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Abstract

Background: Previously, we reported that the ‘‘antioxidant’’ compound ‘‘mitoQ’’ (mitochondrial-targeted ubiquinol/
ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with
complex I but not complex II substrates.

Methods and Results: To further define the site of action of the targeted coenzyme Q compound, we extended these studies to
include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial
respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis
that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of
complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites
within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II
substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to
1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential
or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged
mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased
membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive
charge were not responsible and the quinone moiety is required for altered nutrient selectivity.

Conclusions: In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more
than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration,
increases repiration by intact cells, and alters fuel selectivity favoring glucose over fatty acid oxidation at the intact cell level.
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Introduction

Mitochondria are likely the predominant source of reactive

oxygen species (ROS) in many cell types [1–4]. This is

underscored by recent evidence that mitochondrial oxidative

damage may underlie problems including cell damage in

degenerative diseases and aging [5–7], vascular disease, and

complications of diabetes [8–16]. Given the vascular nature of

these problems understanding the role of mitochondrial oxidative

stress in endothelial cells is particularly important.

Concern over the contribution of ROS to vascular and

degenerative disease, has led to attempts at antioxidant therapy.

Efforts are now underway to develop effective antioxidant

compounds targeted to mitochondria [17,18]. In particular, targeted

forms of coenzyme Q have attracted attention and are under

development as therapeutic agents [19]. However, the effects of

targeted CoQ on ROS production by mitochondria are still not well

understood. Moreover, little is known of the metabolic consequences

of loading mitochondria with Coenzyme Q (CoQ10) analogs.

In past studies of bovine aortic endothelial (BAE) cell

mitochondria, we demonstrated that a mitochondrial targeted

CoQ compound termed ‘‘mitoQ’’ (mitoquinone, mitoquinol, or a

mixture of these two redox cycling compounds) markedly

increased or decreased reactive oxygen species (ROS) generation

depending on substrate provided for fuel [20]. MitoQ markedly

increased superoxide production during forward electron trans-

port in mitochondria respiring on the complex I (NADH:ubiqui-

none oxidoreductase) substrates, glutamate plus malate. On the

other hand mitoQ inhibited ROS generated by BAE mitochon-

dria respiring on the complex II (succinate:ubiquinone oxidore-

ductase) substrate, succinate, a condition wherein ROS production

occurs through reverse electron transport or backflow of electrons

to complex I originating from complex II.

During respiration on complex I substrates, superoxide appears

to result from redox cycling of endogenous CoQ10 or exogenous

analogs at Q-binding sites within complex I [20–22]. Recently a

two site model for mitoquinone redox cycling in complex I was

proposed with one site proximal and one distal to the site of
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rotenone inhibition at the N2 iron-sulfur cluster [21]. Our previous

work showed that the effect of mitoquinone on ROS production was

rotenone sensitive [20]. Therefore, in this work we examined ROS

production as affected by different relative concentrations of

mitoquinone and rotenone to determine whether simple dose

dependent effects or more complex interactions were involved,

which might be better explained by a two-site model.

Further, and perhaps of greater importance, we addressed the

issues of whether mitoquinone might induce a substrate specific

increase in mitochondrial oxygen consumption (as might be

expected given the substrate specific effects on ROS) and whether

this might be associated with alterations in cellular respiration and

nutrient selectivity. This could follow based on the following

reasoning. Complex I substrates generate NADH which donates

electrons to complex I. In contrast, electron donation at other

entry sites including complex II and the ETF-ubiquinone

reductase requires FADH2. Glucose oxidation through glycolysis

and pyruvate dehydrogenase to acetyl CoA generates NADH. In

contrast, fatty acid oxidation to acetyl-CoA generates FADH2

through the process of b-oxidation. Acetyl CoA from both sources

feeds the TCA cycle. So, although mitochondrial fatty acid b-

oxidation is more efficient in terms of total reducing equivalents

generated per molecule, glucose oxidation compared to fat

oxidation generates proportionally more NADH (as a percent of

total reducing equivalents generated). So, we reasoned that if

mitoquinone were more effective at generating oxygen radicals on

substrates that produce NADH (complex I substrates) than those

which generate FADH2, then mitoquinone might also increase

respiration on complex I substrates more than complex II

substrates. If so, mitoquinone might favor metabolism of nutrients

that generate proportionately more NADH than FADH2 which

might then translate to proportionately more (in the presence of

mitoquinone versus absence) use of glucose than fat.

The issue of fuel selectivity is of high interest in the fields of

diabetes, obesity, and associated cardiovascular disease. In fact

lack of metabolic ‘‘flexibility’’ such as the capacity to switch

between fat and glucose oxidation has been implicated in cardiac

complications of diabetes [23,24] and in the pathogenesis of

insulin resistance as seen in type 2 diabetes and obesity [25].

Here we report novel information covering two important

issues. First we provide new data on the interactions of

mitoquinone and rotenone at different concentrations of complex

I substrates and discuss the implications for redox cycling at

complex I. Second, we provide novel data demonstrating that

mitoquinone does in fact alter respiration and fuel selectivity by

intact cells. Finally we consider the effects of mitoquinone on

mitochondrial membrane potential and whether such effects might

affect fuel selectivity and/or cell toxicity.

Materials and Methods

Reagents and supplies
Mitoquinone and mitoquinol were synthesized from commercially

available 11-bromoundecanoic acid and 2,3-dimethoxy-5-methyl-

1,4-benzoquinone as described [26,27]. Other reagents, kits, and

supplies were as specified or purchased from standard sources.

