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Abstract
Background: Parainfluenza viruses are significant contributors to childhood respira-
tory illness worldwide, although detailed epidemiological studies are lacking. Few 
recent Australian studies have investigated serotype-specific PIV epidemiology, and 
there is a paucity of southern hemisphere PIV reports. We report age-stratified PIV 
hospitalisation rates and a mathematical model of PIV seasonality and dynamics in 
Western Australia (WA).
Methods: We used linked perinatal, hospital admission and laboratory diagnostic 
data of 469 589 children born in WA between 1996 and 2012. Age-specific rates of 
viral testing and PIV detection in hospitalised children were determined using per-
son time-at-risk analysis. PIV seasonality was modelled using a compartmental SEIRS 
model and complex demodulation methods.
Results: From 2000 to 2012, 9% (n = 43 627) of hospitalised children underwent 
PIV testing, of which 5% (n = 2218) were positive for PIV-1, 2 or 3. The highest in-
cidence was in children aged 1-5 months (PIV-1:62.6 per 100 000 child-years, PIV-
2:26.3/100 000, PIV-3:256/100 000), and hospitalisation rates were three times 
higher for Aboriginal children compared with non-Aboriginal children overall (IRR: 
2.93). PIV-1 peaked in the autumn of even-numbered years, and PIV-3 annually in the 
spring, whereas PIV-2 had inconsistent peak timing. Fitting models to the higher in-
cidence serotypes estimated reproduction numbers of 1.24 (PIV-1) and 1.72 (PIV-3).
Conclusion: PIV-1 and 3 are significant contributors towards infant respiratory hos-
pitalisations. Interventions should prioritise children in the first 6 months of life, with 
respect to the observed autumn PIV-1 and spring PIV-3 activity peaks. Continued 
surveillance of all serotypes and investigation into PIV-1 and 3 interventions should 
be prioritised.
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1  | INTRODUC TION

Acute lower respiratory infections (ALRIs) are an important cause 
of childhood hospitalisation globally. Alongside respiratory syncytial 
virus (RSV) and influenza viruses, human parainfluenza viruses (PIVs) 
are increasingly understood to contribute greatly to paediatric re-
spiratory tract infections. Though PIV-associated mortality is low in 
high-income countries, morbidity remains high. PIVs are the second 
most common cause of childhood ALRI-associated hospitalisation, 
after RSV; comparable in frequency to influenza.1,2 PIVs were found 
to account for 6.8% of all hospitalisations for fever, ALRI or both, in 
children aged less than 5 years in the United States between 2000 
and 2004.3 Additionally, the healthcare costs associated with PIV 
hospitalisation in the United States were estimated to be over $250 
million USD annually between 1998 and 2010.4

PIVs are a group of four serologically distinct human viruses, 
numbered 1-4, of the Paramyxoviridae family.5 PIVs can cause a va-
riety of respiratory infections, from mild upper respiratory illnesses 
in healthy adults, to croup, bronchiolitis, and pneumonia in infants, 
children, and severe lower respiratory infection in the elderly, and 
the immunocompromised.6 The four serotypes are known to mani-
fest distinctively, with PIV-1 and 2 being the most common aetiologic 
agents of croup, whereas PIV-3 and 4 are more commonly associated 
with bronchiolitis and pneumonia.6,7 There are no licensed prophy-
lactic agents, vaccinations or therapies for any PIV serotype8-10; de-
velopment having stalled in part due to the paucity of studies on 
their health burden.11

