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Abstract: An insulated metallopolymer that undergoes phosphorescence-to-fluorescence conversion
between complementary colors by an acid-stimulus is proposed as a color-tunable material.
A Pt-based phosphorescent metallopolymer, where the conjugated polymeric backbone is insulated by
a cyclodextrin, is depolymerized by HCl via acidic cleavage of Pt-acetylide bonds to form a fluorescent
monomer. The insulation enables phosphorescence-to-fluorescence conversion to take place in the
solid film. Rapid color change was achieved by accelerating the reaction between the metallopolymer
and HCl by UV irradiation. These approaches are expected to provide new guidelines for the
development of next-generation color-tunable materials and printable sensors based on precise
molecular engineering.

Keywords: rotaxane; conjugated polymer; cyclodextrin; platinum acetylide; phosphorescence;
fluorescence; white emission

1. Introduction

Color-tunable luminescent materials by external stimuli have attracted considerable attention
because of their potential for applications to chemical sensors [1–3] and security technologies [4,5].
Especially, polymeric materials have been considered practical because they are readily fabricated into
films with high thermal stability and non-volatility [6,7]. Considering these applications, a drastic
color change would be favorable for good visibility. Compared to the gradual color change between
the adjacent color phases such as yellow-to-green and red-to-yellow (Figure 1a, arrows A and B,
respectively), the color change between the complementary colors (orange-to-blue, Figure 1a, arrow C)
signifies a dramatic change in the emission wavelength, via white midway through color shift [8].
Therefore, this system should improve the visibility of sensors or other security signals [9] and provide
white emission materials.
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molecule is considered to be a simple and practical method [11–18]. In this work, a phosphorescence-
to-fluorescence conversion (PFC) was selected as the color-changing mechanism because it provides 
a sufficient shift in the emission wavelength due to the large energy difference between the 3π–π* 
and 1π–π* transitions [16–18]. PFC can also be simply controlled by the detachment of heavy atoms 
on the luminescent π-conjugated system [19,20]. Nevertheless, PFC-based color-tunable materials are 
difficult to apply in practical polymer films because their emission can be quenched in the solid state 
due to the molecular interaction [21]. This problem should be addressed in order to develop design 
guidance for color-tunable materials based on PFC. 

 
Figure 1. (a) Chromaticity diagram with arrows showing the yellow-to-green (A), red-to-yellow (B), 
and orange-to-white-to-blue (C) shifts. (b) Chemical structures and the photographic images 
(excitation at 365 nm) of emission under deoxygenated conditions for polymer 1 and polymer 2 films 
on SiO2 substrates. (c) Conceptual illustrations of phosphorescence-to-fluorescence conversion 
between complementary colors, triggered by metallopolymer to monomer conversion (This study). 

In our previous studies [22–28], we overcame the drawback of phosphorescent polymeric 
materials using a supramolecular approach. The platinum acetylide polymer backbones were 
completely covered with permethylated α-cyclodextrins (PM α-CDs), inhibiting molecular 
interactions between the adjacent conjugated chains (Figure 1b) [24]. Therefore, the phosphorescence 
of the polymer film was efficiently enhanced by insulating the platinum acetylide polymer (Figure 
1b, the upper photo). We have also applied this insulation strategy to other polymer materials such 
as a luminescent sensor for typical metal ions [26], a HCl-responsive polymer utilizing acid-induced 
isomerization [27], and phosphorescent hydrogels [28]. In the present work, we developed a color-
tunable material exhibiting white emission via the depolymerization of insulated Pt acetylide 
polymer that undergoes a PFC. For the external stimulation of depolymerization, we selected 
hydrogen chloride (HCl) as an acidic stimulus because Shaw and co-workers reported the chemical 

Figure 1. (a) Chromaticity diagram with arrows showing the yellow-to-green (A), red-to-yellow
(B), and orange-to-white-to-blue (C) shifts. (b) Chemical structures and the photographic images
(excitation at 365 nm) of emission under deoxygenated conditions for polymer 1 and polymer 2 films on
SiO2 substrates. (c) Conceptual illustrations of phosphorescence-to-fluorescence conversion between
complementary colors, triggered by metallopolymer to monomer conversion (This study).

Although the combination of two complementary colors to realize white emission has been
achieved by mixing two molecular luminescences [10], controlling the emission colors from
a single molecule is considered to be a simple and practical method [11–18]. In this work,
a phosphorescence-to-fluorescence conversion (PFC) was selected as the color-changing mechanism
because it provides a sufficient shift in the emission wavelength due to the large energy difference
between the 3π–π* and 1π–π* transitions [16–18]. PFC can also be simply controlled by the detachment
of heavy atoms on the luminescent π-conjugated system [19,20]. Nevertheless, PFC-based color-tunable
materials are difficult to apply in practical polymer films because their emission can be quenched in
the solid state due to the molecular interaction [21]. This problem should be addressed in order to
develop design guidance for color-tunable materials based on PFC.

