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Abstract
Background Clinical risk factors for nephrotoxicity in Staphylococcus aureus bacteraemia remain largely undetermined, 
despite its common occurrence and clinical significance. In an international, multicentre, prospective clinical trial (CAM-
ERA2), which compared standard therapy (vancomycin monotherapy) to combination therapy (adding an anti-staphylococcal 
beta-lactam) for methicillin-resistant S. aureus bacteraemia, significantly more people in the combination therapy arm 
experienced acute kidney injury compared with those in the monotherapy arm (23% vs 6%).
Objective The aim of this post hoc analysis was to explore in greater depth the risk factors for acute kidney injury from the 
CAMERA2 trial.
Methods Among participants of the CAMERA2 trial, demographic-related, infection-related and treatment-related risk 
factors were assessed for their relationship with acute kidney injury by univariable and multivariable logistic regression. 
Acute kidney injury was defined by a modified-KDIGO (Kidney Disease: Improving Global Outcomes) criteria (not includ-
ing urinary output).
Results Of the 266 participants included, age (p = 0.04), randomisation to combination therapy (p = 0.002), vancomycin area 
under the concentration–time curve (p = 0.03) and receipt of (flu)cloxacillin as the companion beta-lactam (p < 0.001) were 
significantly associated with acute kidney injury. On a multivariable analysis, concurrent use of (flu)cloxacillin increased 
the risk of acute kidney injury over four times compared with the use of cefazolin or no beta-lactam. The association of 
vancomycin area under the concentration–time curve with acute kidney injury also persisted in the multivariable model.
Conclusions For participants receiving vancomycin for S. aureus bacteraemia, use of (flu)cloxacillin and increased vancomy-
cin area under the concentration–time curve were risk factors for acute kidney injury. These represent potentially modifiable 
risk factors for nephrotoxicity and highlight the importance of avoiding the use of concurrent nephrotoxins.
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Key Points 

A significantly increased risk of acute kidney injury 
with concurrent vancomycin and (flu)cloxacillin use was 
found, compared with vancomycin with cefazolin or 
vancomycin alone.

A higher vancomycin area under the concentration–time 
curve was also related to acute kidney injury.

1 Introduction

Staphylococcus aureus bacteraemia remains a serious 
human infection, resulting in significant morbidity and 
mortality [1–3]. In Australia in 2017, 30-day mortal-
ity related to episodes of methicillin-resistant S. aureus 
(MRSA) infection was 18.9% [4]. Overall unadjusted in-
hospital mortality in the USA between 2012 and 2017 
was 18%, within the range of case fatality reports from 
other high-income countries between 15 and 23% [5–7]. 
Additionally, up to 40% of patients with MRSA bacterae-
mia experience acute kidney injury (AKI) [8]. This is a 
higher rate of AKI than seen in retrospective reviews for 
other organisms; AKI occurred in 29.5% of patients with 
carbapenem non-susceptible Gram-negative bacteraemia, 
and 36% of patients with melioidosis [9, 10]. Acute kidney 
injury has been associated with longer term sequelae for 
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patients such as chronic kidney disease, kidney failure, 
fractures and hypertension [11–13].

Risk factors of nephrotoxicity in S. aureus bacteraemia 
remain poorly characterised [3, 14]. Vancomycin is a com-
monly used drug for the treatment of MRSA bacteraemia 
and a known nephrotoxin. Reported rates of vancomycin-
induced nephrotoxicity vary between 5 and 43%, based on 
the diagnostic criteria and the presence of risk factors [15]. 
In clinical practice, clinical covariates that increase the 
risk of AKI for patients with MRSA bacteraemia need to 
be clearly identified, especially those that are modifiable.

