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Abstract

Motivation: Due to the risk of inducing an immediate Type I (IgE-mediated) allergic response, pro-

teins intended for use in consumer products must be investigated for their allergenic potential be-

fore introduction into the marketplace. The FAO/WHO guidelines for computational assessment of

allergenic potential of proteins based on short peptide hits and linear sequence window identity

thresholds misclassify many proteins as allergens.

Results: We developed AllerCatPro which predicts the allergenic potential of proteins based on

similarity of their 3D protein structure as well as their amino acid sequence compared with a data

set of known protein allergens comprising of 4180 unique allergenic protein sequences derived

from the union of the major databases Food Allergy Research and Resource Program,

Comprehensive Protein Allergen Resource, WHO/International Union of Immunological Societies,

UniProtKB and Allergome. We extended the hexamer hit rule by removing peptides with high prob-

ability of random occurrence measured by sequence entropy as well as requiring 3 or more hexamer

hits consistent with natural linear epitope patterns in known allergens. This is complemented with a

Gluten-like repeat pattern detection. We also switched from a linear sequence window similarity to a

B-cell epitope-like 3D surface similarity window which became possible through extensive 3D struc-

ture modeling covering the majority (74%) of allergens. In case no structure similarity is found, the de-

cision workflow reverts to the old linear sequence window rule. The overall accuracy of AllerCatPro is

84% compared with other current methods which range from 51 to 73%. Both the FAO/WHO rules

and AllerCatPro achieve highest sensitivity but AllerCatPro provides a 37-fold increase in specificity.

Availability and implementation: https://allercatpro.bii.a-star.edu.sg/

Contact: sebastianms@bii.a-star.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein allergens contain immunogenic and antigenic structures that

can lead to an immunoglobulin (Ig) E-mediated respiratory (Type I)

allergy. IgE-sensitization towards proteins is frequently recognized in

the context of aeroallergens (e.g. pollen) and food allergens (Pawankar

et al., 2013) as well as personal care products (Fukutomi et al., 2014;
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Troyano et al., 2011). The assessment of the allergenic potential of

novel proteins remains a challenge since there is no generally accepted,

validated and broadly applicable method available (Verhoeckx et al.,

2016). The current approach relies on the guidance of allergenicity as-

sessment for genetically modified plant foods recommended by FAO/

WHO (2001), which is based on single hexamer peptide hits and se-

quence identity thresholds to known allergens. However, this similarity

approach leads to many wrongly classified proteins as potentially aller-

genic (Stadler and Stadler, 2003), including up to 90% of all human

proteins (Supplementary Fig. S1).

Many factors are known to contribute to protein allergenicity

(Huby et al., 2000), including protein stability, cleavage sites, post-

translational modifications and physico-chemical properties.

However, allergenic proteins need to be recognized by T and B cells

to trigger the development of protein-specific IgE and/or they need

to react with IgE on basophiles or mast cells to trigger the elicitation

of an IgE-mediated allergic reaction. The basis for this specific im-

mune recognition of the protein is its 3D structure and its amino

acid sequence.

Here, we present a new model to predict the protein allergenicity

potential starting from the protein sequence. We first gathered all

available and reliable protein sequences associated with allergenicity

(further abbreviated as ‘known allergens’) and analyzed these pro-

tein sequences and their corresponding 3D structures to identify and

characterize features related to allergenicity and then combined

these features with a biophysical model built on the union of avail-

able data sets to form one unique and comprehensive data set.

2 Materials and methods

2.1 Merged database
The five major databases of known allergens online were accessed

and sequences were retrieved directly or via accessions through the

respective databases at NCBI or UniProt. Next, cd-hit (Li and

Godzik, 2006) was used to create non-redundant subsets with the

detailed resulting numbers of unique proteins for each database in

Table 1.

In the case of Allergome, individual entries were accessed online

and sequences retrieved with the additional criterion that the evi-

dence of allergenicity includes at least one strong experimental test

(without counting non-functional tests) or epidemiological support.

Supplementary Table S1 lists the accessions of the entries considered

from the respective databases.