MitoQ consists of the quinone/quinol moiety of endogenous

coenzyme Q, linked to a 10 carbon side chain, covalently bound to

triphenylphosphonium. Control compounds included endogenous

coenzyme Q, decylTPP consisting of triphenylphosphonium and the

10 carbon chain of mitoQ but without the quinone moiety, and

decylQ consisting of the carbon chain and quinone/quinol moiety

but without the targeting cation. The molecular structures of these

compounds are included in supplementary material (Methods S1).

Primary antibodies included mouse monoclonal anti-porin

(A21317, Invitrogen, Carlsbad, CA), goat polyclonals anti-actin

and anti-histone deacetylase-1 (HDAC1)(sc-1615 and sc-6298,

respectively, Santa Cruz Biotechnologies, Santa Cruz, CA), and

rabbit anti-catalase IgG (01-05-030000, Athens Research and

Technology, Athens, GA). Secondary antibodies consisted of goat

anti-mouse, donkey anti-goat, and goat anti-rabbit (Santa Cruz).
Cell culture. BAE cells were grown in medium M199

(Invitrogen) supplemented with minimal essential medium amino

acids (Invitrogen), penicillin/streptomycin (Invitrogen), minimal

essential medium vitamins (Sigma), and 20% fetal bovine serum

(HyClone, Logan, UT) as described [28]. Cells were grown to near

confluence in 150-cm2 flasks and used between passages 6 and 12.

Isolation of Mitochondria
Cells were washed with phosphate buffered saline (PBS) and

scraped. Collected cells were homogenized using a Dounce

homogenizer in ice-cold homogenization buffer (0.25 M sucrose,

5 mM HEPES, 0.1 mM EDTA, pH 7.2) with 0.1% fatty acid-free

bovine serum albumin (BSA). The homogenate was centrifuged at

10006g for 10 min. The pellet was discarded and the supernatant

was centrifuged again at 10,0006g for 10 min to obtain the

mitochondrial pellet. The resulting pellet was then washed three

times in homogenization buffer without BSA and resuspended in

media as described below. Protein was determined by the

Bradford method (BioRad, Hercules, CA). Mitochondria prepared

in this way were of good quality as documented by an increase in

respiratory rate of 3.5–6 fold after addition of carbonyl cyanide p-

[trifluoromethoxy]-phenyl-hydrazone (FCCP) as an uncoupler.

Purity of mitochondria prepared in this way was documented by

assessing mitochondrial and intact cell expression of the

mitochondrial protein, porin; the cytoplasmic protein, catalase;

the nuclear protein, HDAC1; and actin by immunoblot analysis.

In our mitochondrial studies, all individual experiments (each n of

1) compare conditions within the same preparation, so the extent

of purity would be the same for all conditions.

Immunoblotting
Ten mg protein per lane were loaded and separated by 12.5%

polyacrylamide gel electrophoresis and electroblotted to nitrocellu-

lose membranes (Millipore Corp., Bedford, MA). For porin, blots

were incubated with mouse anti-porin, 1:25,000, in TTBS (tris

buffered saline, pH 7.6 with 1 ml/L TWEEN 20)/2.5% BSA

overnight at 4uC. For actin, blots were blocked with TTBS/5% milk

at RT for 1 h and incubated in goat anti-actin, 1:2000, in TTBS/

2.5% BSA overnight at 4uC. For HDAC1, blots were incubated in

goat anti-HDAC1, 1:500, in TTBS/2.5% BSA overnight at 4uC. For

catalase, blots were incubated in rabbit anti-catalase, 1:2500 in

TTBS/2.5% BSA overnight at 4uC. Following primary antibody

incubations, blots were washed in TTBS, and incubated in secondary

Ab, 1:20,000, for 1 hour at room temperature in TTBS/5% milk.

After secondary antibody incubations, blots were washed with TTBS

and developed by enhanced chemiluminescence using a standard kit

(ECL, Amersham Pharmacia Biotech, Piscataway, NJ).

Mitochondrial respiration
Mitochondrial respiration was measured as we previously

described [20,29] using a Clark miniature oxygen electrode and

small (0.6 ml) volume chamber with stir bar (Instech Laboratories,

Inc., Plymouth Meeting, PA) at 37uC in ionic respiratory buffer

(120 mM KCl, 5 mM KH2PO4, 2 mM MgCl2, 1 mM EGTA,

3 mM HEPES, pH 7.2 with 0.3% fatty acid free BSA). Isolated

mitochondria (0.5 mg protein/ml) were incubated in the respira-

tory media and oxygen consumption quantified. To determine

MitoQ, ROS, and Metabolism
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state 4 and state 3 respiration, oxygen consumption was

continuously recorded with sequential additions of 5 mM

succinate, 0.2 mM ADP, and finally 2.5 mM carbonyl cyanide p-

[trifluoromethoxy]-phenyl-hydrazone (FCCP) to induce maximal

chemical uncoupling using standard methodology as we have

employed in the past [30]. The ADP:O ratio was determined in

standard fashion as we have carried out in the past [30], calculated

as ADP added divided by oxygen consumed during the duration of

state 3 respiration

Mitochondrial ROS production
Mitochondria were studied during state 4 respiration, under

which circumstance oxygen radical formation is enhanced as

electron flow leads to high potential unmitigated by ATP generation

[31]. H2O2 production was assessed as we previously described [20]

using the fluorescent probe 10-acetyl-3,7-dihydroxyphenoxazine

(DHPA) (Amplex Red, Invitrogen, Carlsbad, CA). In the presence of

horseradish peroxidase, DHPA reacts with H2O2 to generate the

fluorescent compound resorufin. ROS detected in this way derives

largely from superoxide converted to H2O2 by matrix superoxide

dismutase and released externally. As we previously showed by

inhibitor analysis and by comparison to complex III superoxide

detected by electron paramagnetic resonance spectroscopy (EPR)

[20], and as shown by others [32], H2O2 detected in this way largely

derives from superoxide released by complex I.

