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Abstract: Trypanosoma cruzi is the etiologic agent for Chagas disease, which affects 6–7 million
people worldwide. The biological diversity of the parasite reflects on inefficiency of benznidazole,
which is a first choice chemotherapy, on chronic patients. ABC transporters that extrude xenobiotics,
metabolites, and mediators are overexpressed in resistant cells and contribute to chemotherapy failure.
An ABCC-like transport was identified in the Y strain and extrudes thiol-conjugated compounds. As
thiols represent a line of defense towards reactive species, we aimed to verify whether ABCC-like
transport could participate in the regulation of responses to stressor stimuli. In order to achieve
this, ABCC-like activity was measured by flow cytometry using fluorescent substrates. The present
study reveals the participation of glutathione and ceramides on ABCC-like transport, which are
both implicated in stress. Hemin modulated the ABCC-like efflux which suggests that this protein
might be involved in cellular detoxification. Additionally, all strains evaluated exhibited ABCC-like
activity, while no ABCB1-like activity was detected. Results suggest that ABCC-like efflux is not
associated with natural resistance to benznidazole, since sensitive strains showed higher activity than
the resistant ones. Although benznidazole is not a direct substrate, ABCC-like efflux increased after
prolonged drug exposure and this indicates that the ABCC-like efflux mediated protection against
cell stress depends on the glutathione biosynthesis pathway.

Keywords: ABC transporter; drug resistance; benznidazole; ceramide; hemin; thiol; oxidative stress;
environmental stress

1. Introduction

Trypanosoma cruzi is a flagellated protozoan responsible for causing the anthropo-
zoonosis Chagas disease [1]. According to the World Health Organization, Chagas disease
is a neglected tropical disease with an estimated 6–7 million infected people in the world
with almost 65 million at risk of infection. The Pan American Health Organization defined
the endemic area as from southern United States to southern Argentina and Chile, which
pertains to a total of 21 countries [2]. The main form of transmission is through the insect
vector, which is predominant in rural areas with rudimentary infrastructure, promoting
a favorable environment for its reproduction as well as proximity to the wild cycle [3].
Alternatively, T. cruzi may be transmitted by the consumption of food contaminated with
vector feces or with the secretion of infected mammals [4]; donation of blood, organs
or tissues, especially in countries that do not screen samples for T. cruzi [5]; and during
pregnancy [6]. Furthermore, sexual transmission [7] and different species as potential
vectors [8] are possible routes for the spreading of disease mainly in non-endemic areas.
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First-line treatment of Chagas disease is performed with benznidazole, for which
success depends on the stage of the disease, the patient’s age, and on biochemical char-
acteristics of the strains [9]. Benznidazole is a prodrug, which contains a nitro radical
attached to an imidazole ring. As such, its trypanocidal effect is second to the activation
by a NADH-dependent trypanosomal type I nitroreductase and results in the formation
of the dialdehyde glyoxal, which forms adducts with several biomolecules and DNA in
special [10]. T. cruzi strains show great discrepancy in susceptibility to chemotherapy, with
resistance detected on wild-type strains or after prolonged treatment [11,12]. Resistance to
benznidazole in T. cruzi is multifactorial and results from mechanisms involving pro-drug
activation, defenses against free radicals and drug efflux [13].

The life cycle of T. cruzi is complex and involves the epimastigote and amastigote
replicative stages in the invertebrate and vertebrate hosts, respectively, and the trypo-
mastigote infective stage [3]. In the hematophagous invertebrate host, parasites must
thrive in a pro-oxidant microenvironment caused by the degradation of blood cells and
subsequent heme release [14]. Regardless of being a necessary cofactor, heme is cytotoxic
due to the generation of reactive oxygen species (ROS) [15]. Even though most ROS are
a consequence of cellular respiration, xenobiotics arise as an important source of oxida-
tive stress, either releasing ROS by biotransformation or via the direct consumption of
antioxidant defenses [16]. In addition, stress-inducing agents are able to affect sphingolipid
metabolism and results in the accumulation of ceramides [17], a sphingolipid comprised
of a sphingosine-related base linked to a fatty acid through an amide bond. Ceramides
are ubiquitous in nature as components of cell membranes and as regulators of cell cycle,
differentiation, cell senescence, and apoptosis [18]. The nature of ceramide-mediated re-
sponses suggests that these sphingolipids coordinate pathways responsive to intracellular
stresses [19], since their production is sensitive to redox metabolism [20].

ABCC is an ABC active transporter subfamily and is studied in several organisms
owing to their ability to extrude endobiotics or xenobiotics alone, in conjugation to, or in
cotransport with phosphate, glucuronide, or glutathione [21]. Human ABCC subfamily
is able to transport sphingolipids as sphingosine-1-phosphate [22], sphingomyelin, gluco-
sylceramides [23], and exogenous ceramides [24]. Moreover, ABCC activity contributes to
chemotherapy resistance phenotype in major protozoa including Leishmania, Trypanosoma,
and Plasmodium species [25]. In T. cruzi, 27 ABC genes were identified in the genome, the
first being named PGP1 and PGP2 by Dallagiovanna et al. [26,27]. Subsequently, it was
observed that the PGP1 and PGP2 genes show great similarity with the ABCC6 and ABCC2
genes of L. major and T. brucei, respectively [28]. Additionally, T. cruzi Y strain showed efflux
of thiol-conjugated compounds [29] in a similar mechanism to that performed by ABCC
transporters present on humans [30] as well as on other trypanosomatids [25]. Considering
the importance of oxidative stress to T. cruzi development and the crucial participation of
ABC transporters on cellular detoxification, we investigated the participation of metabolites
involved in cell stress pathways elicited by the microenvironment or by chemotherapy
in the ABCC-like efflux as well as the importance of such activity for T. cruzi strains with
diverse phenotypes of resistance to benznidazole.