Infants and children are a particular risk group for infection with 
PIVs, and all serotypes are known to result in hospitalisation in young 
children.12-15 Though all serotypes are common causes of childhood 
illness, PIV-3 and 1 are thought to be the most frequent causes of hos-
pitalisation, with PIV-2 presenting a slightly lower health burden.12-14 
The epidemiology of PIVs in resource-poor settings remains poorly 
understood, particularly in the tropical and subtropical regions of the 
southern hemisphere, despite the high rates of ALRI-associated mor-
tality which persist in these environments.16 Studies in America and 
Japan have reported spring peaks in PIV-3 circulation, and autumn 
and winter peaks for PIV-1 and 2 across the northern hemisphere.12-15 
Although biennial peaks in PIV-1 activity, generally in odd-numbered 
years, are usually reported, one Korean study observed relatively in-
distinct PIV-1 peaks.17 There is even less consensus on yearly PIV-2 
fluctuations, with some studies reporting biennial, others report-
ing annual and others reporting only sporadic outbreak-like activ-
ity.4,12,15,17 One Brazilian study identified biannual PIV-2 peaks, which 
have not been observed elsewhere to date.18 Overall, reports on PIV 
epidemiology from outside temperate, northern hemisphere regions 
remain rare: the most comprehensive existing reviews of respiratory 
virus seasonality often lack PIV serotype specificity.2,19

This study set out to investigate the serotype-specific epide-
miology of PIV-1 and 3 in Western Australian children, reporting 
incidence rates of laboratory-confirmed PIV hospitalisation by age 
group and Aboriginal status, and seasonal parameters through dy-
namic transmission models.

2  | METHODS

2.1 | Study setting

Western Australia (WA) encompasses the western third of Australia, 
an area of approximately 2.5 million square kilometres, and, as of 
2013, contained approximately 2.5 million people, around 100 000 
of whom identify as being of Aboriginal and/or Torres Strait Islander 
origin (hereafter respectfully referred to as Aboriginal). Three quar-
ters of the population reside in the temperate climatic region of met-
ropolitan Perth and its surrounds.20

2.2 | Data sources and study cohort

This analysis formed part of a larger study investigating the patho-
gen-specific epidemiology of respiratory infections in a population-
cohort of WA births from 1996 to 2012 using probabilistically linked 
administrative data. Full study details are available elsewhere.1 In 
brief, we identified a cohort of 469 589 WA-born infants with unit-
record linked data from WA’s state-wide Birth and Death Registry, 
Midwives Notification System, Hospital Morbidity Data Collection 
(HMDC), and PathWest Laboratory Medicine databases (Figure 1). 
Aboriginal children were identified using a validated algorithm across 
multiple datasets.21 Probabilistic data linkage was conducted by the 
WA Health Data Linkage Branch using best practice protocols.22,23

2.3 | Parainfluenza virus episodes

PathWest is WA’s leading public pathology provider, and, as the 
state's major referral pathology laboratory, receives specimens 
from all public and private hospitals. Respiratory samples collected 
routinely from children aged 16 and under, mostly in hospitals, un-
derwent routine viral diagnostic panels involving serology, culture, 
direct antigen detection and polymerase chain reaction (PCR) test-
ing. Positive and negative results for PIV-1, 2 and 3 were available. 
The WA HMDC is a state-wide dataset recording admissions to pri-
vate and public hospitals, psychiatric hospitals, and day surgeries 
across WA.23 Hospital admissions were linked to laboratory diagnos-
tic records for specimens collected from the same individual within 
48 hours of the hospital admission date.1 We restricted hospital 
admission records to the period covering 2000-2012, as laboratory 
records were only available from 2000.

2.4 | Statistical analysis

We used two different primary outcome measures for this study. 
The first of these, used to calculate incidence rates, was hospitali-
sations in children between 2000 and 2012 with a positive detec-
tion of PIV-1, 2 or 3 from a respiratory specimen using any of the 
routine diagnostic approaches. As PIV laboratory confirmation is not 
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conducted in all hospitalised children, we also assessed the rate of 
testing. The secondary outcome measure was all positive detections 
of PIV-1, 2 and 3, regardless of hospitalisation status. This measure 
was used to investigate seasonal dynamics using complex demodula-
tion and dynamic transmission models.