Samples were prepared in 96-well plates containing 0.06 ml per

well of respiratory buffer. Fluorescence was measured as we

previously described [20] once every 60 seconds and carried out

for 30 cycles. For quantification, a H2O2 standard curve ranging

from 0–12 mM was prepared and included on each plate. Addition

of substrates, mitoquinone, or diphenyleneiodinium chloride (DPI)

to respiratory buffer did not affect the H2O2 standard curve.

Addition of rotenone at 5 mM (maximum dose used) slightly raised

the height of the standard curve at all points with no change in

slope so the data were corrected for this factor. The lower doses of

rotenone utilized in this work had no effect on the standard curve.

Addition of catalase, 500 units/ml, reduced fluorescence to

below the detectable limit indicating specificity for H2O2. Addition

of the ETS inhibitors rotenone or DPI or tested quinone or control

compounds to mitochondria in the absence of substrate altered

fluorescence no more than 5%.

Respiration by intact BAE cells
We used a method adapted from perfusion methodology

designed to quantify oxygen use by cells under microscopy [33].

Here we grew BAE cells on glass microcarrier beads (Cytodex,

Sigma Life Sciences, Inc.) enabling perfusion on a column in bead

volumes of 1.0–1.5 ml at flow rates of 1–1.5 ml/min. Respiration

was quantified as the steady state difference in oxygen tension

determined between electrodes placed proximal and distal to the

column. The electrodes could be precisely calibrated to each other

by shunting medium around the perfusion column through a

control bead column without cells. Oxygen use per volume of

beads perfused is given by the difference in oxygen tension and

known flow rate[(% drop in O2 content across the column6oxy-

gen content at atmospheric pressure (nmol/ml)6flow rate (ml/

min)]/bead volume (ml). The apparatus and a sample run are

depicted in supplementary material (Methods S1).

Oxygen consumption depends on bead volume, flow rate, and

the number of cells per bead volume. Bead volume and flow rates

were identical for each of three experiments comparing mitoqui-

none to control (decylQ). Although we did not quantify the

number of cells per bead volume the same preparations were used

for mitoquinone and control in each experiment so any variation

with cell number would be identical for mitoquinone and control.

An example run is shown in supplemental material (Methods S1)

wherein FCCP was added at the end demonstrating the expected

transient increase in O2 consumption with chemical uncoupling.

Glucose and Oleate oxidation
Cells were washed and then preincubated for 20 min in culture

medium with 5.5 mM glucose, and either 10 mM or 200 mM

oleate with 1.5% fatty acid-free BSA, and 1 mM carnitine in 12-

well plates (Costar, Corning Inc., Acton, MA) containing 0.6 ml

total volume per well. MitoQ (1 mM) or control compounds at the

same concentration were added at the beginning of the 20 min

preincubation (time 220 min) before addition of label at time 0.

Separate groups of experiments were performed in the presence of

oleate, 200 mM, and oleate, 10 mM. In each group of experiments

glucose and oleate oxidation were assessed in parallel studies under

the same conditions except for the addition of either [1–14C]oleic

acid or D-[14C(U)]glucose. Cells were incubated for 120 min

before trapping of CO2 released by perchloric acid as we

previously described [30]. Final specific activities in the incubation

media were 1.526106 mCi/pmol for cold oleate at 200 mM (total

oleate with label 206 mM) and 20.1 mCi/pmol for cold oleate at

10 mM (total oleate with label 15.7 mM). Final specific activity of

glucose was 0.04636103 mCi/nmol for cold glucose at 5.5 mM

(total glucose with label 5.6 mM).

An additional group of experiments were carried out to

determine the dose-response characteristics of the mitoquinone

on fuel selectivity. These experiments were preformed in the same

fashion except that cells were exposed to various concentrations of

mitoquinone or vehicle in culture medium overnight (18 h) before

addition of [1–14C]oleic acid or D-[14C(U)]glucose and 50 mM

cold oleate at time zero (before the 120 minute incubation with

label). Final specific activity of oleate was 5.616106 mCi/pmol

(total oleate with label 56 mM). Final specific activity of glucose

was 0.04636103 mCi/nmol (total glucose with label 5.6 mM).

Mitochondrial membrane potential
Cells were exposed to various doses of mitoquinone, decylTPP,

CoQ10, or vehicle in culture medium overnight for 18 h. The

potential sensitive probe, JC-1 was then added at a concentration

of 0.5 mg/ml for one hour and washed with Earle’s balanced salt

solution before determining red and green fluorescence at

excitation and emission wavelengths 544/590 and 485/520

respectively. The red to green ratio was calculated as an index

of mitochondrial potential.

Cell toxicity assays
Toxicity was assayed by two methods. First, the ability of cells to

convert the redox dye resazurin into resorufin, a property lost by

cells as metabolic activity is impaired [34], was determined using a

kit (CellTiter-Blue, Promega). BAE cells were treated overnight

with mitoquinone or control compounds prior to end point

addition of the resazurin reagent for three h. Conversion of

resorufin was determined by fluorescence at excitation of 560 nm

and emission at 590. Second we assayed cell membrane integrity

by measuring LDH released into the culture medium in

comparison to a standard curve. To prepare the curve, BAE cells

were fully lysed and pooled to generate an LDH concentration

reflective of 100% lysis and serial dilutions made generating a

curve representing LDH (fluorescence) versus estimated percent

lysis. Background fluorescence (about 9% of total) was subtracted

in each assay. The assay was carried out using a kit (CytoTox-

ONE, Promega) according to the manufacturer’s recommended

protocol.