2. Results
2.1. Glutathione Promotes CF Accumulation

Carboxyfluorescein (CF) is a transportable fluorescent substrate employed in the
ABCC efflux assay in the Y strain, as described in the Materials and Methods section.
In this work, both forms of glutathione (reduced, GSH; oxidized, GSSG) increased the
median fluorescence intensity (MFI) for CF and the percentage of CF-positive parasites
compared to the control parasites (referred to as CTL) and this suggests that both molecules
inhibited the CF efflux (Figure 1B,C). Representative histograms for these conditions are
depicted in Figure 1A. Analyzing the transport inhibition index, which is calculated as
the ratio of the CF MFI in the presence of GSH or GSSG to the one in its absence, it was
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observed that the reduced peptide inhibited the CF efflux more effectively than its oxidized
version (Figure 1D).
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Figure 1. CF accumulation in the presence of glutathione. ABCC-like activity was evaluated by the
CF efflux assay in the presence of 5 mM of GSH or GSSG. (A) Representative histograms, (B) CF
MFI, (C) percentage of CF+ parasites, and (D) inhibition index compared to control (CTL) from the Y
strain. Lines represent the median, bars represent mean + SEM, and the values of significance were
represented by (*) for p < 0.05, (**) p < 0.01, and (***) p < 0.001, n = 8 independent experiments.
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2.2. Hemin Preincubation Promotes Thiol Depletion and CF Accumulation

Hematophagous feeding of the invertebrate host results in ROS in the microenviron-
ment where T. cruzi are found. In order to assess whether hemin is able to reduce the
parasite’s antioxidant defenses, the levels of free thiols were measured using the fluorescent
probe 5-chloromethylfluorescein diacetate (CMFDA) as described in the Materials and
Methods section. Since CMFDA could also be a substrate of transporters of the ABCC
subfamily [29], intracellular thiols were measured in the absence of glucose and cells were
then maintained at 0 ◦C until the moment of acquisition. As such, this would drasti-
cally reduce the interference of ABCC-like transport. A 3 h preincubation with 0.2 mM
hemin reduced thiol levels by 82.50% in the Y strain (Figure 2A); this is similar to the
positive control N-ethylmaleimide (NEM) which is an alkylating agent. Free thiol levels
were measured by thiol-conjugated methylfluorescein (TMF) MFI. In Figure 2B, the same
methodology was employed to parasites resistant to benznidazole and denominated as
Y-RBz. The graph has been added here to facilitate comparison with the parental strain
(Y strain). These results will be described in Section 2.6 CF Efflux Increases after Acquired
Resistance to Benznidazole.
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Figure 2. Intracellular levels of free thiols after benznidazole and hemin preincubation. A fluorescent
probe was employed to indirectly measure the free thiol levels after 3 h preincubation with 0.5 mM
or 1.0 mM benznidazole or 0.2 mM hemin. Bars represent the mean + SEM of thiol-conjugated
methylfluorescein (TMF) MFI in the (A) Y strain and (B) Y-RBz parasites compared to respective
controls (CTL). The values of significance were represented by (**) for p < 0.01 and (***) p < 0.001,
n = 3 (Y) and n = 5 (Y-RBz) independent experiments.



Molecules 2021, 26, 3510 5 of 19

As thiol levels were reduced by hemin, we evaluated their effect on the ABCC activity.
Hemin preincubation promoted increases in both CF MFI and in the percentage of CF-
positive parasites (Figure 3), which suggests the participation of ABCC transporters in the
detoxification pathways of the parasite.
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Figure 3. CF accumulation after hemin preincubation. ABCC-like activity was evaluated by CF efflux
assay after a preincubation with 200 µM hemin for 1 h. (A) Representative histograms, (B) CF MFI
and (C) percentages of CF+ parasites from Y strain. Lines represent the median and the values of
significance represented by (**) p < 0.01, n = 5 independent experiments.

2.3. ABCC-Like Activity Mediates Ceramide Efflux

Several approaches suggest sphingolipids might act as mediators of cellular responses
to stress [19]. For this purpose, an 1 h preincubation was performed with 60 µM sph-
ingosine, which is metabolized by ceramide synthase promoting the accumulation of
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ceramides [31]. In the Y strain, the preincubation with sphingosine increased CF MFI from
10.49 to 63.55 (Figure 4A,B). In addition, about 55% of the parasites accumulated CF in the
cytosol (Figure 4C) in this condition.
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Figure 4. CF accumulation after sphingosine preincubation. ABCC-like activity was evaluated by the
CF efflux assay after a preincubation with 60 µM sphingosine for 1 h. (A) Representative histograms,
(B) CF MFI, and (C) percentages of CF+ parasites from Y strain. Lines represent the median and
values of significance were represented by (*) for p < 0.05, n = 6 independent experiments.