The CAMERA2 trial was an international, multicen-
tre, prospective clinical trial comparing standard MRSA 
therapy (monotherapy with vancomycin or daptomycin) 
to combination therapy (the addition of an anti-staphy-
lococcal beta-lactam to standard therapy) for MRSA 
bacteraemia [16]. The rationale for combination therapy 
in CAMERA2 was derived from laboratory, animal and 
human studies, suggesting that combination therapy could 
be beneficial for the treatment of MRSA bacteraemia [17]. 
The CAMERA2 study was stopped early after review by 
the Data Safety and Monitoring Board, who identified 
an increased rate of AKI in the combination arm; modi-
fied RIFLE-defined AKI (any stage) occurred in 34/145 
(23%) of patients in the combination therapy arm and 
9/145 (6%) of patients in the standard therapy arm. Ben-
efit in the primary outcome was not seen with combination 
therapy. Here, we provide a detailed post-hoc assessment 
of the clinical risk factors for AKI in the CAMERA2 trial 
participants.

2  Patients and Methods

2.1  Study Design and Population

This is a post hoc analysis of the prospective, multicentre, 
open-label, randomised CAMERA2 clinical trial (Clini-
calTrials.gov Identifier: NCT02365493). The CAMERA2 
trial enrolled 356 hospitalised adult patients with MRSA 
bacteraemia across 27 hospitals between August 2015 and 
July 2018. Full trial methodology and patient recruitment 
have been previously described [16, 18]. Institutional eth-
ics approval was obtained at each study site, and written 
informed consent was obtained from each participant or sur-
rogate decision maker.

To focus on AKI, we excluded patients who were under-
going haemodialysis or peritoneal dialysis at enrolment, 
missing a baseline serum creatinine concentration, or 
those with two or more missing creatinine measurements 
after baseline (creatinine was measured on days 2, 5 and 
7). We also excluded patients incorrectly randomised, those 
lost to follow-up (e.g. self-discharge before 7 days) or who 
did not receive vancomycin, as described in Fig. 1. In the 

CAMERA2 trial, vancomycin was dosed in accordance with 
Australian guidelines via an intermittent infusion of 15–20 
mg/kg 12 hourly (adjusted for renal function), preceded by 
a loading dose of 20–35 mg/kg (if considered appropriate by 
the treating clinician) or the Infectious Diseases Society of 
America guidelines with subsequent adjustment to maintain 
trough concentrations at 15–20 mg/L [18].

2.2  Data Collection

Demographic and patient factors were collected at trial 
entry. Acute kidney injury risk factors identified from the 
published literature and available from the trial database 
included the following patient factors: age, sex, weight, 
previous hospitalisation for ≥ 48 h in the past 90 days, 
chronic kidney disease, diabetes mellitus, liver disease, 
congestive cardiac failure, myocardial infarction, Charl-
son Comorbidity Index [19], baseline creatinine (µmol/L) 
and baseline C-reactive protein (mg/L). Baseline creati-
nine was defined as the highest creatinine measurement 
in the 24 h preceding randomisation. Infection-related 
factors of interest included place of acquisition, hypoten-
sion (systolic blood pressure < 90 mmHg or receipt of 
inotropes at the time of enrolment), source of infection, 
final diagnosis of endocarditis, Pitt bacteraemia score 

Fig. 1  Trial profile
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[20] and SOFA score [21]. Treatment factors were col-
lected for the duration of the trial and included β-lactam 
treatment received [none, (flu)cloxacillin only, cefazo-
lin only]; allocated treatment group (standard therapy, 
combination therapy); any antibiotic in the 72 h preced-
ing randomisation; any β-lactam in 72 h preceding ran-
domisation; use of drugs that can affect renal function in 
the 48 h preceding randomisation or between study days 
1 and 7 (radiocontrast dye, loop diuretics, angiotensin-
converting enzyme inhibitors, angiotensin II receptor 
blockers, aminoglycosides, amphotericin B, nonsteroi-
dal anti-inflammatory drugs [NSAIDs] and calcineurin 
inhibitors); any non-study antibiotic between days 1 
and 7; vancomycin trough concentration (ideally from 
study day 2; however, for 30 patients, a day 2 vancomy-
cin trough concentration was not available, and a day 1 
trough concentration was used), and the calculated van-
comycin 24-h area under the concentration–time curve 
(AUC). The vancomycin AUC were calculated from 
vancomycin dose and trough concentrations using a 
nonparametric Bayesian pharmacokinetic model with a 
one-compartment clearance model. Vancomycin trough 
concentrations were assumed to be drawn 15 minutes 
prior to the last vancomycin dose. Further details of the 
AUC estimations, including goodness-of-fit results, have 
been previously published [22].