2.2 k-mer hit criterion
First, a query protein was split into its respective 6-mers and those

of low complexity as defined by a sequence entropy < 0.34 (log2-

based bit score) and those with ambiguous amino acids (BJOUXZ)

were removed. Then the remaining query 6-mers were compared

with the 6-mer database derived from our database of known

allergens. A hit to a known allergen is found, if at least three differ-

ent 6-mers are shared between the known allergen and the query

protein.

2.3 Gluten-like Q-repeat fingerprint score
From the Food Allergy Research and Resource Program (FARRP)

AllergenOnline database, 1013 ‘Celiac disease peptides’ were down-

loaded in March 2018. The smallest size of those peptides is nine

residues, which are in agreement with most major histocompatibility

complex Classes I and II core-binding regions. The amino acid fre-

quencies were calculated for every 9-mer window within the pepti-

des and a composition fingerprint score was derived by using a log

odd ratio of the frequency in the ‘Celiac 9-mer’ windows divided by

a background database frequency (UniProtKB used here). This log

odd score is used to score all 9-mers in a query protein and if the

score for a 9-mer is within one standard deviation of the average of

the FARRP ‘Celiac disease peptides’, it triggers a hit as Gluten-like

Q-repeat.

2.4 3D structure/model database
Cd-hit (Li and Godzik, 2006) was used to cluster the known aller-

gens into groups of 70% or more sequence identity. We next used

BLAST (Altschul et al., 1997) and HHpred (Zimmermann et al.,

2018) against PDB (Burley et al., 2017) to find templates for hom-

ology modeling for the �1200 representatives. Approximately 900

models were created using MODELLER (Webb and Sali, 2017) in

two steps. The modeling process was performed in two steps. First,

dynamic programming-based structural alignment between query

and template was performed by using the salign class of

MODELLER and then 100 structural models were built and the dis-

crete optimized protein energy (DOPE) score of each model was cal-

culated and the one with the lowest energy was selected for Step 2,

the loop refinement. Using the loop model class of MODELLER,

200 models with refined loops were built and the one with the low-

est DOPE score was selected as the final model. Next, we further

evaluate model quality visually and with ProQ2 (Ray et al., 2012)

requiring quality thresholds of LGscore > 1.5 and MaxSub > 0.1.

This resulted in 713 representative protein structures/models. To en-

sure that the resulting models are consistent with optimal protein

geometry, we next use YASARA (Krieger and Vriend, 2014) to cal-

culate Z-scores for deviation from normality of angles, bonds, dihe-

drals (Ramachandran plot) and planarity relative to the AMBER-

FB15 force field (Wang et al., 2017). This identified 91 suboptimal

models with Z-score < �2. Using the YASARA energy minimization

protocol (Krieger et al., 2009) based on short simulated annealing

molecular dynamics simulations with the AMBER-FB15 force field,

we corrected the 91 models. Supplementary Table S3 lists details on

template similarity and model quality.

Table 1. Source databases for known allergenic proteins

Database Weblink Date accessed No. unique proteins

IUIS http://www.allergen.org/ September 2017 779

UniProtKB https://www.uniprot.org/ September 2017 704

(key word: ‘allergen’)

Allergome http://www.allergome.org/ September–November 2017 3157a

COMPARE http://comparedatabase.org/ February 2018 2022

FARRP http://allergenonline.org/ March 2018 2069

aWith evidence from functional tests or epidemiology.
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2.5 Sequence to 3D epitope mapping
For every structure a table of epitope definitions was created follow-

ing this procedure: First, all surface accessible residues were identi-

fied with YASARA (distance to solvent accessible surface <2.55 Å,

empirically derived threshold that was consistent with the binding

interface of known protein-antibody complexes), then each of the

surface residues were taken as the hypothetical center of an epitope

and all other surface residues that are within 12 Å distance from the

center residue were included. This distance was chosen to match the

binding interface size (Dall’antonia et al., 2014) seen in representa-

tive complexes of IgE antibodies with allergens. A minimum epitope

size of at least 13 residues is further required. The procedure is

implemented as custom Yanaconda macro script in YASARA

(Krieger and Vriend, 2014).