In order to rule out a possible interference of a direct transport of sphingosine, an
ABCC-mediated efflux assay was carried out by using, as a substrate, a fluorescent analogue
of ceramide, namely C6-NBD-cer (abbreviation to N-[(E,2S,3R)-1,3-dihydroxyoctadec-4-en-
2-yl]-6-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]hexanamide). Representative histograms
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for these conditions are depicted in Figure 5A,B. MK-571, a specific ABCC subfamily
inhibitor, promoted an increase in C6-NBD-cer MFI with almost 100% of parasites inhibited
(Figure 5C,E). Furthermore, iodoacetic acid (IAA) and NEM, ATP and thiol depletion
agents, respectively, were employed prior to the efflux assay. It is noteworthy that both
compounds induced C6-NBD-cer accumulation as observed by the increase in MFI and
in the percentage of positive parasites (Figure 5D,F). The results showed that ABCC
performs the efflux of short-chain ceramides and suggests that it would possibly transport
sphingolipids produced during stress conditions.
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Figure 5. Ceramide efflux in the presence of ABCC inhibition and after ATP or thiol depletion.
ABCC-like activity was evaluated by the C6-NBD-cer efflux assay in the presence of 200 µM MK-
571 or a preincubation with 2 mM iodoacetic acid (IAA) or 100 µM N-ethylmaleimide (NEM) for
1 h. (A,B) Representative histograms, (C,D) 6-NBD-cer MFI, and (E,F) percentages of C6-NBD-cer+
parasites compared to the control (CTL) from Y strain. Lines represent the median and the values of
significance were represented by (*) for p < 0.05, (**) p < 0.01, and (***) p < 0.001, n = 6 (MK-571) and
n = 4 (IAA and NEM) independent experiments.

2.4. Resistance to Benznidazole

In the present study, four T. cruzi strains were considered naturally susceptible or
resistant to benznidazole. In order to confirm the susceptibility to the drug, epimastigote
forms from Berenice, CL Brener, Y and Colombiana strains were treated with a range
of concentrations of benznidazole for 48 h. Supplementary Figure S1A shows the half-
maximum inhibitory concentration (IC50) to the four strains that was calculated by means of
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inhibition of mitochondrial reducing activity. Berenice and CL Brener strains are susceptible
to treatment, with IC50 of 7.06 ± 1.16 µM and 10.42 ± 1.83 µM, respectively. The Y and
Colombiana strains are significantly more resistant and presented IC50 of 31.02 ± 2.89 µM
and 33.90 ± 1.41 µM, respectively.

Additionally, epimastigote forms from Y strain were selected in vitro after exposure
to benznidazole as described in the Material and Methods section. This protocol produced
great impact on adaptation to chemotherapy, since its IC50 reached 395.10 ± 35.84 µM
(Supplementary Figure S1B). As described previously, the Y strain selected in vitro to
benznidazole is referred to as Y-RBz.

2.5. Natural Resistance to Benznidazole Does Not Relate to ABCC-Like Mediated Efflux

Similar to hemin, benznidazole preincubation for 3 h reduced thiol levels by more
than 70% in the Y strain (Figure 2A). In addition, the ABCC-like mediated efflux assay was
performed in epimastigote forms of naturally resistant (Colombiana) or sensitive strains
(Berenice and CL Brener) to the drug. CF MFI and percentages of CF-positive parasites
were higher in the presence of the ABCC pharmacological inhibitors MK-571 (Figure 6A–F)
and indomethacin (Supplementary Figure S2), which demonstrates that ABCC-mediated
efflux is present in all strains.

In order to compare ABCC-like mediated efflux among T. cruzi strains, inhibition
indexes were calculated for MK-571 inhibitor since it does not inhibit other ABC subfamilies
(Figure 7A). The index is calculated as the ratio of the CF MFI in the presence of inhibitor
to the one in its absence and indicated the level of ABCC activity. Berenice and CL Brener
presented higher index than Y and Colombiana strains and this suggests a greater aptitude
for CF efflux in those strains. As a result, ABCC activity was higher in sensitive strains,
which indicates an inverse correlation with natural resistance to benznidazole. The index of
Y strain was obtained from da Costa et al. [29] and included for the purposes of comparison.

2.6. CF Efflux Increases after Acquired Resistance to Benznidazole

Prolonged chemotherapy protocols often lead cells to a drug-adapted phenotype.
Although ABCC-like efflux did not relate to natural resistance, exposure to benznidazole
would select parasites with a higher capacity for ABCC transport if it were necessary for
its survival. The Y strain was selected for prolonged treatment with benznidazole due to
its reduced ABCC activity (Figure 7A). Similar to the other strains, efflux of CF on Y-RBz

parasites was inhibited by MK-571 and indomethacin (Figure 6G,H, Supplementary Figure
S2G,H). The protocol employed for in vitro selection of resistant parasites led to increases
in inhibition index (Figure 7B) in relation to the parental strain, suggesting that ABCC-like
activity could participate in the acquired resistance. Remarkably, Y-RBz was more resistant
to the reduction in thiol levels caused by benznidazole and hemin when compared to the Y
strain (Figure 2B). These results suggest the influence of thiol biosynthesis pathways on the
acquisition of a drug-resistant phenotype.