2.4.1 | Incidence rates

The incidence rates of PIV-1, 2 and 3 were calculated using time to 
event survival analysis methods allowing for multiple PIV hospitali-
sations per person, as in previous analyses of this dataset for RSV.24 
Person time-at-risk was calculated from the start of the study period 
(1st January 2000, or from the date of birth) until the time of study 
exit, taken as either the 31st of December 2012, the date of death, 
or date of hospitalisation for PIV or for respiratory viral testing. We 
calculated incidence rates of testing and PIV-confirmed hospitalisa-
tions with 95% confidence intervals (95% CI) according to age and 
Aboriginal status. Analyses were conducted using STATA SE (version 
14.1) by Stata Corp.

2.4.2 | Seasonality

To assess seasonality, we used data on all PIV laboratory detections 
for children in the birth cohort as we had no reason to believe the 
seasonality would differ between hospitalised and non-hospitalised 
children. SEIR compartmental models are a useful tool for modelling 
infectious diseases and, when fitted to incidence data, can inform on 
transmission parameters and seasonality. SEIR models categorise all 
individuals in a population as either susceptible (S), infected but not 
yet infectious (E), infectious (I) or recovered (R). We modelled trans-
mission of each serotype of PIV using a deterministic SEIRS model 
with a single age class, waning immunity and seasonality in transmis-
sion (Table S1). The models were implemented and fitted in MATLAB 
using the ode45 differential equation solver and fitted to data using 
fminsearch.

Complex demodulation is an analytic approach for cyclical or 
seasonal time series data that extract the timing and size of peaks 
over time, and has been used to analyse sleep cycles, cardiovascu-
lar variability, and suicides, in addition to seasonal pathogens such 
as RSV.25-28 Full details of this method are provided elsewhere.29 

F I G U R E  1   Process of dataset 
construction and record linkage. 
Databases used in birth cohort 
construction are in green boxes, and 
administrative hospital and laboratory 
databases are in blue boxes. Note that the 
number of admissions differs from the size 
of the birth cohort, as multiple admissions 
per person are permitted. The yellow-
shaded box highlights the analytic dataset 
used for incidence rate calculation, while 
the purple-shaded box highlights analytic 
dataset for seasonality and transmission 
models
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Briefly, the method deconstructs the time series into an amplitude 
and phase, assuming a given periodic frequency. We applied this ap-
proach to weekly PIV incidence counts for serotypes 1-3 individu-
ally, assuming a 52-week period and using a 52-week moving average 
filter.

2.5 | Ethics

Approvals for this study were obtained from the WA Department of 
Human Research Ethics Committee and the WA Aboriginal Health 
Ethics Committee. Data access was provided by the WA Data 
Linkage Branch.

3  | RESULTS

3.1 | PIV incidence rates

From 2000 to 2012, 484 992 hospital admissions were recorded, 
and 43 627 respiratory viral tests were performed (Figure 1). Of 
hospitalisations with a linked laboratory record, a combined 2218 
were positive for PIV: 487 for PIV-1, 183 for PIV-2, and 1548 for 
PIV-3. Table 1 shows the frequency of PIV testing in hospitalisations 
in Aboriginal and non-Aboriginal children. Hospitalisations that 
underwent testing for PIV were 1.7-3.3 times higher in Aboriginal 
children than non-Aboriginal children with the per cent positivity 
ranging from 2% in neonates (aged less than 1 month) to 6%-7% 
in children aged 12-23 months (Table 1). Immunofluorescence was 
the most common diagnostic method used to detect PIV (52.1% 
of laboratory-linked hospitalisations), with 23% being detected 
by PCR. Croup was the most common primary diagnosis for PIV-1 
(28.5%) and PIV-2 (29.5%) confirmed hospitalisations, whereas 
bronchiolitis was the most common primary diagnosis for PIV-3 
(28.5%). Overall, 74% of all PIV-1 and 3 infections occurred in 
children aged less than 2 years, and PIV-3 had the lowest median 
age of infection (11 months), followed by PIV-2 (12 months) and 
PIV-1 (15 months). For each PIV serotype, incidence rates peaked 

