites within RecA
helical filaments. J. Mol. Biol., 212, 97–112.

6. Takahashi,M., Kubista,M. and Nordén,B. (1989) Binding
stoichiometry and structure of RecA-DNA complexes studied by

8842 Nucleic Acids Research, 2011, Vol. 39, No. 20

http://nar.oxfordjournals.org/cgi/content/full/gkr561/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr561/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr561/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr561/DC1


flow linear dichroism and fluorescence spectroscopy. Evidence for
multiple heterogeneous DNA co-ordination. J. Mol. Biol., 205,
137–147.

7. Howard-Flanders,P., West,S.C. and Stasiak,A. (1984) Role of
RecA protein spiral filaments in genetic recombination. Nature,
309, 17–23.

8. Chen,Z., Yang,H. and Pavletich,N.P. (2008) Mechanism of
homologous recombination from the RecA-ssDNA/dsDNA
structures. Nature, 453, 489–494.

9. Shibata,T., DasGupta,C., Cunningham,R.P. and Radding,C.M.
(1979) Homologous pairing in genetic recombination: complexes
of recA protein and DNA. Proc. Natl Acad. Sci. USA, 76,
5100–5104.

10. van Mameren,J., Modesti,M., Kanaar,R., Wyman,C.,
Peterman,E.J.G. and Wuite,G.J.L. (2009) Counting RAD51
proteins disassembling from nucleoprotein filaments under
tension. Nature, 457, 745–748.

11. Mazin,A.V. and Kowalczykowski,S.C. (1996) The specificity of
the secondary DNA binding site of RecA protein defines its role
in DNA strand exchange. Proc. Natl Acad. Sci. USA, 93,
10673–10678.

12. Mazin,A.V. and Kowalczykowski,S.C. (1998) The function of the
secondary DNA-binding site of RecA protein during DNA strand
exchange. EMBO J., 17, 1161–1168.

13. Xiao,J. and Singleton,S.F. (2002) Elucidating a key intermediate
in homologous DNA strand exchange: structural characterization
of the RecA–triple-stranded DNA complex using Fluorescence
Resonance Energy Transfer. J. Mol. Biol., 320, 529–558.

14. Xiao,J., Lee,A.M. and Singleton,S.F. (2006) Direct evaluation of
a kinetic Model for RecA-mediated DNA-strand exchange: the
importance of nucleic acid dynamics and entropy during
homologous genetic recombination. ChemBioChem, 7, 1265–1278.

15. Radding,C.M. (1982) Homologous pairing and strand exchange in
genetic recombination. Annu. Rev. Genet., 16, 405–437.

16. Menetski,J.P., Bear,D.G. and Kowalczykowski,S.C. (1990) Stable
DNA heteroduplex formation catalyzed by the Escherichia-coli
RecA protein in the absence of ATP hydrolysis. Proc. Natl Acad.
Sci. USA, 87, 21–25.

17. Kowalczykowski,S.C. and Krupp,R.A. (1995) DNA-strand
exchange promoted by RecA protein in the absence of ATP:
implications for the mechanism of energy transduction in
protein-promoted nucleic acid transactions. Proc. Natl Acad. Sci.
USA, 92, 3478–3482.

18. Kim,J.-I., Cox,M. and Inman,R.B. (1992) On the role of ATP
hydrolysis in RecA protein-mediated DNA strand exchange. I
Bypassing a short heterologous insert in one DNA substrate.
J. Biol. Chem., 267, 16438–16443.

19. Rosselli,W. and Stasiak,A. (1991) The ATPase activity of RecA is
needed to push the DNA strand exchange through heterologous
regions. EMBO J., 10, 4391–4396.

20. Robu,M.E., Inman,R.B. and Cox,M.M. (2001) RecA promotes
the regression of stalled replication forks in vitro. Proc. Natl
Acad. Sci. USA, 98, 8211–8218.

21. Cox,J.M., Tsodikov,O.V. and Cox,M.M. (2005) Organized
unidirectional waves of ATP hydrolysis within a RecA filament.
PLoS Biol., 3, 231–243.

22. Folta-Stogniew,E., O’Malley,S., Gupta,R.C., Anderson,K.S. and
Radding,C.M. (2004) Exchange of DNA base pairs that coincides
with recognition of homology promoted by E. coli RecA protein.
Mol. Cell, 15, 965–975.