MitoQ, ROS, and Metabolism
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Statistics
Data were analyzed by ANOVA with post-tests as indicated.

Results

Purity of BAE cell mitochondria
BAE mitochondria were highly pure as shown by the relative

expression of the mitochondrial specific protein, porin; the

cytoplasmic protein, catalase; the nuclear protein, HDAC1; and

actin in mitochondrial and whole cell fractions (figure 1). It is

possible that there is very minor contamination of mitochondria

with nuclear particles based on a faint HDAC1 signal in the

mitochondrial fraction.

Substrate dependent effects of mitoQ on mitochondrial
ROS production

Consistent with our previous findings [20], mitoQ markedly

increased H2O2 production in the presence of the complex I

substrates, glutamate and malate, while reducing H2O2 produc-

tion in the presence of the complex II fuel, succinate. Here we

show similar findings (figure 2) when mitochondria were incubated

in the presence of pyruvate which can also donate electrons to

complex I through NADH. Tested compounds demonstrated

minimal non-specific fluorescence as evidenced by the data

generated in the absence of substrate.

Substrate dependent effects of mitoQ on mitochondrial
respiration

Figure 3 shows the effect of mitoquinone, compared to CoQ10

or vehicle, on respiration in isolated BAE mitochondria deter-

mined by polarography using a Clarke electrode to measure O2

utilization. These data show that mitoquinone significantly

increased state 4 respiration by isolated BAE mitochondria

respiring on the complex I substrates, glutamate and malate.

Mitoquinone resulted in a non-significant decrease in respiration

on the complex II fuel, succinate. Essentially, the same results were

observed when respiration was expressed as a percentage of

maximal respiration determined in the presence of the chemical

uncoupler FCCP. Mitoquinone resulted in similar, but non-

significant, alterations in state 3 respiration. Mitoquinone did not

significantly alter the ADP:O ratio in mitochondria respiring on

complex I or Complex II substrates.

ROS production in the presence of complex I inhibitors
In pilot experiments, we noted that rotenone inhibits the effect

of mitoquinone on ROS in the presence of complex I substrates.

However the effect seemed to change as different doses of these

compounds were tested. Figure 4 depicts the effect of mitoquinone

at different concentrations of rotenone on H2O2 production by

BAE mitochondria fueled with complex I substrates. As shown, the

effect of increasing the rotenone dose is biphasic, first increasing

then decreasing mitoquinone induced ROS, thus generating the

inverse U-shaped relationship. By two-way ANOVA, the data are

highly interactive (p,0.001) indicating that the effect of

mitoquinone is highly dependent on the rotenone concentration.

In other experiments, we examined the effect of 5 mM DPI,

which inhibits the FMN site of complex I, on ROS production as

affected by mitoquinone at different rotenone concentrations. As

shown, DPI reduced the effect of mitoquinone at all doses of

rotenone. Since, there is evidence that DPI may also act on

mitochondrial chloride channels [35], we tested the effect of the

compound using a chloride free buffer system substituting

gluconate for chloride in the respiratory medium. Although the

effects of mitoquinone and rotenone appeared to be mildly altered

in this non-physiologic buffer, DPI again appeared to block the

effect of mitoquinone at all doses of rotenone (figure 5).

Effect of mitoQ on respiration in intact BAE cells
Given the effects of mitoquinone on respiration in isolated

mitochondria we extended these studies to whole cell respiration.

This was done by perfusing cells grown on glass beads and

measuring the difference in oxygen tension as recorded by electrodes

placed proximal and distal to the perfused cells in a manner in which

the two electrodes could be precisely calibrated to each other (see

supplementary material, Methods S1). The effect of additions to the

perfusion medium could then be determined by the change from

steady state oxygen consumption prior to and after exposure to the

test condition. Addition of mitoquinone resulted in an incremental

oxygen consumption rate (beyond that of buffer perfused cells) of

6562 (mean6SE) nmol O/min/ml bead volume whereas there was

essentially no incremental change when the control compound,

decylQ was added (figure 6). In each individual experiment

comparing mitoquinone to control, the same bead volume and

bead preparation were used for both compounds. The mean basal

oxygen consumption before addition of these compounds was

5666 nmol/min/ml bead volume (n = 6) and did not differ between

compounds. In additional experiments, which employed separate

bead preparations, oxygen consumption after addition of 2.0 mM

FCCP was 229645 nmol/min/ml bead volume (n = 5). A fourth

determination of incremental oxygen consumption in the presence of

mitoquinone, but with no control, revealed a value of 46 nmol/min/

ml bead volume.

Effect of mitoquinone on fuel selectivity in the intact BAE
cell

Figure 7 demonstrates the effect of mitoquinone compared to

vehicle and control compounds on glucose and oleate oxidation by

intact BAE cells determined as CO2 production from labeled glucose

or oleate. For a given experiment, fat and glucose oxidation were

determined in cells grown side by side seeded in individual wells at

the same time. Two groups of experiments were performed; first

comparing glucose and oleate oxidation in cells at 5.5 mM glucose

and 200 mM oleate (before added label) and a second group in cells

at 5.5 mM glucose and 10 mM oleate (before added label). Each

individual data point actually represents the mean of triplicate

determinations in cells grown in separate wells. The absolute values

for glucose and oleate oxidation in the presence of vehicle were

4.9660.85 nmol/well and 216647 pmol/well in panels A and B,

respectively, and 6.4560.63 nmol/well and 11.864.3 pmol/well in

panels C and D, respectively.