in children aged from 1 to 5 months (Table S2). The highest hos-
pitalisation rate overall was observed for PIV-3 in this age group 
(256 per 1000 000 child-years, 95% CI: 232-284), followed by PIV-
1, at 63 per 100 000 (95% CI: 51.4-76.9; Figure 2). PIV-2 had the 
lowest of all incidence rates observed, peaking at 26 per 100 000 
child-years. Incidence rates remained elevated for the first year of 
life, before declining at 12-23 months, and again in children aged 
4-16 years. Compared to non-Aboriginal children, Aboriginal chil-
dren had approximately three times the overall rate of PIV detec-
tion across all age groups (IRR: 2.93, 95% CI: 2.62-3.27; Table S2). 
The rate of PIV-3 in Aboriginal children aged 1 to 5 months was 829 
per 100 000 child-years (95% CI: 669-1000), almost four times the 
rate observed in non-Aboriginal children of that age group (IRR: 
3.85, 95% CI: 2.99-4.92), and PIV-1 and 2 were both similarly found 
to have a higher incidence rate in Aboriginal children. The rate of 
PIV hospitalisation remained higher for Aboriginal children aged 6 
to 11 months for PIV-1 (IRR: 4.35, 95% CI: 2.49, 7.29), PIV-2 (4.79, 
95% CI: 2.18, 9.75) and PIV-3 (IRR: 3.91, 95% CI: 3.00, 5.06).

3.2 | PIV seasonality

Hospitalised PIV detections by serotype had a distinct seasonal pat-
tern: PIV-1 peaked in the autumn months (April), PIV-2 in the win-
ter (June) and PIV-3 in the spring (September; Figure 3). This was 
supported by the complex demodulation analysis of all PIV positive 
detections regardless of hospitalisation (Figure 4), which shows both 
the amplitude (size of epidemic peak; middle plot) and the phase 
(timing of epidemic peak; bottom plot) for each serotype. The high-
est incidence was seen in PIV-3 (middle plot), with some indication of 
increasing levels towards the end of the study period. The phase plot 
indicates PIV-1 peaked consistently in March/April, with PIV-3 com-
monly peaking around September but with some variation by year. 
PIV-2 had the lowest incidence and least consistency in peak timing.

Estimates from the mathematical modelling analysis are shown 
in Table 2, with plots of the model fit to data in Figures S1-S3. The 
model successfully captured the timing of the epidemic peaks and 
showed biennial behaviour for PIV-3, although low numbers of cases 

TA B L E  1   PIV-1 and 3 testing rates by age group and Aboriginal status in Western Australia, 2000-2012

Age group

Aboriginal Non-aboriginal

Incidence rate 
ratio (95% CI)N tested

N positive (% 
positive)

Testing rate (95% 
CI) N tested

N positive (% 
positive)

Testing rate (95% 
CI)

<1 mo 352 6 (1.70%) 173 (156, 193) 2919 66 (2.26%) 103 (99.0, 107) 1.69 (1.51, 1.89)

1-5 mo 1983 110 (5.50%) 196 (187, 205) 9278 414 (4.46%) 65.5 (64.2, 66.8) 2.99 (2.85, 3.14)

6-11 mo 1478 108 (7.30%) 123 (116, 129) 6304 370 (5.87%) 37.5 (36.6, 38.4) 3.27 (3.08, 3.46)

12-23 mo 1200 89 (7.42%) 50.1 (47.3, 53.0) 7806 477 (6.11%) 23.6 (23.0, 24.1) 2.13 (2.00, 2.26)

2-3 y 733 41 (5.59%) 15.6 (14.5, 16.8) 5631 296 (5.26%) 8.73 (8.50, 8.96) 1.79 (1.65, 1.93)