2.7. Resistance to Benznidazole Is Not Directly Dependent on ABCC-Like Efflux

Aiming to assess whether benznidazole could be transported by ABCC, the drug
was utilized as a competitor during the CF efflux assay in the Y strain. Our results
demonstrate that even in high concentrations, benznidazole was not able to increase the
MFI nor the percentages of positive parasites (Supplementary Figure S3). On the other
hand, concentrations of 0.5 mM and 1 mM reduced CF MFI values. Next, the effect
of inhibition of ABCC activity or thiol depletion on the viability of parasites treated by
benznidazole was investigated by vital staining with propidium iodide (PI). The Y-RBz

parasites were less sensitive to ABCC inhibition (MK-571) than the parental strain, with
a viability reduction of about 6% in contrast to 18% of the Y strain. The co-treatment
with MK-571 and benznidazole did not sensitize the parental Y strain (Figure 8A), but it
reduced the viability in Y-RBz parasites in the highest concentrations of the drug (Figure 8B).
Benznidazole and MK-571 had no impact on the percentage of viable Y parasites. However,
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since roughly 70% of the cells remained viable, these results suggest that T. cruzi does not
depend exclusively on ABCC-like transport to deal with benznidazole toxicity.
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Figure 6. CF accumulation in the presence of the inhibitor MK-571 in T. cruzi sensitive and resistant
to benznidazole. ABCC-like activity was evaluated by the carboxyfluorescein (CF) efflux assay
in the presence of 200 µM MK-571. Graphs exhibit CF MFI (left panel) and percentages of CF+
parasites (right panel) from (A,B) CL Brener, (C,D) Berenice, (E,F) Colombiana strains, and (G,H) Y-
RBz parasites. Lines represent the median and values of significance were represented by (**) for
p < 0.01, n = 9 independent experiments.



Molecules 2021, 26, 3510 10 of 19Molecules 2021, 26, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 7. Inhibition indexes of CF efflux for MK-571 in T. cruzi strains. Inhibition indexes represent 
the ratio of the CF MFI in presence of 200 µM MK-571 to in the absence. Graphs summarize the 
indexes for (A) CL Brener, Berenice, Colombiana and Y strains and (B) Y-RBz parasites. Bars 
represent the mean + SEM and the values of significance were represented by (*) for p < 0.05 and 
(***) p < 0.001, n = 9–10 independent experiments. 

2.7. Resistance to Benznidazole Is Not Directly Dependent on ABCC-Like Efflux 
Aiming to assess whether benznidazole could be transported by ABCC, the drug was 

utilized as a competitor during the CF efflux assay in the Y strain. Our results demonstrate 
that even in high concentrations, benznidazole was not able to increase the MFI nor the 
percentages of positive parasites (Supplementary Figure S3). On the other hand, 
concentrations of 0.5 mM and 1 mM reduced CF MFI values. Next, the effect of inhibition 
of ABCC activity or thiol depletion on the viability of parasites treated by benznidazole 
was investigated by vital staining with propidium iodide (PI). The Y-RBz parasites were 
less sensitive to ABCC inhibition (MK-571) than the parental strain, with a viability 
reduction of about 6% in contrast to 18% of the Y strain. The co-treatment with MK-571 
and benznidazole did not sensitize the parental Y strain (Figure 8A), but it reduced the 
viability in Y-RBz parasites in the highest concentrations of the drug (Figure 8B). 
Benznidazole and MK-571 had no impact on the percentage of viable Y parasites. 
However, since roughly 70% of the cells remained viable, these results suggest that T. cruzi 
does not depend exclusively on ABCC-like transport to deal with benznidazole toxicity. 

Figure 7. Inhibition indexes of CF efflux for MK-571 in T. cruzi strains. Inhibition indexes represent
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the mean + SEM and the values of significance were represented by (*) for p < 0.05 and (***) p < 0.001,
n = 9–10 independent experiments.

The GSH biosynthesis inhibitor buthionine sulfoximine (BSO) alone produced no
effect on the viability of the Y and Y-RBz parasites (Figure 8C,D). The treatment with
benznidazole and BSO promoted a 60% of reduction of the viability on the parental
strain, regardless of the concentration of the chemotherapy used. In Y-RBz parasites,
BSO increased benznidazole toxicity in higher concentration of the drug, with a reduction
in viability of about 70%. According to results, T. cruzi does not depend exclusively
on ABCC-like transport to deal with benznidazole toxicity; however, GSH biosynthesis
pathway is crucial to neutralize the drug, for which thiol-conjugated intermediates would
be extruded by ABCC-like transporters, especially in high concentrations, as part of a
complex antioxidative machinery.
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3. Discussion

Signaling pathways elicited after cellular stress are essential for the survival of T. cruzi
in diverse microenvironments. They involve the production, transport, and clearance
of antioxidants and lipid mediators that often crosstalk with pathways associated to the
emergence of chemotherapy resistance. The enzymatic antioxidant machinery in most
living cells relies primarily on GSH to reduce and inactivate reactive species. In trypanoso-
matids, the antioxidant system uses the trypanothione analogue, formed by two GSH
molecules linked by one spermidine [32]. Its physicochemical properties and the absence
of regeneration enzymes for GSH make T. cruzi’s antioxidative route exclusively dependent
on di-thiols. This molecule is directly involved in the metabolism of xenobiotics and heavy
metals and indirectly in metabolism of peroxides and in regulatory processes [32]. In order
to compensate its loss by conjugation or efflux, the trypanothione pool is restored by try-
panothione synthase and its oxidized form is regenerated by trypanothione reductase [33].
The transport of GSH can be performed by ABCC proteins, which are involved in cell detox-
ification and overexpressed in resistant protozoa such as Leishmania and Plasmodium [25]
and in mammals [21]. In this work, we demonstrated that GSH and GSSG modulate the
ABCC-like efflux in T. cruzi and promote the accumulation of CF. However, it is possible
that ABC modulators may not be direct substrates. They are able to bind to the transporter
pocket and promote volume and shape changes and stimulate or inhibit their binding to a
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ligand/substrate, which occurs for verapamil derivatives and certain bioflavonoids [34].
Taking this into consideration, we propose that GSH and GSSG might act as substrates for
the ABCC-like activity in T. cruzi since we have already demonstrated the direct transport
of thiol-conjugated compounds and that the transport of CF can be impaired by thiol
depletion and by specific ABCC inhibitors. GSH and GSSG are potentially co-transported
with CF since it lacks molecular groups such as maleimide (as in NEM) or chloromethyl
(as in CMFDA) that could react with the sulfhydryl radical present in thiols, which would
configure a transport in conjugation.