In our previous studies [22–28], we overcame the drawback of phosphorescent polymeric materials
using a supramolecular approach. The platinum acetylide polymer backbones were completely covered
with permethylatedα-cyclodextrins (PMα-CDs), inhibiting molecular interactions between the adjacent
conjugated chains (Figure 1b) [24]. Therefore, the phosphorescence of the polymer film was efficiently
enhanced by insulating the platinum acetylide polymer (Figure 1b, the upper photo). We have also
applied this insulation strategy to other polymer materials such as a luminescent sensor for typical metal
ions [26], a HCl-responsive polymer utilizing acid-induced isomerization [27], and phosphorescent
hydrogels [28]. In the present work, we developed a color-tunable material exhibiting white emission
via the depolymerization of insulated Pt acetylide polymer that undergoes a PFC. For the external
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stimulation of depolymerization, we selected hydrogen chloride (HCl) as an acidic stimulus because
Shaw and co-workers reported the chemical reaction between Pt-acetylide and HCl involving Pt−C
bond cleavage [29]. The orange phosphorescent emission (3π–π*) of the insulated polymer due to the
heavy atom effect [30] changes to the blue fluorescent emission (1π–π*) when HCl cleaves the Pt−C
bonds (Figure 1c). Accordingly, we would provide a color-tunable polymer film based on PFC via
white emission.

2. Materials and Methods

2.1. Materials

Unless otherwise stated, commercially available chemicals were used as received.
Reaction solvents were degassed through argon or nitrogen bubbling, before use. Polymer 1 [31],
polymer 2 [31], and monomer 3 [32] were prepared according to our previous reports.

2.2. Synthesis of 4
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the polymer solution in CHCl3 (5 mg/mL) on SiO2 substrates (1 cm × 1 cm or 0.6 cm × 0.6 cm). The 
flask with the substrates was filled with HCl gas and other gases and was kept at room temperature. 

Precursor of 4 [33] (100 mg, 68.1 µmol) and trans-PtCl2(PEt3)2 (16.4 mg, 32.7 µmol) were added into
degassed MeOH/H2O (1/1, 100 mL), and the mixture was stirred at 40 ◦C for 30 min. Under a nitrogen
atmosphere, degassed Et3N (3 mL) and CuI (0.7 mg, 3 µmol) were added into the solution, and then the
reaction mixture was stirred at 40 ◦C for 18 h. The mixture was quenched with NH4Cl aq. and diluted
with CHCl3. The organic layer was separated and dried over MgSO4, and then filtered. The solvent
was removed by evaporation, the mixture was dried in vacuo and the residue was purified by GPC
with CHCl3 as the eluent to yield 4 as a pale yellow solid (72 mg, 63 %). ESI HR-MS: (m/z) 1705.7249
([4 + Na2]2+, C154H238N2Na2O62P2Pt2+, calcd. 1705.7237). 1H NMR (500 MHz, CDCl3, r.t.): δH = 7.90
(d, J = 8.19 Hz, 4H, ArH), 7.42–7.30 (m, 10H, ArH and NH), 7.19 (s, 2H, ArH), 5.20–4.70 (m, 12H, CD-H),
4.40–2.80 (m, 174H, CD-H, OCH3), 2.20 (s, 6H, CH3), 2.10–1.95 (m, 12H, PCH2), 1.20–1.05 (m, 18H,
PCH2CH3) (Supplementary Figure S15). 13C NMR (126 MHz, CDCl3, r.t.): δC = 168.24, 162.26, 139.29,
133.42, 132.16, 132.06, 130.49, 130.40, 129.44, 129.43, 118.55, 114.20, 112.84, 112.46, 100.76, 100.43, 100.08,
100.04, 99.90, 98.07, 94.27, 86.81, 83.84, 82.74, 82.63, 82.50, 82.39, 82.34, 82.32, 82.28, 82.14 (several peaks
overlapped), 82.07 (several peaks overlapped), 81.71, 81.55, 81.22 (several peaks overlapped), 81.16,
81.03 (several peaks overlapped), 76.22, 72.08, 71.83, 71.70, 71.64 (several peaks overlapped), 71.26
(several peaks overlapped), 71.13 (several peaks overlapped), 71.11, 70.74, 70.17, 61.93, 61.81 (several
peaks overlapped), 61.67, 61.59 (several peaks overlapped), 59.09 (several peaks overlapped), 58.96,
58.72, 58.69, 58.22, 57.91, 57.74, 57.66, 57.56, 57.47, 24.78, 16.02 (t, J = 17.5 Hz), 7.90 (Supplementary
Figure S16). 31P NMR (202 MHz, CDCl3, r.t.): δP = 10.83 (s and d, 1JP-Pt = 2369 Hz) (Supplementary
Figure S17).