Figure 1. Mitochondria were highly purified as demonstrated
by the relative expression of the mitochondrial specific
protein, porin; the cytoplasmic protein, catalase; the nuclear
protein, HDAC1; and actin in mitochondrial (M) and whole cell
(W) fractions. Extracts were subject to immunoblot analysis using the
antibody to the indicated protein. Findings are representative of four
different mitochondrial preparations.
doi:10.1371/journal.pone.0004250.g001
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As indicated, mitoquinone enhanced glucose oxidation

(figures 7A and 7C) and inhibited oleate oxidation (figures 7B

and 7D), although the effect on oleate oxidation was significant

only at the higher oleate concentration. At the higher oleate

concentrations, mitoquinone increased glucose oxidation by

222635% of vehicle compared to little change for the control

compounds (CoQ10, decylQ, or decylTPP). Mitoquinone de-

creased oleate oxidation by 5064% of vehicle, again compared to

essentially no change for the controls. The complex I inhibitor,

rotenone, reduced oxidation of both oleate and glucose.

We also determined the dose-response characteristics for the

effect of mitoquinone on fuel selectivity. These studies were carried

out as above except that the oleate concentration was 50 mM and

the exposure time to mitoquinone or vehicle was overnight or

18 h. We found a significant dose response relationship extending

well down into the nM range (figure 8). The absolute values for

glucose and oleate oxidation in the presence of vehicle were

6.2160.54 nmol/well and 71618 pmol/well respectively.

Mitochondrial membrane potential
Cells were exposed overnight to 100 nM to 1.0 mM concentra-

tions of mitoquinone, CoQ10, or decylTPP or to vehicle (ethanol)

under the same conditions used to study fat and glucose oxidation

(figure 9). As shown in figure 9A, mitoquinone and, to a greater

extent, decylTPP reduced membrane potential. For mitoquinone,

the effect was significant only at the highest dose.

Cell toxicity
These assays were done in order to test the possibility that

mitoquinone or control compounds could induce cytotoxicity,

which would raise concern regarding possible non-specific effects

on mitochondrial or intact cell fuel utilization or on fuel selectivity.

Cells were exposed overnight to 100 nM to 1.0 mM concentrations

of mitoquinone, CoQ10, or decylTPP or to vehicle (ethanol),

again under the same conditions used to study fat and glucose

oxidation (figure 8). We observed no difference in reduction of

resazurin to resorufin by BAE cells exposed to any mitoquinone

concentration compared to vehicle (figure 9B). Toxicity was

observed only at the highest concentration of decylTPP.

Conceivably, mitoquinone or control compounds could alter dye

reduction. Therefore, we also assessed LDH release from cells

treated in this fashion. For all treatments, LDH release was less

than 1% of that observed from cells lysed after culture under the

same conditions over three separate assays (data not shown).

Discussion

Our past work [20] showed that mitoQ had prooxidant or

antioxidant effects on mitochondria respiring on complex I or

complex II substrates, respectively. In this work we expand these

studies to add additional information concerning the localization

of these effects within the electron transport pathways of complex

I. Perhaps, of greater importance, we found that mitoquinone

Figure 2. Effect of mitoquinone (mQN) and mitoquinol (mQL) compared to control compounds on H2O2 production by isolated BAE
mitochondria fueled by different substrates. Mitochondria were incubated in respiratory buffer under state 4 conditions fueled by pyruvate
(pyr), glutamate (glut)+malate (mal), or succinate (succ) as indicated above the individual graphs. Added compounds (1.0 mM), vehicle, or FCCP
(2.5 mM) were present as indicated on the X-axis. Data represent mean6SE, * p,0.01 compared to vehicle by ANOVA. n = 6 mitochondrial
preparations for all data points. Each individual value represents the mean of two replicate wells.
doi:10.1371/journal.pone.0004250.g002
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increased mitochondrial respiration selectively on complex I

substrates leading to our finding that mitoquinone altered nutrient

selectivity at the intact cell level.

Figure 2 confirms our previous findings of the prooxidant effect

of mitoquinone during respiration on the complex I substrates

glutamate and maleate and provides new information showing

that mitoquinone has similar effects on superoxide production in

mitochondria fueled by the complex I substrate, pyruvate. This is

consistent with the concept that mitoQ to enhances superoxide

production at the level of complex I per se and is not specific for any

particular NADH generating reaction. As shown in figure 2,

decylTPP which lacks the quinone moiety does not increase ROS,

nor do CoQ or decylQ which lack the cation moiety and do not

easily penetrate mitochondria [17,18].

The major reason for the prooxidant effect of mitoQ is probably

redox cycling within complex I. This was suggested by Doughan

Figure 3. Effect of mitoquinone (mQN) compared to CoQ10 and vehicle on respiration by isolated BAE mitochondria fueled by
different substrates. Mitochondria were incubated under state 4 and state 3 conditions fueled by 5 mM glutamate plus 1 mM malate (panels A, B,
C) or 5 mM succinate (panels D, E, F). Mitochondria were exposed to 1.0 mM CoQ10, 1.0 mM mitoquinone (mQN), or vehicle (Veh) as indicated.
Respiration is expressed in absolute terms (panels A,C,D,E) or as percent of maximal respiration induced by 2.5 mM FCCP (panels B and E). The ADP:O
ratio is depicted in panels G and H. Data represent mean6SE, * p,0.05 compared to CoQ10 or vehicle (panel A) or to CoQ10 (panel B), ? p,0.01
compared to vehicle (panel B) by ANOVA, n = 13 for all incubations.
doi:10.1371/journal.pone.0004250.g003
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and Dikalov [21] who recently used inhibitor analysis to propose a