For the sequence to epitope mapping, the query protein is

searched with BLASTP (Altschul et al., 1997) against our 3 D struc-

ture/model database (E-value < 0.001). To compare the query pro-

tein to the closest known allergen in context of the 3D structure an

additional BLASTP search (E-value < 0.001) is run with the query

protein against our database of known allergens. Next, MAFFT

(Katoh and Standley, 2014) is used with L-INS-I settings to create a

multiple sequence alignment of the three sequences: query, best 3D

hit and best allergen hit. The aligned residues of query and allergen

with the structure are then assigned to the respective epitopes using

the epitope definition table described above. Finally, a loop over all

epitopes comparing the identity of epitope residues between query

and allergen allows determination of the epitope with highest iden-

tity. In case of equal identity values, the larger epitope is considered.

This procedure is implemented as custom Perl scripts.

3 Results

3.1 Comprehensive database of known allergens
Various in silico databases of protein allergens were reviewed to gather

available allergenicity information on characterized proteins (Table 1)

to help identify the allergenic potential of novel proteins. The most

comprehensive database is Allergome (http://www.allergome.org/)

which provides annotation details for each entry to characterize the de-

gree of allergenicity based on available data from literature and from

the ‘Real Time Monitoring of IgE-sensitization’ database, which pro-

vides data from any contributor willing to share data. The most popu-

lar database for assessment of food allergen proteins is the Allergen

Online database from the FARRP (https://farrp.unl.edu/resources/

farrp-databases). This database contains information collected and

evaluated by a peer review panel of scientists and clinicians comparing

peer reviewed publications following pre-determined guidelines. The

most recent Comprehensive Protein Allergen Resource (COMPARE,

http://comparedatabase.org/database/) by the Health and Environment

Science Institute comprises protein entries which result from an algo-

rithm combined with a review of the corresponding literature and a

final decision made by independent allergy experts. The UniProtKB, al-

though not specialized on allergens alone, is one of the most estab-

lished sources for general protein annotations. It is based on a

combination of manual curation and annotation by close similarity

and uses the controlled keyword “Allergen” to attribute allergenic po-

tential to proteins. One of the most stringent databases regarding crite-

ria that need to be fulfilled to consider a protein as allergenic is

organized by the Allergen Nomenclature Sub-Committee under the

auspices of the WHO and the International Union of Immunological

Societies (IUIS, http://www.allergen.org/). A protein is considered as al-

lergenic if protein-specific IgE-reactivity was demonstrated with sera

from at least five patients allergic to the protein source and, moreover,

the protein has been characterized in accordance to given WHO/IUIS

criteria (Pomes et al., 2018).

Using this collection of major databases with most including

various degrees of expert curation, we systematically compared their

data overlap using 100% sequence identity as criterion to determine

shared and unique proteins. There is a strong consensus between in-

dividual databases featuring only 33–69 protein entries unique to

only one database except for Allergome which contains 1826 unique

sequences (Fig. 1, D1). The total number of unique entries merged

from the 5 databases comprises 4180 proteins with good support for

allergenic potential, which we then use as known allergens for our

computational workflow described here.

3.2 Improved k-mer matches with known allergens

avoiding random hits
One of the traditional criteria that have been used for allergenicity

assessment of genetically modified plant foods by experts for the

FAO/WHO (2001) is the six-amino acid rule: A protein matching a

k-mer of six amino acids in length with a known allergen should be

further evaluated for potential allergenicity. The statistical distribu-

tion of k-mer matches between two sequences (Lippert et al., 2002)

and for database searches (Tan et al., 2012) is well studied. In short,

there is a critical k-mer length for a given database (depending on

size and redundancy within). Below the critical k-mer length, ran-

dom hits increase. Above the critical k-mer length, the k-mer

becomes specific only for the respective protein, unless the k-mer

represents a simple low complexity sequence repeat, which in turn

produces random hits (Tan et al., 2012). In the case of allergen data-

bases, the number of known allergens has grown dramatically in the

last decade and the probability of finding a random 6-mer hit to an

allergen, for example in the human proteome, is so high that 90% of

human proteins would be classified as allergens with this rule

(Supplementary Fig. S1).