2.3. General Procedure of HCl Depolymerizing Experiment in the Solution State

Under air, insulated (1) polymer (0.25 mg) was dissolved in MeOH/H2O (2/1) (total volume:
1.0 mL) with hydrochloric acid, and then the mixture was stirred at room temperature. After the
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reaction, the reaction was quenched with NaHCO3 and then the solvent was removed by evaporation
for the following analyses.

2.4. General Procedure of Depolymerizing Experiment in the Solid State

Insulated (1) or uninsulated (2) polymer film was fabricated by drop-casting or spin-casting of the
polymer solution in CHCl3 (5 mg/mL) on SiO2 substrates (1 cm × 1 cm or 0.6 cm × 0.6 cm). The flask
with the substrates was filled with HCl gas and other gases and was kept at room temperature. After the
reaction, the reaction was quenched in vacuo to remove the reaction gases for the following analyses.

3. Results and Discussion

3.1. Depolymerizing Reaction of Pt-Acetylide Polymer 1 and 2

The metallopolymer 1 displayed orange phosphorescence (λmax = 585 nm) in deoxygenated
solution. Here, a solution of 4 M HCl in MeOH/H2O (2:1 v/v) afforded a cleavage on the
Pt–acetylide bonds on the polymer 1 (Figure 2a). The depolymerization of 1 was confirmed
by size exclusion chromatography (SEC) (Figure 2b). 31P NMR analysis of the depolymerizing
mixture demonstrated the formation of monochlorinated and dichlorinated platinum complexes
(Supplementary Figure S1) [34,35]. This result indicated that the Pt–acetylide bonds of the polymer 1
were cleaved in response to HCl. Furthermore, the photoluminescent behavior changed owing to the
dissociation of the Pt atoms from the conjugated backbone. Under 365-nm excitation, the solution of
the depolymerized mixture exhibited blue fluorescence (λmax = 407 nm). The fluorescent peak-top
wavelength of the depolymerized mixture corresponded to that of monomer bearing terminal alkynes
(3) (Supplementary Figure S2). However, the spectrum of the mixture also accompanied a slight
shoulder in the long wavelength region, which was possibly derived from the overreaction of the
alkyne monomer to alkene derivatives.
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Figure 2. Depolymerizing experiments in the solution state: (a) Reaction of polymer 1 with HCl. (b) SEC
analyses (detected at UV 380 nm) of the reaction products of polymer 1 before reaction (orange) and
after reaction with 1 M HCl (gray) and 4 M HCl (blue) for 18 h. (c) Photographic images and (d) emission
spectra of the reaction mixture of 1 by varying the concentration of HCl in (c), under deoxygenated
conditions (excitation at 365 nm).



Polymers 2020, 12, 244 5 of 10

3.2. Color-Tunability in the Solution State

In the presence of 1 M HCl, the solution displayed white emission. The color changes
(orange-white-blue) reinforced the color distinctions even at concentrations that were only slightly
different (0.1 M, 0.5 M, and 4 M) (Figure 2c,d). The quantum yield (QY) values of the phosphorescence
and fluorescence after reaction with 0.1 M HCl were 15.6% and 0.8%, respectively. On the other
hand, after reaction with 4 M HCl, the QY of phosphorescence decreased to 2.7% and that of
fluorescence increased to 8.5% (Supplementary Table S1). The time course of the reaction with the
4 M HCl solution showed a similar spectrum change as that observed in Figure 2d (Supplementary
Figure S4). Thus, the orange-white-blue color change occurred during the depolymerization of 1 with
HCl. Accordingly, PFC after depolymerization indicated that polymer 1 had great potential as a
color-tunable material of HCl based on phosphorescence.