model wherein mitoQ undergoes highly efficient redox cycling at

two sites within complex I, one proximal and one distal to the

putative rotenone binding site, where rotenone is believed to block

electron transfer from the N2 iron-sulfur cluster to ubiquinone

Figure 4. Interactive effect of rotenone and mitoquinone on
H2O2 production by BAE mitochondria fueled by 5 mM
glutamate plus 1 mM malate incubated in respiratory buffer
under state 4 conditions. Mitochondria were exposed to mitoqui-
none (mQN) and/or rotenone at the concentrations indicated. Data
represent mean6SE, n = 4 for each data point. * p,0.001 or non-
significant (ns) compared to 0 mM mQN by 2-way ANOVA (factors are
mQN and rotenone). There was significant interaction (p,0.001)
between factors indicating the effect of mQN is dependent on the
rotenone concentration.
doi:10.1371/journal.pone.0004250.g004

Figure 5. Effect of diphenyleneiodinium chloride (DPI) on H2O2 production by BAE mitochondria as affected by mitoquinone
(mQN) at different doses of rotenone (Rot). Mitochondria were fueled by 5 mM glutamate plus 1 mM malate and incubated as in figure 4. Panel
A) Mitochondria were incubated in respiratory buffer with no additions. Panel B) Addition of 5 mM DPI. Panel C) Mitochondria were incubated in
chloride free respiratory buffer (gluconate substituted for chloride) with no additions. Panel D) Addition of 5 mM DPI in chloride free buffer. Data
represent mean6SE, n = 10 in panels A and B, n = 6 in panels C and D. * p,0.05, { p,0.01, ? p,0.001 for mitoquinone compared to absence of the
compound. Data were analyzed by 2-way ANOVA (factors mQN or Rot). Interaction was significant in panels A, B, and D.
doi:10.1371/journal.pone.0004250.g005

Figure 6. Oxygen consumption by cells perfused on glass
beads exposed to mitoquinone (1 mM) or the control com-
pound decylQ (1 mM). Values (mean6SE) represent incremental
changes in oxygen consumption (compared to perfusate alone) after
addition of mitoquinone or decylQ to the perfusion medium. * p,0.001
compared to control (n = 3).
doi:10.1371/journal.pone.0004250.g006

MitoQ, ROS, and Metabolism

PLoS ONE | www.plosone.org 7 January 2009 | Volume 4 | Issue 1 | e4250



[21,36]. Our data (figure 4) are compatible with this two-site

model since redox cycling at a single site does not easily account

for the inverted U-shaped relationship between ROS production

and rotenone in the presence of mitoquinone (figure 4).

As shown in our current (figure 2) and past work [20], both

mitoquinone and mitoquinol increase ROS production on

complex I substrates consistent with redox cycling properties.

Although in all experiments these compounds markedly increase

ROS on complex I substrates, we must acknowledge substantial

variation in the magnitude of ROS production from experiment to

experiment, for example, compare figure 2 to figures 4 and 5. We

also observed such variation in past studies [20]. We can only

speculate regarding the reason for this. We suggest that BAE

mitochondria are highly sensitive to these quinone compounds,

but that the exact magnitude of ROS generated may be sensitive

to subtle differences in conditions from experiment to experiment

or in groups of experiments carried out at different times. Perhaps

this involves subtle differences in temperature or buffer conditions,

in the time it takes to isolate and incubate mitochondria, or the

exact nature of mitochondrial preparations from cells grown at

different times. In any case, we point out that in all experiments,

we compare these quinone/quinol compounds to control

conditions within the same mitochondrial preparations, so that

the relative effects of these compounds can not be explained by

any such variation.

DPI acts proximal to the rotenone site in complex I blocking

electron transfer at the FMN site. So the inhibition of the

mitoquinone effect at all doses of rotenone by DPI (figure 5) is

compatible with mitoquinone action at and/or distal to the FMN

site. Existing models of mammalian complex I (which is still an

unresolved issue) suggest that FMN (after accepting electrons from

NADH), transfers electrons to a chain of iron-sulfur clusters

eventually to an N2 site that interacts with ubiquinone [37,38].

Therefore, if the two site model for mitoquinone cycling is correct

(one proximal and one distal to rotenone action at N2) as proposed

[39], the DPI data (figure 5) suggest the proximal mitoquinone site

is localized at FMN or in the iron-sulfur chain proximal to N2.

In contrast to its prooxidant effect in the presence of complex I

substrates, mitoquinone decreased ROS production by mitochon-

dria respiring on succinate (figure 2). Under these conditions

considerable electron transport is directed retrograde through

complex I, by reverse electron transport, a phenomenon known to

Figure 7. Effect of mitoquinone or control compounds on glucose and oleate oxidation. BAE cells were preincubated for 20 min in the
presence of culture medium with 5.5 mM glucose plus 200 mM oleate (panels A and B) or 5.5 mM glucose plus 10 mM oleate (panels C and D). D-
[14C(U)]glucose (panels A and C) or [1-14C]oleic acid (panels B and D) were added at time 0 and cells incubated for 120 min before trapping CO2. Final
glucose and oleate concentrations after addition of label were 5.6 mM glucose+200 mM oleate (panel A), 5.5 mM glucose+206 mM oleate (panel B),
5.6 mM glucose+10 mM oleate (panel C) and 5.5 mm glucose+15.7 mM oleate (panel D). 1.0 mM mitoquinone or control compounds or 5 mM
rotenone (Rot) were added at time 220 min and continued during subsequent incubation. Data are expressed relative to incubation in the presence
of vehicle alone, a condition included for study of each cell preparation. Numbers in parentheses designate number of preparations. Data represent
mean6SE, * p,0.05 or ** ,0.01 compared to non-targeted CoQ10 by one-way ANOVA.
doi:10.1371/journal.pone.0004250.g007