4-16 y 736 34 (4.62%) 5.08 (4.72, 5.46) 5206 207 (3.98%) 2.61 (2.54, 2.68) 1.95 (1.80, 2.11)

Total 6482 388 (5.99%) 27.01 (26.3, 27.7) 37 144 1830 (4.93%) 11.2 (11.1, 11.3) 2.41 (2.34, 2.47)

Note: All rates presented per 100 000 person-years.
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impaired the fit to PIV-2. For the better fitting PIV-1 and PIV-3 mod-
els, reproduction numbers (R0) of 1.24 (PIV-1) and 1.71 (PIV-3) were 
estimated. The R0 for PIV-2 was estimated at 2.2. PIV-3 had the 
greatest seasonality, and PIV immunity duration was around 300-
550 days, depending on serotype (Table 2).

4  | DISCUSSION

We used a population-based dataset to describe the age-specific 
incidence and seasonal dynamics of PIV in children. We found that 
overall PIV rates were highest in children aged less than 2 years, par-
ticularly in infants aged 1-5 months, and that PIV-3 had the highest 
incidence of all examined serotypes for each age group, followed 
by PIV-1, then PIV-2. Rates of PIV-confirmed hospitalisation were 
higher in Aboriginal children than non-Aboriginal children. PIV-3 

peaked in the spring months around September, while PIV-1 peaked 
biennially in the autumn months around April, and PIV-2 followed 
a similar biennial pattern, but tended to peak in the winter months, 
around June. Finally, seasonal viral testing peaks, driven by RSV and 
flu activity, did not coincide with overall PIV-1 and PIV-3 activity 
peaks, suggesting a degree of under-ascertainment due to emergent 
seasonal testing patterns.

Previous studies have investigated the burden of PIVs, and many 
population-level studies generally report a high prevalence of PIV 
serotypes in children aged under 5 years.1,7,12 Studies of age-specific 
PIV rates in young children are rarer, but usually report PIV rates to 
be higher in children aged less than 2 years, peaking sometime in 
the first 6 to 12 months of life.3,13,30,31 Similarly, we attribute the 
highest burden of PIV-associated hospitalisations to children under 
1 year old, with PIV rates peaking in children aged 1 to 5 months. 
Interestingly, this age bracket is consistent with an anti-PIV maternal 

F I G U R E  2   Overall PIV-1 and 3 hospitalisation rates by age strata for all children aged less than 16 years, Western Australia 2000-2012. 
All rates presented per 100 000 person-years, with error bars representing 95% confidence intervals
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antibody half-life of 53 days reported by previous investigations, 
suggesting that maternal antibodies may not be universally protec-
tive against PIV infection for the first months of life.32

Global studies suggest that, of all serotypes, PIV-3 presents the 
most immediate public health concern for children under five, being 
the most frequent cause of morbidity, followed by PIV-1, then PIV-
2.3,7,12,17 Compared to influenza virus and RSV assessments from 
this same dataset,1 we have shown, for children aged 1-5 months, a 
higher hospitalisation rate for PIV-3 alone than for influenza hospi-
talisations, and PIV-3 rates eclipsed influenza rates in children until 
the age of 2. Similarly, previous studies variously attribute a disease 
burden of PIVs comparable to, or greater than, influenza viruses, yet 
significantly lower than RSV.2,19,31 The burden of all PIV serotypes 
was significantly higher in Aboriginal children, compared to non-Ab-
original children. This result has been reported for other respiratory 
viruses in Indigenous populations from around the world, in part due 
to increased risk factor exposure in marginalised, often rural, popu-
lation groups.33,34