3.3. Depolymerizing Reaction in the Solid State

Polymer films of 1 and 2 were fabricated by spin-casting a solution of the polymer in CHCl3 onto
SiO2 substrates. Under irradiation at 365 nm, the polymer film of 1 showed orange phosphorescence
identical to that in solution (Figure 3a,d, orange line). After exposure to 1 atm HCl gas for 1.5
h, the emission exhibited a remarkable color change to white on the film (Figure 3b,d gray line).
Accordingly, the PFC between complementary colors was triggered by HCl even at the solid-gas
interface. Further reaction with HCl for 4 h afforded blue fluorescence (Figure 3c,d blue line).
The emission intensity of the polymer 1 did not change after UV irradiation for several hours,
indicating its stability (Supplementary Figure S6). On the other hand, the uninsulated counterpart 2
interacted with adjacent molecules in the solid state, such that phosphorescence was almost quenched, in
contrast to 1 (Figure 3e). Therefore, during the intermediate stage of depolymerization, the uninsulated
polymer film of 2 showed gradual color change from red to green (Figure 3e–g and Figure S8) without
white emission. These results indicate that insulation is essential for the application of color-tunable
polymer films.
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Figure 3. Depolymerizing experiments in the solid state: Emission photographs under deoxygenated
conditions (excitation at 365 nm) of polymer 1 films on SiO2 substrates (a) before reaction, and after
reaction with HCl gas for (b) 1.5 h, and (c) 4 h. (d) Emission spectra of polymer 1 film in (a–c).
Emission photographs of polymer 2 films (e) before reaction, and after reaction with HCl gas for (f) 10
min, and (g) 30 min, under the same conditions as (a–c). (h) Emission intensity ratio between 460 nm
and 583 nm (excitation at 365 nm) of polymer 1 films on SiO2 substrates in the presence of various
gases after 3 h under deoxygenated conditions.
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3.4. Chemospecific Reactivity for Pt–Acetylide Bonds with HCl Gas

The reaction selectivity of the polymer film of 1 was evaluated by measuring the optical response
in the presence of various gases after 3 h. The vertical axis in Figure 3h shows the ratio of emission
intensity of the fluorescence at 460 nm and phosphorescence at 583 nm after exposure to each gas shown
on the horizontal axis. Apart from the HCl gas, no emission changes were observed in the presence of
oxidative (NO and O2) and reductive (CO, H2 and C2H4) gases, in addition to inert gases such as N2,
CO2, CH4, and air. Moreover, non-reactivity to a basic gas (NH3) and even to a weak acidic gas (H2S)
confirmed the chemospecific reaction of polymer 1 for depolymerization with HCl. The selectivity
would also indicate the high potential of insulated polymer 1 for applications to optochemical HCl gas
sensors in the solid state [36]. Notably, the polymer 1 could be used even under ambient conditions
because the phosphorescence is not affected by oxygen due to the insulation [24]. Finally, PFC was
confirmed within less than 5 s after the spraying of HCl gas (5 mL) onto the polymer film of 1 under
ambient conditions, realizing real-time HCl gas detection (Supplementary Figure S11 and Movie S1).

3.5. Light-Induced Acceleration for the Depolymerization

The low reaction rate at low concentration is an intrinsic disadvantage of the color-tunable
materials based on the chemical reaction. In contrast, highly reactive materials are unstable under
ambient conditions and do not permit long-term storage, whereas stable stimuli-responsive materials
intrinsically afford slow responses. Thus, a tradeoff relationship exists between reactivity and stability.
We successfully overcame this problem by the photo-excitation of the π-conjugated backbone in the
presence of HCl gas. The UV irradiation in the 350–400 nm range accelerated the depolymerization
reaction in the presence of 5% v/v HCl gas (left-hand side image in Figure 4a and Figure S12d), and the
resultant film displayed blue fluorescence. On the other hand, irradiation in the 450–500 nm range
did not affect the reaction rate, because the emission color after UV irradiation remained unchanged
(right-hand side image in Figure 4a and Supplementary Figure S12c). This result indicated that the
wavelength of irradiation for the acceleration needed to correspond with that of the absorption band
of the polymer 1 (Figure 4a). In addition, without irradiation, acceleration of the reaction at 100 ◦C
was negligible, which demonstrated that acceleration could not be attributed to local heating caused
by irradiation (Supplementary Figure S12b). UV irradiation of specific areas selectively converted
the polymer 1 in these areas into monomers, indicating that the accelerated reaction required the
concerted action of the HCl gas and UV irradiation (Figure 4b,c). Finally, the film was exposed
to 500 ppm of HCl gas for 2 min under UV irradiation. Compared to the ambient conditions that
provide white emission without irradiation (Figure 3b), the gas concentration and reaction time were
approximately 2000 times lower and 50 times shorter, respectively, due to light-induced acceleration.
The light-induced acceleration was also observed in the dilute solution system of insulated polymer 4
in MeOH/H2O solution with 5000 ppm HCl and 365 nm UV irradiation. See Figure S14.