2.3  Outcome Measures

A modified RIFLE definition for AKI was a pre-specified 
CAMERA2 secondary trial outcome [23]. For this post hoc 
analysis, we classified kidney injury with the more contem-
porary KDIGO (Kidney Disease: Improving Global Out-
comes) criteria and used a modified KDIGO (mKDIGO) as 
the primary outcome. As urinary output was not available, 
we defined the mKIDGO AKI as a ≥ 1.5-fold increase in 
serum creatinine from baseline at any time within the first 
7 days; or an increase in serum creatinine of ≥ 0.3 mg/
dL (≥ 26.5 µmol/L) within a 48-h period; or a new need 
for renal replacement therapy prior to day 90 [24]. Using 
KDIGO, stage 1 was defined as a serum creatinine level 
1.5 to < 2.0 times baseline in the first 7 days or a ≥ 26.5 
μmol/L increase from the baseline creatinine level in the 
first 48 h; stage 2 was a serum creatinine level 2.0 to < 3.0 
times the baseline in the first 7 days; Stage 3 was a serum 
creatinine level ≥ 3.0 times the baseline in the first 7 days 
OR a ≥ 353.6-μmol/L increase from the baseline in the first 
48 h OR new initiation of renal replacement therapy within 
90 days (date of initiation of renal replacement therapy 
was not available). Fold change in creatinine was avail-
able for days 2, 5 and 7 and the highest value was used to 
stage AKI.

2.4  Statistical Analysis

Summary statistics describing the demographic, patient and 
treatment factors of interest are provided. Univariable logis-
tic regression models were used to describe the association 
between each exposure and AKI. Unadjusted odds ratios 
(ORs) with corresponding 95% confidence intervals (CIs) 
and p values were reported for each factor. Likelihood ratio 
tests were used to assess the overall effect of categorical var-
iables with more than two categories. Continuous exposures 
were assessed to ensure that the association between each 
exposure and log odds of AKI was approximately linear. 
Where this assumption was violated, categorical versions 
of these variables based on clinical knowledge were used 
instead.

Results from univariable analyses were used to guide 
variable selection for the subsequent multivariable analy-
sis. Exposure variables where the associated p value from 
the univariable analysis was ≤ 0.1 were included in mul-
tivariable models unless collinearity between variables 
was likely—in this case, only one variable was included 
in the multivariable analysis. Choosing which variable to 
include in the setting of collinearity was based on the ability 
to provide clinically useful information. Additionally, the 
following relevant factors were included as forced covari-
ates in the model: age, sex and baseline creatinine. Previ-
ously described methods of purposeful variable selection 
[25] were used to ensure the multivariable analyses were 
robust and included all important exposures and confound-
ers. Adjusted ORs and 95% CIs for each of the risk factors 
included in the model were obtained from the multivariable 
analysis and reported.

During analysis of baseline creatinine, association 
between AKI and baseline creatinine was nonlinear. To 
incorporate the nonlinearity of this association into the 
model, baseline creatinine was categorised into levels of 
< 110 µmol/L, 111–230 µmol/L and above 231 µmol/L. 
These were decided a priori, to reflect the estimated glo-
merular filtration rate of above 60 mL/min, 30–60 mL/min 
and below 30 mL/min.