T. cruzi does not synthesize heme and must obtain it from external sources [35].
Through the Fenton reaction, heme induces ROS formation and creates a transient oxidative
environment that stimulates parasite proliferation [36]. Conversely, metacyclogenesis is
favored by a reducing microenvironment provided by antioxidant molecules such as GSH
and urate, the latter present in the urine of insect vectors [37]. T. cruzi are exposed to a
large amount of heme due to the volume of blood ingested by triatomines. In excess, heme
is toxic and causes the oxidation of lipids, proteins, and nucleic acids [14]. As a lipophilic
anion, it inserts itself into phospholipid membranes, which leads to leakage as a result of
changes in permeability and selectivity [38]. Consequently, this selective pressure should
have been counteracted by protective adaptations in the parasite. Considering that the
Y strain showed ABCC-like activity, we evaluated whether ABCC would participate in
protection against heme-induced toxicity. We employed hemin (Fe+3 protoporphyrin IX)
as a stress-inducing agent, which can be reduced to heme (Fe+2 protoporphyrin IX) in
reactions involving superoxide, GSH, or ascorbate [39]. Hemin preincubation inhibited
CF efflux and this is possibly due to the production of thiol-conjugated intermediates that
would be transported by the ABCC-like subfamily members.

ROS are formed as by-products of stress stimuli as well as from normal metabolic
processes and affect the metabolism of sphingolipids, such as ceramides [18]. In mammals,
they act as coordinators of stress responses, considering that many stress inducers pro-
mote accumulation of this sphingolipid, either from sphingomyelin hydrolysis or de novo
biosynthesis [40]. In T. cruzi, the de novo pathway is similar to that of mammals up to the
formation of ceramides, which are employed for the synthesis of inositolphosphoceramides
present in glycoprotein anchors or in free glycosylinositolphospholipids [41]. There are
few studies exploring sphingolipids as signaling molecules in protozoa, especially in terms
of responses to cellular stress. It is possible that stress induced by cytotoxic agents such
as benznidazole or heme promotes the accumulation of ceramides in the parasite in a
similar method to mammalian cells. Early accumulation could occur via the remodeling
of inositolphosphoceramides, which is possibly induced by GSH depletion [42]. This
hypothesis can be supported by other protozoan parasites such as Plasmodium falciparum, in
which stress induced by the chemotherapeutic agents artemisinin and mefloquine induced
ceramide accumulation in a GSH-dependent manner [43]. Another alternative route would
be derived from de novo biosynthesis, since tamoxifen, an inhibitor of ceramide glyco-
sylation and hydrolysis in humans [44], inhibited inositolphosphoceramide synthase in
Leishmania amazonensis [45]. Tamoxifen is an oral drug used in the breast cancer treatment
and interferes with several cell pathways [46], including sphingolipid metabolism. It has
been efficient against species of Leishmania both in vivo and in vitro [47].

ABC proteins transport lipids, including phospholipids and sphingolipids [48]. ABCC
members were directly implicated in the transport of sphingosine-1-phosphate [22], gluco-
sylceramide, and sphingomyelin in mammalian cell lines [23] in a GSH-dependent manner.
Assuming that ceramides could be induced in response to stress in T. cruzi, an ABCC-like
transporter could regulate the content of these sphingolipids. Preincubation with sphingo-
sine, employed to stimulate de novo biosynthesis of endogenous ceramides, promoted CF
accumulation in Y strain. In order to investigate direct transport, we used a fluorescent
ceramide analogue as substrate for the efflux assay. Furthermore, we observed that the
transport of synthetic short-chain ceramides was inhibited by MK-571 as well as by the
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depletion of ATP and of free thiols; this demonstrates, for the first time, that ceramides are
direct substrates of ABCC-like transport in T. cruzi.

Bearing in mind that ABCC transporters have evolved as adaptive advantages for
dealing with cytotoxic intermediates of diverse cell processes, we evaluated whether the
ABCC activity could relate to cellular protection in naturally or in benznidazole-induced
resistant strains. All strains exhibited ABCC-like activity; however, the naturally sensitive
ones showed higher inhibition indexes which indicates higher activity. For that reason,
it does not seem that ABCC efflux would be associated to natural resistance. Resistance
to benznidazole in T. cruzi can result from different mechanisms that mainly involve
(i) the regulation of the activation pathways of the prodrug, (ii) the defense pathways
against free radicals, and (iii) the increase in the efflux of the drug. Therefore, other
intrinsic factors could explain the Y and Colombiana resistant phenotype, such as the
overexpression of enzymes of the trypanothione/GSH biosynthesis pathway and mutations
in nitroreductases genes, which participates in benznidazole metabolism [49,50].