In order to further investigate the light-induced effects, an Pt-acetylide complex 4 was prepared
as a partial structure of polymer 1 (Figure 5a). The reaction was confirmed in the DMF solution and
its progress was characterized by 31P NMR analyses. As a result, 47% of 4 underwent cleavage of
the Pt-acetylide bond to form monochlorinated Pt complex 5 under UV radiation (365 nm) in the
presence of hydrochloric acid (1 M) after 20 min (Figure 5b) [35]. On the other hand, 4 was intact under
the single stimulus, either by UV irradiation or by the addition of HCl. The monomer experiment
clearly demonstrated that the UV irradiation accelerated the reaction between the Pt-acetylide and
HCl. This approach provides a new design strategy to improve the tradeoff relationship in the
stimuli-responsive materials in the point of stability and reactivity.
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Figure 4. Experimental results of light-induced acceleration of polymer 1 film on SiO2 substrate: (a) 
Photographic images (upon 365-nm excitation under deoxygenated conditions): Resultant substrate 
after 5% v/v HCl exposure for 5 min with UV irradiation of each wavelength range and an absorption 
spectrum of 1 in dilute CHCl3. (b) Photographic images (upon 365-nm excitation under deoxygenated 
conditions) of the resultant film with spot irradiations (350–400 nm) and 10% v/v HCl gas. (c) 
Photographic image of irradiation pattern in (b) with white light on black paper. (d) Photographic 

Figure 4. Experimental results of light-induced acceleration of polymer 1 film on SiO2 substrate:
(a) Photographic images (upon 365-nm excitation under deoxygenated conditions): Resultant
substrate after 5% v/v HCl exposure for 5 min with UV irradiation of each wavelength range and
an absorption spectrum of 1 in dilute CHCl3. (b) Photographic images (upon 365-nm excitation
under deoxygenated conditions) of the resultant film with spot irradiations (350–400 nm) and 10%
v/v HCl gas. (c) Photographic image of irradiation pattern in (b) with white light on black paper.
(d) Photographic images (upon 365-nm excitation under deoxygenated conditions) before and after
reaction with 500-ppm HCl gas for 2 min using light-induced acceleration.
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monochlorinated Pt complex 5. (b) 31P NMR (202 MHz, CDCl3) analyses of 4 after reaction for 10 min
under UV, HCl, and UV + HCl. Coupling peaks with platinum atom are in parentheses.

4. Conclusions

In summary, the insulated Pt-acetylide polymer emerged as a new material for application in
color-tunable materials. The acidic stimulus (HCl) cleaved the Pt-acetylide bonds, which afforded
the luminescent conversion between complementary colors. The large wavelength-shift between
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phosphorescence and fluorescence enabled color-tunability involving white emission. The material
possessed unique properties such as insulation effects for utilization in the polymer films and
light-induced acceleration for improving reactivity. The molecular design demonstrated great potential
for use as next-generation printable and white-emission materials and chemical sensors due to its
facile preparation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/1/244/s1,
Figure S1. 31P NMR spectrum of the depolymerizing mixture of 1, Figure S2. Emission spectra of depolymerized
mixtures of 1 and of 3, Figure S3. SEC analyses of 1 with various HCl concentration, Table S1. The QY after
the depolymerization of 1, Figure S4. (a) Time-course of emission spectra of the reaction mixture of 1 with HCl.
(b) Photographic images of the emission behavior of the reaction mixture of 1 with HCl, Figure S5. Emission
spectra of 1 before reactions with HCl gas, Figure S6. Emission spectra of 1 in CHCl3 before irradiation and after
UV irradiation, Figure S7. SEC analyses of 1 after reactions with HCl gas and of 2 after reactions with HCl gas,
Figure S8. Emission spectra of polymer films of 2 before and after reaction with HCl gas, Figure S9. Emission
spectra of 1 after reactions with various gases, Figure S10. SEC analyses of 1 after reactions with various gases,
Figure S11. (a) Photographic images of polymer films of 1 film before and after the reaction with HCl gas spray.
(b) Illustration of the experiment, Figure S12. SEC analyses of 1 under HCl gas with various reaction conditions,
Figure S13. (a) Emission spectra and (b) photographic images of the reaction mixture of 1 before and after reaction
with 5000 ppm HCl under UV irradiation, Figure S14. Emission spectra of the reaction mixture of 1 before and
after reaction with 500 ppm HCl under UV irradiation, Figure S15. 1H NMR spectrum of 4, Figure S16. 13C NMR
spectrum of 4, Figure S17. 31P NMR spectrum of 4, Movie S1. Real-time HCl gas detection.
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