In this analysis, drugs that can affect renal function were 
assessed in two groups to differentiate between drugs consid-
ered true nephrotoxins (NSAIDs and aminoglycosides) and a 
larger group of potential nephrotoxins (referred to as drugs 
affecting kidney function and includes radiocontrast dye, 
loop diuretics, angiotensin-converting enzyme inhibitors, 
angiotensin II receptor blockers, NSAIDs, aminoglycosides 
and calcineurin inhibitors) that are either known nephro-
toxins or can cause nephrotoxicity in certain clinical sce-
narios. Timing of administration of these drugs was divided 
into two timeframes, the 48 h before study enrolment, and 
the first 7 days after enrolment. Statistical analyses were 
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conducted using Stata (Stata Statistical Software: Release 
16, 2019; StataCorp LLC, College Station, TX, USA).

3  Results

There were 356 participants in the full CAMERA2 dataset. 
Of these, 90 were excluded from further analysis (Fig. 1). Of 
the remaining 266 included, 46 participants (17.3%) experi-
enced AKI. A breakdown of the stage of AKI experienced is 
shown in Table 1. Of the seven patients who required renal 
replacement therapy at any time in the CAMERA2 follow-
up period, two remained on renal replacement therapy at 
day 90.

Participant characteristics are presented in Table 2. The 
median age of the cohort was 64 years; age was higher in 
those who did not experience AKI (66 years) compared with 
those who did experience AKI (56 years) [p = 0.039, OR 
0.98 (0.97–1.00)]. No other patient factors were significantly 
different between the AKI and no AKI groups. Diabetes was 
present in 44% of patients (n = 117). Receipt of any antibi-
otic, or a beta-lactam specifically, in the 72 h– before enrol-
ment, or prescription of a non-study antibiotic between study 
days 1–7 was not significantly different between those who 
did and did not experience AKI (data not shown). Chronic 
kidney disease was documented as a comorbidity in 22% of 
patients (n = 59), though a baseline creatinine level above 
110 µmol/L was present in 37% (n = 99).

Infection-related and treatment-related factors and their 
relationship to mKDIGO-defined AKI are shown in Table 3. 
Place of acquisition of infection and source of infection were 
not risk factors for AKI. Randomisation to combination 
therapy was significantly associated with AKI (p = 0.002), 
as was receipt of (flu)cloxacillin as the companion beta-
lactam (p < 0.001). Calculated day 2 median vancomycin 
AUC was higher in patients who developed AKI (461 mg 
× h/L) compared with those who did not (400 mg × h/L, p 
= 0.03). Vancomycin trough concentration at day 2 was not 
significantly different between the patients who did and did 
not experience AKI.

Despite over 60% of patients receiving concurrent admin-
istration of a drug that can affect kidney function (radio-
contrast dye, loop diuretics, angiotensin-converting enzyme 
inhibitors, angiotensin II receptor blockers, NSAIDS, ami-
noglycosides and calcineurin inhibitors) both in the 48 h 
before study enrolment and during the first 7 study days, 
there was no statistical association with the development of 
AKI (see Table 4).

Based on results from the univariable analysis, age, choice 
of companion beta-lactam and vancomycin AUC met criteria 
for inclusion in the multivariable model (p ≥ 0.1). Randomi-
sation to combination therapy was not included because of 
collinearity with the beta-lactam treatment received. Sex and 
baseline creatinine were also included as clinically signifi-
cant variables from the published literature. The results of 
the multivariable analysis are shown in Table 5.

The multivariable analysis identified concurrent use of 
(flu)cloxacillin as a risk factor for AKI (p < 0.001), increas-
ing the risk of AKI significantly compared with the use of 
cefazolin or no beta-lactam (OR 4.50; 95% CI 2.09–9.70). 
Increased vancomycin AUC was also associated with AKI 
(OR 1.10 for a 50 mg × h/L increase in vancomycin AUC, 
95% CI 1.01–1.21; p = 0.04).

4  Discussion

In this post hoc analysis of the CAMERA2 trial, use of 
(flu)cloxacillin in combination with anti-MRSA therapy 
(predominantly vancomycin) was significantly associated 
with AKI in a cohort of patients with MRSA bacteraemia, 
increasing the odds of AKI over four-fold. Use of cefazolin 
as the companion beta-lactam was not associated with an 
increased risk of AKI compared with no beta-lactam. These 
data suggest a drug interaction may be occurring between 
flucloxacillin and vancomycin, although we were unable to 
statistically show this without a beta-lactam monotherapy 
group. Increased vancomycin AUC was also associated 
with AKI. Although a detailed analysis of the association 
between vancomycin exposure and AKI in CAMERA2 has 
been undertaken [22], this analysis had a broader scope, 
including other relevant risk factors for AKI with markers 
of vancomycin exposure.