The acquired resistance was achieved in the Y strain by prolonged exposure to ben-
znidazole and it showed the lowest ABCC-like activity. Y-RBz parasites showed higher IC50
for the drug and an increase in ABCC efflux when compared to the parental strain. ABCB1-
like activity was analyzed by efflux of fluorescent substrate rhodamine 123 (Rho 123) in the
presence of known pharmacological inhibitors: cyclosporine A and verapamil. As noted for
strain Y [29], ABCB1-like activity does not influence natural or acquired resistance, since no
strain presented ABCB1-like efflux (Supplementary Figure S4) which suggests the absence
of a functional transporter. ABCC-like proteins did not transport benznidazole directly
because the drug was not able to increase the CF accumulation even in high concentrations.
Despite that, Y-RBz parasites showed resistance to the reduction of thiol levels either by
drug or hemin administration, which indicates an adaptation of the GSH biosynthesis
pathway for the acquisition of the resistant phenotype. The effect of ABCC inhibition and
GSH depletion showed interesting effects for benznidazole toxicity. The ABCC inhibition
(MK-571) did not affect the viability on the Y strain treated with subtoxic concentrations
of benznidazole. Nevertheless, MK-571 and benznidazole presented additive effects in
reducing the population of viable Y-RBz parasites. The inhibition of GSH biosynthesis
(BSO) had a relevant impact for the response to drug-induced stress in the parental strain,
with significant reduction of viability in co-treatment. Y-RBz parasites tolerated the stress of
GSH depletion and of benznidazole treatment to a certain extent; however, the co-treatment
in the higher concentration of benznidazole reduced the viability to levels comparable
to the Y strain, effectively reversing the resistant phenotype. We suggest that ABCC-like
transport can perform the efflux of benznidazole metabolites conjugated to GSH, thus
explaining its increase in acquired resistance. One possible candidate for this would be
glyoxal, which is a cytotoxic metabolite generated after benznidazole reduction by a type I
nitro-reductase in T. cruzi that interacts with reduced thiols [10]. It appears that T. cruzi
mobilizes redundant mechanisms to deal with the intermediates from benznidazole me-
tabolization, since inhibition of ABCC-like activity had little effect on drug toxicity. In
high concentrations of benznidazole, the ABCC transport seems to be more important in
reducing toxicity for Y-RBz parasites and this is likely due to the exhaustion of the other
routes of the antioxidative machinery.

Faundez et al. demonstrated that thiol biosynthesis was important for resistance
to chemotherapy once treatment with BSO had increased the toxicity of benznidazole
and nifurtimox, which is another chemotherapeutic possibility for Chagas disease [51,52].
Studies have shown that antioxidant enzymes such as tryparedoxin peroxidase [53] and
iron-superoxide dismutase-A [54] participate in the protection to reactive species produced
from benznidazole metabolism. In contrast, participation of transporters involved in the
response to xenobiotics had been minimally explored. ABC transporters could work in
tandem on a resistant phenotype, taking into consideration that T. cruzi presents 27 ABC
genes and four belonging to that of the ABCC subfamily. The ABCG1 gene was found to
be overexpressed in strains naturally sensitive to benznidazole in T. cruzi [55,56], but its



Molecules 2021, 26, 3510 14 of 19

functionality has not been studied so far. Identifying the specific transporter responsible
for the thiol efflux would greatly contribute to the understanding of the acquisition of
resistance and ultimately further the efforts of drug development towards Chagas disease.
Since we are aware of this, focus should be concentrated on producing knockout clones for
the ABC subfamilies, which in association with efflux assays in presence of pharmacologic
modulators, will allow us to achieve these objectives.

In conclusion, benznidazole and hemin are able to produce thiol-conjugated interme-
diates and to activate the synthesis and remodeling of ceramides, which act as mediators
of cellular stress pathways. Our results bring to light the processes mediating T. cruzi
adaptation to natural or xenobiotic stresses, in which efflux transporters such as ABC pro-
teins and markedly the ABCC subfamily perform the role they accomplish best: reducing
cytotoxicity by efflux of xenobiotics or metabolites and managing levels of mediators of
cell death in coordination with the GSH pathway.

4. Materials and Methods
4.1. Cultures of Trypanosoma Cruzi Strains

CL Brener, Berenice, and Colombiana strains of T. cruzi were donated by Dr. Policarpo
A. Sales Junior of the Rene Rachou Research Center of the Fundação Oswaldo Cruz
(FIOCRUZ) from Minas Gerais, Brazil. The Y strain was kindly donated by Professor
Celio Freire-de-Lima from the Institute of Biophysics Carlos Chagas Filho (IBCCF) of the
Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.

Epimastigote forms were cultivated at 27 ◦C in Brain and Heart Infusion medium (BHI,
BD Biosciences, São Paulo, SP, Brazil) supplemented with 10% fetal bovine serum (FBS,
Life Technologies of Brazil, São Paulo, SP, Brazil), 20 µg/mL folic acid (Sigma-Aldrich, São
Paulo, SP, Brazil), 12.5 µg/mL hemin (Sigma-Aldrich), and 50 µg/mL gentamicin (Sigma-
Aldrich). For subcultures, epimastigote forms were collected weekly and 106 parasites/mL
were suspended in complete BHI medium. All centrifugations were performed at 1000× g
for 10 min at room temperature.