23. Hsieh,P., Camerini-Otero,C.S. and Camerini-Otero,R.D. (1992)
The synapsis event in the homologous pairing of DNAs: RecA

recognizes and pairs less than one helical repeat of DNA.
Proc. Natl Acad. Sci. USA, 89, 6492–6496.

24. Gumbs,O.H. and Shaner,S.L. (1998) Three mechanistic steps
detected by FRET after presynaptic filament formation in
homologous recombination. ATP hydrolysis required for release
of oligonucleotide heteroduplex product from RecA. Biochemistry,
37, 11692–11706.

25. van der Heijden,T., Modesti,M., Hage,S., Kanaar,R., Wyman,C.
and Dekker,C. (2008) Homologous recombination in real time:
DNA strand exchange by RecA. Mol. Cell, 30, 530–538.

26. Stasiak,A., Stasiak,A.Z. and Koller,T. (1984) Visualization of
RecA-DNA complexes involved in consecutive stages of an
in vitro strand exchange reaction. Cold Spring Harb. Symp.
Quant. Biol., 49, 561–570.

27. Jain,S.K., Cox,M.M. and Inman,R.B. (1994) On the role of ATP
hydrolysis in RecA protein-mediated DNA strand exchange. III.
Uni-directional branch migration. J. Biol. Chem., 269,
20653–20661.

28. Cox,M.M. (2007) Motoring along with the bacterial RecA
protein. Nat. Rev. Mol. Cell Biol., 8, 127–138.

29. Robertson,R.B., Moses,D.N., Kwon,Y., Chan,P., Chi,P.,
Klein,H., Sung,P. and Greene,E.C. (2009) Structural transitions
within human Rad51 nucleoprotein filaments. Proc. Natl Acad.
Sci. USA, 106, 12688–12693.

30. Danilowicz,C., Coljee,V.W., Bouzigues,C., Lubensky,D.K.,
Nelson,D.R. and Prentiss,M. (2003) DNA unzipped under a
constant force exhibits multiple metastable intermediates.
Proc. Natl Acad. Sci. USA, 100, 1694–1699.

31. Danilowicz,C., Limouse,C., Hatch,K., Conover,A., Coljee,V.W.,
Kleckner,N. and Prentiss,M. (2009) Demonstration that the force
versus extension curves for overstretched DNA depend on which
ends are pulled. Proc. Natl Acad. Sci. USA, 106, 13196–13201.

32. Menetski,J.P., Varghese,A. and Kowalczykowski,S.C. (1988)
Properties of the high-affinity single-stranded-DNA binding state
of the Escherichia-coli RecA protein. Biochemistry, 27, 1205–1212.

33. Prévost,C. and Takahashi,M. (2004) Geometry of the DNA
strands within the RecA nucleofilament: role in homologous
recombination. Q. Rev. Biophys., 36, 429–453.

34. Story,R.M., Weber,I.T. and Steitz,T.A. (1992) The structure of
the E. coli recA protein monomer and polymer. Nature, 355,
318–325.

35. Lindsley,J.E. and Cox,M.M. (1989) Dissociation pathway for
RecA nucleoprotein filaments formed on linear duplex DNA.
J. Mol. Biol., 205, 695–711.

36. Leger,J.F., Robert,J., Bourdieu,L., Chatenay,D. and Marko,J.F.
(1998) RecA binding to a single double-stranded DNA molecule:
a possible role of DNA conformational fluctuations. Proc. Natl
Acad. Sci. USA, 95, 12295–12299.

37. Hegner,M., Smith,S.B. and Bustamante,C. (1999) Polymerization
and mechanical properties of single RecA–-DNA filaments.
Proc. Natl Acad. Sci. USA, 96, 10109–10114.

38. Shivashankar,G.V., Feingold,M., Krichevsky,O. and Libchaber,A.
(1999) RecA polymerization on double-stranded DNA by using
single-molecule manipulation: the role of ATP hydrolysis.
Proc. Natl Acad. Sci. USA, 96, 7916–7921.

39. Feinstein,E., Danilowicz,C., Conover,A., Gunaratne,R.,
Kleckner,N. and Prentiss,M. (2011) Single molecule studies of
the stringency factors and rates governing the polymerization of
RecA on double stranded DNA. Nucleic Acids Res., 39,
3781–3791.

Nucleic Acids Research, 2011, Vol. 39, No. 20 8843