Clinical risk factors related to AKI in patients with 
MRSA bacteraemia are poorly characterised. The clinical 
utility of identifying modifiable risk factors for AKI is sig-
nificant and has an important role in kidney stewardship. In 
a study of 335 patients with MRSA bacteraemia in Korea, 
135 patients developed AKI, and risk factors for nephrotox-
icity included male sex, pre-existing kidney disease, intra-
abdominal or central venous catheter infection, and higher 
Pitt bacteraemia scores [8]. We did not find a correlation 

Table 1  Breakdown of acute kidney injury by mKDIGO staging

mKDIGO modified KDIGO (Kidney Disease: Improving Global Out-
comes), RRT  renal replacement therapy

Stage Combination 
therapy

Standard 
therapy

Total, n (%)

1 17 8 25 (54%)
2 7 3 10 (22%)
3 (all) 9 2 11 (24%)
3 (required RRT) 5 2 7 (15%)
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between sex, pre-existing kidney disease, source of infec-
tion, or Pitt bacteraemia scores and AKI in our analysis.

In this analysis, mKDIGO was used to define AKI, as the 
KDIGO criteria was included for AKI diagnosis in the 2020 
consensus guideline on vancomycin-induced kidney injury 
[26]. Using KDIGO, which includes an absolute creatinine 
change in diagnosis, provides the advantage of improving 
AKI diagnosis across a variety of baseline creatinine lev-
els [27]. Although the relatively small changes in creati-
nine needed to diagnose stage 1 AKI can relate to either 
mild fluctuations in kidney function or true AKI, evidence 
suggests even these small changes in creatinine can affect 
patient outcomes [28, 29]. Similarly, creatinine elevations 
in patients on vancomycin have a significant impact on out-
comes. In a retrospective review of 128,993 adult patients, 

a linear increase in in-hospital mortality was found across 
categories of creatinine increase, with ORs for mortality that 
ranged from 1.60 (95% CI 1.47–1.75) for a serum creati-
nine increase of > 0–10% to 13.66 for a serum creatinine 
increase of > 200% [30]. The longer term implications of 
vancomycin-induced kidney injury remain undetermined.

All patients in this analysis received vancomycin, a 
known nephrotoxin. Many risk factors for vancomycin-
induced nephrotoxicity have been proposed, including a 
trough concentration above 15 mg/L, duration of therapy 
(longer than 7 days), greater patient weight (over 100 kg), 
pre-existing kidney disease or a previous episode of AKI, 
concomitant use of nephrotoxins and a longer duration of 
admission in an intensive care unit [15]. A prospective 
observational study of vancomycin-induced nephrotoxicity 

Table 2  Univariable analysis of patient factors and mKDIGO-defined AKI

AKI acute kidney injury, CI confidence interval, IQR interquartile range, mKDIGO modified KDIGO (Kidney Disease: Improving Global Out-
comes), OR odds ratio, Ref. reference
a For inclusion in the multivariable analysis (p < 0.1). OR describes fold-change in odds of AKI for a 1-year increase in age
b Likelihood ratio tests were not significant
c OR describes fold-change in odds of AKI for each 1 unit increase in the Charlson Comorbidity Index
d Baseline creatinine was defined as the highest creatinine measurement in the 24 h preceding randomisation

Variable No AKI (n = 220) AKI (n = 46) Total (n = 266) OR (95% CI) p value

Age, median (IQR), years 66 (51–79) 56 (43–73) 64 (49–78) 0.98 (0.97–1.00) 0.04a

Weight category, kg, n (%)b

 < 60 40 (18%) 6 (13%) 46 (17%) 0.69 (0.27–1.76) 0.44
 60–100 147 (67%) 32 (70%) 179 (67%) Ref.
 > 100 33 (15%) 8 (17%) 41 (15%) 1.11 (0.47–2.64) 0.81