4.2. MTT Reduction Assay

The tetrazolium salt MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide) was used to assess mitochondrial reducing activity. During respiration, cells convert
the water-soluble MTT to the insoluble purple product formazan, which is solubilized
in DMSO and its concentration determined by optical density. Briefly, the amount of
106 epimastigotes/mL was distributed on 96-well culture plates in complete BHI medium
and benznidazole was added to final concentrations from 0.001 mM to 1 mM. After 48 h,
plates were centrifuged and the supernatants discarded, followed by the addition of PBS
supplemented with 2 g/L glucose and 10% FBS. Plates were incubated for 4 h at 27 ◦C
in the dark after adding a solution 2.5 mg/mL MTT and 0.22 mg/mL phenazine metho-
sulfate (both from Sigma-Aldrich). Next, plates were centrifuged and the supernatants
discarded. Formazan crystals were dissolved in DMSO (Sigma-Aldrich) and plates were
shaken for 20 min at room temperature protected from light. Absorbance reading was
performed at 570 nm on a Beckman Coulter AD340 spectrophotometer (Beckman Coul-
ter, Brea, CA, USA). Experiments were performed in triplicate and IC50 of mitochondrial
reducing activity after exposure to benznidazole was determined by logarithmic regres-
sion of the normalized percentage curve using the GraphPad Prism software (version
7.0, GraphPad, San Diego, CA, USA). Benznidazole was provided by Dr. Nubia Boechat
Andrade of Institute of Technology in Pharmaceuticals of the Oswaldo Cruz Foundation
from Rio de Janeiro, Brazil.

4.3. In Vitro Induction of Resistance to Benznidazole

The amount of 106 epimastigotes/mL of the Y strain was maintained in complete
BHI medium with the addition of 30 µM benznidazole (IC50 obtained after MTT assays) at
27 ◦C. After 2 days, the parasites were centrifuged, supernatants discarded, and complete
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BHI medium added to allow replication of the surviving parasites for the next 5 days.
Parasites were submitted to the same procedure up to 8 weeks. Then, the concentration
of benznidazole was increased in 10 µM per week up to a final concentration of 120 µM.
Resistance to benznidazole was then evaluated by the MTT reduction assay as described
before. Thereafter, the benznidazole-adapted Y strain was named Y-RBz. For subcultures,
the amount of 106 epimastigotes/mL was suspended in complete BHI medium containing
120 µM benznidazole for 7 days.

4.4. ATP Depletion

The irreversible inhibition of glyceraldehyde-3-phosphate-dehydrogenase by alky-
lating agents as IAA reduces glycolysis and, consequently, ATP levels [57]. For this, the
amount of 107 epimastigotes/mL was incubated in absence or presence of 2 mM IAA
(Sigma-Aldrich) in PBS for 1 h at 27 ◦C [58]. Next, parasites were centrifuged, supernatants
discarded, and parasites were suspended in PBS for the ABC-mediated efflux assay. In this
case, PBS was employed instead of RPMI during the efflux assay due to absence of glucose.

4.5. ABC-Mediated Efflux Assay

The efflux assay was divided into 30 min steps: accumulation and efflux of sub-
strate [59]. For the ABCC-mediated efflux assay, the CFDA dye (Life Technologies of Brazil)
was employed. In the cytosol, CFDA is hydrolyzed and is what originates the fluorescent
substrate CF, which is transported to extracellular medium by ABCC subfamily members.
Briefly, the amount of 107 epimastigotes/mL was incubated with 50 µM CFDA diluted
in RPMI medium (Sigma-Aldrich) in the absence or presence of 600 µM indomethacin or
200 µM MK-571 as ABCC inhibitors (both from Sigma-Aldrich). After the accumulation
step, parasites were centrifuged and then suspended in RPMI medium in the absence or
presence of the inhibitors. Afterwards, parasites were centrifuged, supernatants discarded,
and parasites suspended in PBS supplemented with 5% FBS and kept on ice for immediate
acquisition by flow cytometry.

Alternatively, 5 mM GSH, 5 mM or GSSG (all from Sigma-Aldrich), or 0.5, 1.0, 2.0
or 3.0 mM benznidazole were employed as competitive inhibitors in the same manner.
Otherwise, parasites were preincubated with 200 µM hemin or 60 µM sphingosine (all
from Sigma-Aldrich) for 1 h and removed before the assay.

For ceramide efflux, 10 µM C6-NBD-cer (Avanti Polar Lipids, Alabaster, AL, USA) was
employed as fluorescent substrate in the absence or presence of 200 µM MK-571 in RPMI.

Similarly, the naturally fluorescent substrate Rho 123 was employed to analyze ABCB1-
mediated efflux assay. Therefore, epimastigote forms were incubated with 100 nM Rho
123 (Sigma-Adrich) diluted in RPMI medium in absence or presence of 50 µM Cyclosporin
A and 10 µM Verapamil (Sigma-Aldrich) as ABCB1 inhibitors in the accumulation and
efflux steps. CsA was kindly donated by Dr. Marcia Capella from the IBCCF and UFRJ,
Rio de Janeiro, Brazil. The efflux assays were performed at 27 ◦C. The transport inhibition
index was calculated as the ratio of the MFI in the presence of inhibitor to the one in
the absence, suggestive of level of ABC activity. As negative control, parasites were not
exposed to dyes and the efflux assays in the epimastigote forms were performed at 27 ◦C.
Multidrug resistance cells Lucena-1 or FEPS were employed as positive control due to the
overexpression of ABCB1 and ABCC1, respectively. Dr. Vivian Rumjanek from the Institute
of Medical Biochemistry Leopoldo de Meis, UFRJ, Rio de Janeiro, Brazil gently offered
these cells.