A simple temporary solution is to increase the k-mer length, for

example to at least eight, as suggested by Goodman (2006) and

Hileman et al. (2002). Although the general value of k-mer-based

hits are frequently questioned (Herman et al., 2009), one reason for

their introduction was to evaluate potential immunogenic cross-

reactivity which can occur at the T-cell epitope level (Westernberg

et al., 2016). AllerCatPro strikes a conservative balance between the

need for safety and the practicality of avoiding random hits by using

a statistically informed k-mer hit criteria. First, low complexity se-

quence motifs are detected and filtered out with simple sequence en-

tropy measures (Wootton and Federhen, 1996). Second, instead of

increasing the k-mer length a minimum number of k-mer hits within

the same protein is required. For example, for a k-mer of length six,

three consecutive hits (shifted by only one position) exactly fit into a

sequence of eight residues and, hence, are a more flexible form of

8-mer matches that also allow matches to more relaxed patterns of

homology seen in protein sequences. This approach is also in agree-

ment with the rationale of similarity to T-cell epitopes, where there

is usually not a single long epitope in a protein sequence but multiple

short ones (in terms of the recognized core region) (Huby et al.,

2000; Jahn-Schmid et al., 2005; O’Brien et al., 1995; Oseroff et al.,

2012; Prickett et al., 2015).

In order to evaluate the best combination of the k-mer length

and parameters discussed earlier, the prospective predictive power

of different k-mer lengths was estimated using the UniProt database

of known allergens from 2005 to predict all allergens known in

2015 following the rule of having at least one k-mer hit to a known
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allergen (Fig. 2B). To estimate the rate of false positives two ‘false’

control sets were used that should not be natural allergens and not

detected as such. The first is the sequence reversal (same protein se-

quence in false direction) of the true set which is a perfect non-

sensical copy maintaining number and length of sequences as well as

amino acid composition. The second is a large set of 52 894 non-

redundant human proteins that do not have any annotation in

UniProt for words including ‘allergen’. At low k-mer length both the

true and the two false sets give predictions for all input proteins

while the predictive power increases with a k-mer length six and the

excess of true over false detections remains stable (Fig. 2B). The fact

that both negative set curves are very similar shows that, for k-mer

studies, even the unnatural but simple to obtain sequence reversal

may be a reasonable estimate for false positives. This is supported

by studies showing that only in very limited cases; reversed sequen-

ces would also represent similar structures (Carugo, 2010). Next,

the effect of different k-mer based methods on the excess of % true

minus false positives or, in other words, the distance of the true

from the false curve from the first graph, was examined (Fig. 2C).

The methods included: (i) classical single k-mer hit required for pre-

diction as allergen, (ii) at least three k-mer hits in same sequence for

prediction as allergen, (iii) single hit criterion but only if k-mer is not

a simple repeat motif as measured by a minimum sequence entropy

threshold and (iv) triple hit plus entropy criterion. At k-mer length

six, the combined triple hit and entropy criterion performs best

(Fig. 2C) and is used in AllerCatPro (Fig. 1, S5). Depending on fu-

ture extensions of allergen databases these criteria will have to be

revisited.

3.3 Gluten-like Q-repeats
Filtering out peptides of low complexity to reduce random hits also

prevent hits to Gluten-like repeats of Glutamine (Q-repeats), which

are important to be recognized especially for immune reactions such

as Celiac disease (Hischenhuber et al., 2006; Mamone et al., 2011).

To distinguish random hits from Gluten-like Q-repeats and account

for its relevance for allergenicity risk assessment, a dedicated score

was created based on the compositional fingerprint (Supplementary

Fig. S2A) of peptides associated with Celiac disease in the FARRP

database (Goodman et al., 2016).