Sex, n (%)
 Female 73 (33%) 20 (43%) 93 (35%) Ref.
 Male 147 (67%) 26 (57%) 173 (65%) 0.65 (0.34–1.23) 0.18

Charlson Comorbidity Index, median (IQR) 5 (2–7) 4 (1–7) 5 (2–7) 0.93 (0.84–1.02)c 0.14
Chronic kidney disease, n (%)
 No 169 (77%) 38 (83%) 207 (78%) Ref.
 Yes 51 (23%) 8 (17%) 59 (22%) 0.70 (0.031–1.59) 0.39

Diabetes mellitus, n (%)
 No 121 (55%) 28 (61%) 149 (56%) Ref.
 Yes 99 (45%) 18 (39%) 117 (44%) 0.79 (0.41–1.5) 0.47

Country, n (%)b

 Australia/New Zealand 164 (75%) 35 (76%) 199 (75%) Ref.
 Singapore 30 (14%) 5 (11%) 35 (13%) 0.78 (0.28–2.15) 0.63
 Israel 26 (12%) 6 (13%) 32 (12%) 1.08 (0.41–2.82) 0.87

Baseline creatinine level, µmol/L, n (%)b,d

 < 110 134 (61%) 33 (72%) 167 (63%) Ref.
 110 to < 231 63 (29%) 7 (15%) 70 (26%) 0.45 (0.19–1.08) 0.73
 ≥ 231 23 (10%) 6 (13%) 29 (11%) 1.06 (0.4–2.81) 0.91

Previous hospitalisation ≥ 48 h in past 90 days, n (%)b

 No 91 (41%) 21 (46%) 112 (42%) Ref.
 Yes 55 (25%) 7 (15%) 62 (23%) 0.55 (0.22–1.38) 0.20

Unknown (missing values) 74 (34%) 18 (39%) 92 (35%) 1.05 (0.52–2.12) 0.88
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Table 3  Univariable analysis of infection-related and treatment-related factors with mKDIGO-defined AKI

AKI acute kidney injury, AUC  area under the concentration–time curve, BP blood pressure, CI confidence interval, CRP C-reactive protein, IQR 
interquartile range, mKDIGO modified KDIGO (Kidney Disease: Improving Global Outcomes), OR odds ratio, Ref. reference
a 34 missing CRP values; OR describes fold-change in odds of AKI for a 25-mg/L unit increase
b Likelihood ratio tests were not significant
c Hypotension defined as systolic BP < 90 mmHg or patient on an inotrope at enrolment
d 32 missing vancomycin trough concentrations
e Inferred vancomycin AUC at 48 h, AUC for 24–48 h, 3 missing inferred vancomycin AUC at 48 h; OR describes fold-change in odds of AKI 
for a 50 mg×h/L increase in AUC 
f Because of collinearity, CAMERA2 treatment arm was not included in the multivariable analysis

Variable No AKI (n = 220) AKI (n = 46) Total (n = 266) OR (95% CI) p value

SOFA score, median (IQR) 1 (0–3) 2 (1–4) 1 (0–3) 1.1 (0.97–1.26) 0.13
Baseline C-reactive protein, median (IQR), mg/La 170 (94–248) 225 (122–290) 174 (98–269) 1.04 (0.97–1.12) 0.27
Admitted to ICU
 No 205 (93%) 42 (91%) 247 (93%) Ref.
 Yes 15 (7%) 4 (9%) 19 (7%) 1.3 (0.41–4.12) 0.66

Pitt bacteraemia score, n (%)b

 2 146 (66%) 33 (72%) 179 (67%) Ref.
 3 57 (26%) 8 (17%) 65 (24%) 0.62 (0.27–1.43) 0.26
 4+ 17 (8%) 5 (11%) 22 (8%) 1.3 (0.45–378) 0.63