Aside from PIV-2, our estimates of R0 and duration of immu-
nity for PIV were consistent with those of other respiratory patho-
gens.35,36 Owing to the low sample size for PIV-2, our ability to fit 
a seasonal model to that serotype was limited. Though our obser-
vation of biennial PIV-1 circulation resembles that made by previ-
ous studies, Western Australian PIV-1 peaks were found to occur 
in even-numbered years, rather than the odd-numbered year peaks 
frequently reported in northern hemisphere studies.7,12,15 This bi-
ennial peaking pattern for PIV-1 is consistent with that observed for 
RSV,37,38 which may result from a degree of residual immunity in off 
years, but it is unclear why this is not seen in PIV-3. Though PIV-3 
was present in circulation each year, PIV-3 frequency was slightly 
lower in even-numbered years when PIV-1 was in circulation, per-
haps indicating a degree of competitive inhibition between PIV se-
rotypes.39 These factors may also play a role in the discrepancy in 
PIV-1 peak years between northern and southern hemisphere sites. 
Despite the low number of PIV-2 detections over the study period, 
hindering our ability to fit a mathematical model to PIV-2, we were 
able to detect annual winter PIV-2 activity. Though most studies 
generally agree with the late-autumn-to-winter timing of PIV-2 ac-
tivity in temperate regions, there are conflicting international re-
ports of annual, biennial and biannual PIV-2 peaks across climate 
regions.7,12,15,18 Indeed, respiratory viral seasonality is expected to 
vary by climate; previous studies have observed differences in RSV 
and influenza seasonality between temperate and tropical climate 
regions.40,41 Similar variations in PIV activity between climatic re-
gions seem likely, perhaps accounting for observed discrepancies 
in PIV-2 seasonality; future studies with greater sample sizes from 
tropical areas will aid in understanding the relationship between PIV 
seasonality and climate. Finally, through our seasonality modelling 

F I G U R E  4   Analysis of seasonality 
of the three PIV serotypes. The top 
figure presents weekly incidence of each 
serotype; the middle figure presents 
the amplitude of seasonal epidemics, 
representing the peak size; the bottom 
figure shows the phase or timing of the 
peak in the seasonal epidemics

TA B L E  2   Estimates of the reproduction number (R0), the 
strength of seasonality, the duration of infectivity and the 
duration of immunity for the three PIV strains as fitted to an SEIRS 
compartmental model

R0 % seasonality
Infectivity 
(d)

Immunity 
(d)

PIV-1 1.24 6.1 3.3 476

PIV-2 2.23 7.7 12.9 303

PIV-3 1.72 12.8 6.4 556
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approach, a continuous upward trend in PIV-3 activity was noted 
for the final 3 years of the study period, which may warrant further 
local monitoring.

As we have previously reported from this dataset, respiratory 
viral testing only occurred in 48% of hospitalisations for respiratory 
infections, and 9% of total hospitalisations.1 Therefore, our PIV-
confirmed hospitalisation rates are the minimum estimates of the 
true burden of paediatric PIV in WA. Despite this limitation, linkage 
of hospital administrative records with laboratory data is a valuable 
source of data for disease burden studies, due to the broad clinical 
presentation of PIV infections and inferior sensitivity and specificity 
of diagnostic code-based epidemiology.42

5  | CONCLUSION

In summary, we have shown that PIVs present a significant health 
burden in Australian children, with PIV-3 the largest contributor to 
that burden. PIVs exhibited distinct seasonality patterns, which, for 
PIV-1 and 3, rarely overlapped. The burden posed by PIV-2 appears 
to be much lower, and the seasonality of PIV-2 remains uncertain. 
To better understand the need for therapeutic and vaccination op-
tions, as well as public health response, continued surveillance of 
all serotypes is recommended in both resource-rich and poor set-
tings. Given the burden of disease, interventions targeting serotypes 
3 and 1 should be prioritised for children in the first 6-12 months 
of life, recognising the differing seasonality of PIV serotypes. In the 
absence of a PIV vaccine, further work is needed to understand and 
identify potentially modifiable risk factors for PIV in Aboriginal and 
non-Aboriginal children to reduce the PIV health burden.
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