Composition and physical property-based fingerprints have al-

ready been used for allergen assessments (Dimitrov et al., 2014b)

and we believe this approach to be especially useful for short repeats

of the same set of amino acids characters but in different order and

combination. Indeed, this compositional fingerprint score signifi-

cantly separates peptides associated with Celiac disease (‘Celiac pep-

tides’) from human non-allergen peptides (Supplementary Fig. S2B)

and detects all known proteins associated with Celiac disease in the

Fig. 1. AllerCatPro workflow, search methods and databases. (A) Decision workflow of AllerCatPro from the query protein to the results of either strong, weak or

no evidence for allergenic potential. (S1–S5) Search methods utilized at different stages of the workflow. (D1–D3) Databases created and used for the searches in

the workflow
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database via their short repeats and is therefore included in the

AllerCatPro prediction method (Fig. 1, S1 and D3).

3.4 Moving from a linear sequence window to 3D

epitope similarity
The second traditional criterion that has been suggested for allergen-

icity assessment is that if a protein matches a known allergen over a

linear window of 80 residues with at least 35% identity (FAO/

WHO, 2001), then it is declared a potential allergen (Fig. 3A). The

rationale behind this criterion is that at this level of similarity the 3D

structure of the region may be identical, at least at the domain fold

level, which could lead to similar recognition by B cells and IgE anti-

bodies. However, the fast linear-window approach also has its limi-

tations as it ignores the fact that antibody recognition of especially

discontinuous epitopes occurs in 3D and surfaces can also differ

among same folds. At the same time there have been good efforts to

predict 3D cross-reactivity by comparing 3D structures (Ivanciuc

et al., 2003; Negi and Braun, 2017). However, 3D structures are

known for only a fraction of allergens and it remains a challenge to

evaluate a query protein of unknown structure in a fast and auto-

mated manner.

To overcome this, AllerCatPro utilizes (i) comprehensive

structure modeling to create a 3D database of all known allergens,

(ii) a fast sequence-to-structure alignment method and finally (iii) a

structural epitope-sized 3D window sliding over the structure to

move from the previous linear sequence window approach into rele-

vant 3D structure comparisons (Fig. 3B). To create a comprehensive

3D structural database of known allergens, the allergens were clus-

tered into groups with at least 70% sequence identity and the best

templates for structural modeling were predicted for every cluster

representative (see Section 2). This clustering avoids overrepresenta-

tion of fold members and negative effects from potential modeling

inaccuracies of highly similar sequences while still providing effi-

cient coverage of the fold space among all allergens for fast compari-

son. Crystal structures were considered when available and highly

reliable homology models built utilizing methods successfully

employed previously for protein structure prediction (Kraft et al.,

2005; Kunze et al., 2011; Maurer-Stroh et al., 2003, 2009). With

this approach, structures covering 74% of the 4180 known allergens

were identified and modeled for AllerCatPro (Fig. 1, D2, see Section

2 for details). Furthermore, we compare the fold classification and

distribution of our models to a recent review of known structures of

allergens (Dall’antonia et al., 2014) as well as the crystal structures

listed at the dedicated Structural Database of Allergenic Proteins

(Ivanciuc et al., 2003). We observed that the relative ratios of the

major fold classes like all alpha, all beta etc. are maintained but that

these bigger classes are proportionally larger than the group of small

proteins and peptides (Supplementary Fig. S6).

The next task was to solve the problem of a fast and-automated

structure-based comparison for query proteins of unknown struc-

ture. For every representative structure in our database, we first pre-

calculated all possible epitope-sized 3D surface regions and then cre-

ated structure-to-sequence maps assigning sequence positions to

their respective epitopes. This allows quick recall of sequence-to-

structure mappings from sequence-based alignments against the

known structures. Therefore, sequence similarity can be used to

identify for a query protein sequence both the closest known aller-

gen and the closest structure representative and create a multiple

sequence alignment of the three. And finally, using the sequence-to-

structure maps of the epitopes, the similarity of the query and the

closest known allergen over all possible 3D structural epitopes for

the closest 3D surface match can be evaluated (Fig. 3B).

The initial 70% clustering is essential for our epitope approach,

since we do not measure explicit 3D structural differences between

crystal structures or models but we compare differences in the se-

quence alignment of a query with the closest known allergen in the

context of 3D epitope residues over the same common family struc-

ture/model scaffold. If redundancy were to be retained it would cre-

ate a mix of highly similar structures/models with small and not

necessarily reliably modeled conformational fluctuations adding

bias to the comparison.