MitoQ, ROS, and Metabolism

PLoS ONE | www.plosone.org 8 January 2009 | Volume 4 | Issue 1 | e4250



be sensitive to membrane potential [20,22,40,41]. In fact, our

results show that mitoQ does, in fact, reduce membrane potential

(figure 9), so this may explain the effect of mitoQ to reduce ROS

generated by mitochondria respiring on succinate. However, as

opposed to ROS production generated by reverse electron

transport on succinate, reduced membrane potential does not

appear to underlie the effect of mitoQ to increase ROS during

forward electron transport (respiration on complex I substrates).

This is because the compound, decylTPP (mitoquinone minus the

quinone/quinol moiety) reduced potential even more than

mitoquinone (figure 9) but had no effect to increase ROS during

forward electron transport (figure 2).

Our current findings using JC-1 to assess potential as affected by

mitoQ in intact cells differs from our past results which utilized the

distribution of radiolabeled tetraphenylphosphonium inside and

outside isolated mitochondria to assess potential [20]. Using that

methodology, we did not see a difference in membrane potential in

mitochondria exposed to mitoQ compared to controls. Although

we suspected that even a slight reduction in potential might be

responsible for the effect of mitoQ to decrease ROS during reverse

transport, we concluded that we could not detect it. However, our

current data now support this concept.

The substrate-specific effects we observed on ROS production

from isolated mitochondria, led us to question whether mitoQ

might have similar substrate specific affects on mitochondrial

respiration and whether that might translate to intact cell

respiration and fuel selectivity at the intact cell level. In fact,

mitoquinone did increase mitochondrial oxygen consumption in

the presence of complex I but not complex II substrates (figure 3).

Of note is that the overall incremental increase in respiration on

glutamate plus malate induced by mitoquinone under state 4

conditions was approximately 4 nmoles/mg/min (figure 3). In

comparison, the mitoquinone-induced increase in ROS produc-

tion measured as H2O2 generated per mg per min was in the

picomolar range (figures 2,4,5). Thus, increased radical formation

per se does not account for the overall increase in mitochondrial

respiration suggesting a further effect of mitoquinone. A possible

reason for this may be a compensatory increase in respiration as a

result of the decrease in membrane potential [42].

As shown in figure 6, mitoquinone increased repiration by intact

BAE cells as well as isolated mitochondria. However, of greater

interest was the effect of mitoquinone to impart fuel selectivity at

the intact cell level, enhancing glucose oxidation while reducing

the oxidation of the monounsaturated fatty acid oleate. We had

hypothesized that this would be the case based on our observations

regarding the substrate specific effect of mitoquinone on

mitochondrial ROS production and respiration (see introduction).

The importance of fuel selectivity is underscored by studies

indicating that ‘‘metabolic inflexibility’’ or impaired capacity to

switch between nutrient utilization, in particular between fatty

acid and glucose oxidation, has a pathogenic role in the insulin

resistance commonly seen in type 2 diabetes and obesity [25].

Metabolic inflexibility may also be important in cardiac adaptation

to stress [23,24].

According to the classic Randle hypothesis fat and glucose

metabolism compete and undergo regulation based on the acetyl-

CoA/CoA ratio and citrate concentrations with consequent effects

on enzymes regulating glucose and fat metabolism. Later work did

not verify this, but placed emphasis on intracellular signaling

pathways [43]. More recent metabolomic studies now suggest that

enhanced fat metabolism, as seen with high fat feeding, leads to b-

oxidation products that exceed mitochondrial capacity restricting the

ability to switch to glucose oxidation [25]. That work [25] places

emphasis on impaired mitochondrial function suggesting an induced

mitochondrial defect but it is unclear what this actually is or exactly

how the defect comes into play. Although, our work does not resolve

this issue, it does lead to the important conclusion that a primary

perturbation at the mitochondrial level (exposure to mitoquinone)

can indeed have substantial effects to alter fuel selectivity.

Of course, there are many possible reasons why mitoquinone

might alter nutrient selectivity. This will require extensive additional

study. Speculative possibilities include mitochondrial redox effects

which could affect the state of cytoplasmic reducing equivalents with

consequent effects on a myriad of enzyme systems and kinases.

These could then alter fuel selectivity at notable steps such as AMPK

kinase, pyruvate dehydrogenase, phosphofructokinase, or others.

Moreover, it is possible that mitoquinone might have direct effects on

mitochondrial proteins such as the pyruvate dehydrogenase complex

or the electron transport flavoprotein (ETF):ubiquinone oxidore-

ductase. The later possibility is intriguing since inhibition might

impair electron donation by FADH2. This might reduce fat

oxidation since mitochondrial b-oxidation generates FADH2 which

Figure 8. Dose-dependent effect of mitoquinone compared to
vehicle on glucose and oleate oxidation. BAE cells were incubated
overnight (16 h) in the presence of culture medium with 5.5 mM
glucose. [1-14C]oleic acid (panel A) or D-[14C(U)]glucose (panel B) along
with 50 mM oleate were added at time 0 and cells incubated for
120 min before trapping CO2. Final glucose and oleate concentrations
after addition of label were 5.6 mM glucose+50 mM oleate (panel A) or
5.5 mM glucose+56 mM oleate (panel B). Data are expressed relative to
incubation in the presence of vehicle alone. Data represent mean6SE
(n = 4 for each determination). * p,0.05 or ** ,0.01 compared to
vehicle by one-way ANOVA with repeated measures.
doi:10.1371/journal.pone.0004250.g008
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is oxidized by theETF:ubiquinone oxidoreductase donating elec-

trons to the ETS independent of complex I or complex II. Moreover,

from the lack of effect of decylTPP+ compared to mitoquinone

(figure 7), it appears that the quinone moiety of mitoquinone is

essential for its effect on nutrient selectivity.