4.6. Determination of Intracellular Thiols

The amount of 107 epimastigotes/mL was incubated in the absence (CTL) or presence
of 0.5 or 1.0 mM benznidazole or 0.2 mM hemin in PBS supplemented with 2 g/L glucose for
3 h at 27 ◦C. Afterwards, parasites were centrifuged, supernatants discarded and parasites
incubated in PBS containing 1.5 µM CMFDA at 27 ◦C for 15 min prior to acquisition by
flow cytometry [58]. The assay was performed in the absence of glucose and cells were
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maintained on ice until acquisition in the flow cytometer to minimize interference of ABCC-
like efflux. CMFDA is an acetoxymethyl ester derivative and is able to cross the plasma
membrane efficiently. In the cytosol, it reacts with exposed sulfhydryl radicals, forming
TMF. As the negative control, parasites were not exposed to the dye. As positive control of
thiol depletion, parasites were incubated in PBS containing 0.1 mM NEM, an alkylating
agent, for 1 h and removed before addition of CMFDA.

4.7. Assessment of Cellular Viability

The staining of nonviable parasites was performed by the DNA intercalation dye PI,
which is readily excluded by live cells with intact membranes. The amount of 107 epi-
mastigotes/mL was incubated at 27 ◦C for 24 h with concentrations ranging from 1.0 to
3.0 mM benznidazole diluted in complete BHI medium in the absence or presence of
200 µM MK-571 or 3 mM BSO (buthionine sulfoximine), which is an irreversible inhibitor
of GSH biosynthesis. Parasites were then centrifuged, supernatants discarded, and para-
sites suspended in 1 µg/mL PI diluted in PBS and incubated for 15 min prior to acquisition
by flow cytometry. As the positive control of cell death, cells were incubated with distilled
water for 30 min before addition of dye. As autofluorescence control, parasites were not
exposed to the dye.

4.8. Flow Cytometry Analyses

The CF, TMF, and C6-NBD-cer fluorescence intensities were acquired on the FL1-H
channel (530/30 bandpass filter), while PI fluorescence were acquired on the FL3-H channel
(670LP filter) of a FACSCalibur (BD Biosciences, San Jose, CA, USA). Post-analysis was
performed in the software Summit (version 4.3, Dako Colorado, Fort Collins, CO, USA)
on at least 10,000 viable cells that were gated in accordance with forward (FSC) and side
scatter (SSC) parameters representative of cell size and granularity. Median fluorescence
intensities (MFI) data and percentages of parasites were acquired from histograms for each
dye. A negative/low fluorescence gate was designed containing 95% of control parasites
from the histogram origin while a high fluorescence gate contained the remaining.

4.9. Statistical Analysis

Statistical analyses were performed using the software GraphPad Prism. For two
nonpaired comparisons, the t-student or Mann-Whitney tests were respectively employed
for parametric and nonparametric data. For more than two comparisons, one-way ANOVA
or Kruskal–Wallis tests were respectively employed for parametric and nonparametric
data. For paired nonparametric data, the Wilcoxon or Friedman tests were performed for
two or more than two comparisons. The Tukey’s, Sidak’s, Dunn’s, or Dunnet’s post-tests
were used according to the compared columns. Significance values were represented by
(*) for p < 0.05, (**) for p < 0.01, and (***) for p < 0.001.

Supplementary Materials: The following are available online, Figure S1: IC50 for benznidazole in
T. cruzi strains and Y-RBz parasites; Figure S2: CF accumulation in the presence of the inhibitor
indomethacin in T. cruzi sensitive and resistant to benznidazole; Figure S3: CF accumulation in
the presence of benznidazole in T. cruzi; Figure S4: Rho 123 accumulation the presence of ABCB1
inhibitors in T. cruzi sensitive or resistant to benznidazole.
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∆ inhibition index of transport
ABC ATP-binding cassette
ABCB1 subfamily B, member 1 (P-glycoprotein)
ABCC subfamily C (MRP)
ABCG1 subfamily G, member 1
BSO buthionine sulfoximine
Bz benznidazole

C6-NBD-ceramide
N-[(E,2S,3R)-1,3-dihydroxyoctadec-4-en-2-yl]-6-[(4-nitro-2,1,3-
benzoxadiazol-7-yl)amino]hexanamide

CF carboxyfluorescein
CFDA 5(6)-carboxyfluorescein diacetate
CMFDA 5-chloromethylfluorescein diacetate
GSH reduced glutathione
GSSG glutathione disulfide form (oxidized glutathione)
IAA Iodoacetic acid

MK-571
(E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-
3-oxopropyl]thio]methyl]thio]-propanoic acid

MFI median fluorescence intensity
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NEM N-ethylmaleimide
PI Propidium iodide
Rho 123 rhodamine 123
ROS reactive oxygen species
TMF thiol-conjugated methylfluorescein
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