It should be noted that we are not directly considering known

B-cell epitopes at this stage because it is difficult to avoid bias to-

wards the set of very well-studied allergens with complete experi-

mental epitope data that is not available for the majority of other

allergens. We focused here on a general approach that can be equal-

ly used on known and new proteins for the purpose of risk assess-

ment. To exemplify that our epitope comparison includes relevant

epitopes also without explicit bias towards experimentally known

sites, we show an example of a rice Bet v 1 sequence being compared

Fig. 2. Prediction of protein sequence similarity towards protein allergens by

the k-mer method. Screening for similarity between a query protein sequence

and a sequence in the allergen database is based on identical k-mer hits (A).

Evaluation of an appropriate k-mer length based on the predictive power of

different k-mer lengths by using the UniProt database of known allergens

from 2005 to predict all allergens known in 2015 (B). Differences in the excess

of percent true minus false positives depending on the k-mer length and en-

tropy degree (ent034 ¼ entropy bit score > 0.34) (C)

Fig. 3. Prediction of linear sequence window and 3D epitope similarity.

Screening for similarity between a query protein sequence and a sequence in

the allergen database based on a sequence window of 80 residues with at

least 35% identity (A). Matching of a query protein sequence with unknown

3D structure and the closest known allergen over all possible 3D structural

epitopes within the created comprehensive 3D structural database of known

allergens (B)
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with known allergens on the well-studied dominant epitope

also seen in crystal structures (Supplementary Fig. S7). In this case,

the well-known dominant epitope is also the most similar

epitope for this sequence but it only has 80% identity in the

epitope consistent with expected lower allergenicity potential of the

rice Bet v 1.

3.5 Combined workflow
Finally, the discussed methods and scores were combined into a de-

cision workflow (Fig. 1A) that is guided by consistency between pre-

vious rules and recommendations. The input is a query protein and

the output is the model’s assessment if there is strong, weak or no

evidence of allergenicity potential for the queried protein based on

the different measures of similarity to known allergens. Presence of

a Gluten-like Q-repeat is classified as strong evidence independent

of other features and, hence, evaluated first. Next, sequence similar-

ity to representatives in our 3D structure database is checked.

If there is significant sequence similarity, then the 3D surface

epitope similarity is used to assign ‘strong evidence’ if above the

benchmark threshold of 93% sequence identity or ‘weak evidence’

otherwise. The rationale here is that sharing the same fold is at least

weak evidence for allergenicity potential, but only if surface

epitopes are substantially similar one would expect cross-reactivity

and hence strong evidence for allergenicity potential. The threshold

was chosen to allow correct prediction of all known allergens and

thereby maintain highest sensitivity (see benchmark below). If no

structure hit is found (as is the case for �26% of known allergens),

a default back to the classical linear-window approach is used

with the established 35% identity over 80 residues rule also resulting

in a strong evidence call. Finally, if also no hit was found with the

linear-window approach, the model falls back to evaluating by k-

mer. This hierarchical staggering also ensures that the more relevant

3D and linear windows are given priority over the k-mers in the

evaluation. Only, if none of the methods give a hit, a ‘no evidence’

prediction is assigned. The complete workflow was named

‘AllerCatPro’.

3.6 Performance benchmark
Since the aim of this work is to have reliable safety assessments, the

thresholds, such as the 3D epitope % identity, have been set to be

able to give hits to all known allergens in our database. It needs to

be noted, however, that among the 4180 there were 11 sequences

(all <18 residues length) that were missed because they are too short

to be evaluated (length 5) or have ambiguous characters and do not

trigger the model’s k-mer rule. The formal sensitivity is therefore

99.7%. This must be seen as an upper boundary since the sequences

to be predicted are also in the AllerCatPro database. To estimate

performance on new sequences, first a jack-knife cross-validation

was performed where the sequence to be predicted is removed from

the database (Supplementary Fig. S3). This still yields 97.2% sensi-

tivity. Extending the cross-validation to removing all sequences with

>90% identity produces 93.8% sensitivity. The latter is a common

scenario where remote family members of known allergen protein

families from other species are being evaluated. It is important to

point out that this type of cross-validation is more stringent and sys-

tematic than 5- or 10-fold cross-validation with random assignment

to groups since it makes sure that no closely related family member

remains in the respective ‘training’ sets. Additionally, the sensitivity

of the method was also evaluated on previous benchmark sets pro-

vided by other tools and it ranges from 96.5 to 99.3%

(Supplementary Fig. S4).