For several reasons our work suggests that the effects of

mitoquinone on ROS production, and respiration occur at complex

I. These include the effect of mitoquinone to increase ROS and

respiration selectively on complex I substrates (figures 2 and 3), the

effect of mitoquinone to decrease superoxide during reverse electron

transport to complex I, the interactions of mitoquinone with

rotenone and DPI (figure 5), and the knowledge that ROS as

detected by DHPA represents matrix superoxide released from

complex I (see methods). Our data are not definitive with respect to

whether mitoquinone action on complex I is directly related to its

effect on intact cell nutrient selectivity. However, given the

considerations discussed above regarding the use of mitochondrial

reducing equivalents, together with the effects of mitoquinone on

mitochondrial respiration, our results at least suggest that complex I

effects are involved. Although speculative, our work, also raises the

possibility that complex I and endogenous CoQ10 might have

similar interactions to affect cell nutrient selectivity. In this regard,

there is evidence that the effects of complex I substrates to generate

mitochondrial ROS may involve endogenous Q binding sites within

complex I [22]. Of course, this issue will require more study and

might be aided by better resolution of the structure and function of

mammalian complex I in general.

We examined fuel selectivity initially at high and low oleate

concentrations, 200 mM and 10 mM, respectively, and subsequently

at an intermediate concentration of 50 mM for our dose-response

studies. These concentrations were arbitrarily chosen. For perspec-

tive, physiologic nonesterified (free) fatty acid concentrations in

humans can range widely up to nearly 1 mM depending on nutrient

and hormonal status and even higher is some disease states [43]. Of

course, oleate represents only a single fatty acids so it is difficult to

determine the optimal concentration for study. Oleate in circulating

human serum, present among the complex mix of fatty acids, can

range roughly 10 to 400 mM [44,45].

We considered the possibility that the effects of mitoQ on glucose

use by intact cells (figures 7 and 8) could reflect a non-specific

response to cell toxicity. However, this does not appear to be the case

for several reasons. First, we found no evidence for this in our

cytotoxic assays. Second, our dose response studies demonstrated

effects of mitoquinone extending an order of magnitude or more

downward from the 1 mM (or higher) dose used in other reported

studies of the cellular actions of this compound [46–48] some of

which reported a mitoQ induced resistance to apoptosis [46,47].

Third, although reduced potential might be construed as suggesting

cell toxicity, decylTPP (which is also positively charged and differs

from mitoQ only in the absence of the Q moiety) did not affect fuel

selectivity (figure 7A and 7B) despite greater reduction in membrane

potential than mitoquinone (figure 9A). Thus, the effects of

mitoquinone are dependent on the quinone moiety and are not

explained by membrane potential alone. Finally, we point out that

rotenone, which is well known to decrease respiration by complex I

inhibition, did not increase glucose oxidation in BAE cells but had

the opposite effect (figure 7A and 7B).

Our current work has implications towards the development of

mitoQ or related compounds as possible therapeutic agents useful

as antioxidants. Possibly this approach might have benefit beyond

Figure 9. Dose-dependent effects of mitoquinone (mQN), CoQ10, and decylTPP on mitochondrial membrane potential in intact
BAE cells and upon cell toxicity. Panel A) Membrane potential estimated as the ratio of red to green fluorescence of the potential sensitive probe,
JC-1. Panel B) Cell toxicity estimated as fluorescence generated by reduction of resazurin to resorufin. For both panels, values represent mean6SE,
n = 3 for each data point, * p,0.01 compared to the zero concentration by repeated measures ANOVA.
doi:10.1371/journal.pone.0004250.g009
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antioxidant properties and extend to improved ability to use

glucose countering the above mentioned effects of diabetes and

insulin resistance. It is also important to recognize that although

we observed prooxidant rather than antioxidant effects of

mitoquinone with complex I substrates, the semiquinone gener-

ated by redox cycling of either endogenous CoQ10 or mitoQ may

have the beneficial effect of acting as a chain breaking antioxidant

[49]. Given the well known vascular nature of the complications of

diabetes and the role of atherosclerosis in heart disease and stroke,

vascular endothelial cells may be particularly important as targets

for antioxidant protection. Moreover, the regulation of endothelial

cell glucose use is also an important issue since enhanced glucose

consumption is recognized as an adaptive metabolic response to

ischemia or hypoxia.

In summary, we provide new data demonstrating that: 1) The

prooxidant effects of mitoQ extend to respiration on pyruvate. 2)

The prooxidant effects are perturbed by rotenone, but in a

complex fashion consistent with action at more than one Q

binding site. 3) Importantly, mitoquinone increases mitochondrial

respiration in substrate-specific fashion, increases intact BAE cell

respiration, and imparts fuel selectivity in the intact cell favoring

glucose while inhibiting fat oxidation. 4) MitoQ decreases

membrane potential, which likely explains its effect to reduce

ROS during reverse electron transport. However, the prooxidant

effects of mitoQ and the effects on fuel selectivity are not explained

by decreased membrane potential and require the quinone moiety

of the compound.
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