To test the performance of the new 3D structure similarity

measure in detail, a benchmark set of 221 known allergens

with structures in our database was created (selected to be structur-

ally non-redundant using CLICK; Nguyen et al., 2011) and

matched with 221 likely non-allergens with the same fold by finding

the closest non-self hits in species like human, rice, yeast or

E. coli (Supplementary Table S2). We emphasize that this set is

small but well representative of protein allergens with structure in

our set.

AllerCatPro achieves 84% overall accuracy (Fig. 4A) at 100%

sensitivity (Fig. 4B) and 67% specificity (Fig. 4C). From other meth-

ods reported in the recent literature results were generated for the

same data set, including the classical FAO/WHO linear-window

rule (FAO/WHO, 2001) but leaving out the ambiguous k-mer rule

that would predict 100% of positives and negatives, PREAL (Wang

et al., 2013), AllerHunter (Muh et al., 2009), AllergenFP (Dimitrov

et al., 2014b) and AllerTOPv2 (Dimitrov et al., 2014a). The accur-

acy of these methods ranges from 51% for the old FAO/WHO rules

to respectable 73% (AllerTOPv2) (Fig. 4A). The same trends are

seen when evaluating by Matthew Correlation Coefficient

(Supplementary Fig. S5). However, only the FAO/WHO window

rule and AllerCatPro achieve 100% sensitivity (safety rationale for

conservative assessments) with the other methods typically ranging

from 57 (AllerHunter) to 85% (AllergenFP) (Fig. 4B). When com-

pared with the FAO/WHO window rule, AllerCatPro identified 3-

fold less false positives resulting in a 37-fold increase in specificity

(Fig. 4C) at the same high sensitivity.

3.7 Implementation as webserver
AllerCatPro is accessible as a webserver (https://allercatpro.bii.a-

star.edu.sg/). The input (Fig. 5A) is one or more protein sequences

(up to 50) in FASTA format and the output is a table with the work-

flow results and decision for one protein per line (Fig. 5B). The

results also include a link to view the most similar 3D surface epi-

tope (Fig. 5C) when applicable. At the end there is a download link

for the results also in comma-separated format which can be opened

by popular spreadsheet programs.

Fig. 4 AllerCatPro performance. Performance of AllerCatPro is calculated

as accuracy to predict allergens (n ¼ 221) versus non-allergens (n ¼ 221)

with the same structural fold compared with FAO/WHO rules (window-rule

only, no k-mer), PREAL, AllerHunter, AllergenFP and AllerTOPv2 (A).

By our definition, sharing the fold with an allergen already results in a weak

evidence prediction. Therefore, the calculation of accuracy here is based on

strong prediction on known allergen as true positive, weak prediction on

known allergen as false negative, weak prediction on non-allergen as true

negative and strong prediction on non-allergen as false positive. For the

same benchmark, the respective sensitivity (B) and specificity (C) is

highlighted

Prediction of protein allergenicity 3025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz029#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz029#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz029#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz029#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz029#supplementary-data
https://allercatpro.bii.a-star.edu.sg/
https://allercatpro.bii.a-star.edu.sg/


4 Conclusions

In this work, we build on and extend the work by several groups

and expert panels with the aim to improve assessment of the aller-

genic potential of protein sequences. Our emphasis has been to re-

tain earlier considerations and update or upgrade the approach and

criteria. Starting with a comprehensive database comparison to de-

rive the largest set of reliable known allergens, we propose an

entropy-adjusted hexamer hit approach as well as switching from

linear sequence window similarity to B-cell epitope-like 3D surface

similarity with predicted structures for 74% of all known allergens

in a workflow guided by safety rationale. At the highest sensitivity

needed for conservative assessments, AllerCatPro increases specifi-

city by 37-fold compared with the previous rules.
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