Hypotension at baseline, n (%)c

 No 201 (91%) 39 (85%) 240 (90%) Ref.
 Yes 19 (9%) 7 (15%) 26 (10%) 1.90 (0.75–4.82) 0.18

Nosocomial acquisition, n (%)
 No 146 (66%) 28 (61%) 174 (65%) Ref.
 Yes 74 (34%) 18 (39%) 92 (35%) 1.27 (0.66–2.44) 0.48

Bloodstream infection, n (%)
 No 154 (70%) 35 (76%) 189 (71%) Ref.
 Yes 66 (30%) 11 (24%) 77 (29%) 0.73 (0.35–1.53) 0.41

Infective endocarditis (final diagnosis), n (%)
 No 196 (89%) 39 (85%) 235 (88%) Ref.
 Yes 24 (11%) 7 (15%) 31 (12%) 1.47 (0.59+3.64) 0.41

Native osteoarticular infection, n (%)
 No 179 (81%) 39 (85%) 218 (82%) Ref.
 Yes 41 (19%) 7 (15%) 48 (18%) 0.78 (0.33–1.88) 0.58

Skin and soft-tissue infection, n (%)
 No 138 (63%) 31 (67%) 169 (64%) Ref.
 Yes 82 (37%) 15 (33%) 97 (36%) 0.81 (0.41–1.6) 0.55

Device-related infection, n (%)
 No 204 (93%) 41 (89%) 245 (92%) Ref.
 Yes 16 (7%) 5 (11%) 21 (8%) 1.55 (0.54–4.48) 0.41

Allocated treatment arm, n (%)
 Standard therapy 118 (54%) 13 (28%) 131 (49%) Ref.
 Combination therapy 102 (46%) 33 (72%) 135 (51%) 2.94 (1.47–5.88) 0.002f

β-lactam treatment received, n (%)b

 None 120 (55%) 13 (28%) 133 (50%) Ref.
 Any (flu)cloxacillin 76 (35%) 32 (70%) 108 (41%) 3.89 (1.92–7.87) < 0.001f

 Cefazolin only 24 (11%) 1 (2%) 25 (9%) 0.38 (0.05–3.08) 0.37
Vancomycin trough, median (IQR), mg/Ld 16 (11–21) 18 (10–23) 17 (11–22) 1.02 (0.99–1.06) 0.24
Calculated vancomycin AUC median (IQR) mg×h/Le 400 (296–491) 461 (312–561) 408 (299–508) 1.09 (1.01–1.19) 0.03
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identified baseline creatinine clearance, malignancy, previ-
ous AKI and admission to the intensive care unit as risk fac-
tors for AKI, and that AKI was significantly associated with 
mortality (19 vs 5%, p < 0.05) [31]. A 2012 literature review 
similarly identified age, longer duration of therapy, concomi-
tant use of nephrotoxic agents, high trough concentrations 
of vancomycin and critical illness, or kidney impairment at 
baseline as AKI risk factors [32]. Because of the detailed 
data collection from the primary CAMERA2 study, we were 
able to assess for the majority of these risk factors. In the 
univariable analysis, we included both trough vancomycin 

concentration and vancomycin AUC as markers of vanco-
mycin exposure, with discordant results. Vancomycin AUC 
was associated with the development of AKI, where trough 
concentration was not. This supports human and animal 
data showing a relationship between vancomycin AUC and 
nephrotoxicity [33–35]. Although the vancomycin AUC was 
associated with AKI, the result was borderline with a large 
overlap in the AUCs obtained between the AKI and no AKI 
groups. Patients treated with daptomycin monotherapy are 
likely to be systematically different from those treated with 
vancomycin and were excluded from the analysis.

Table 4  Association of drugs that can affect kidney function with AKI

AKI acute kidney injury, CI confidence interval, NSAIDs nonsteroidal anti-inflammatory drugs, OR odds ratio. Ref. reference
a Likelihood ratio tests were not significant

Variable No AKI (n = 220) AKI (n = 46) Total (n = 266) OR (95% CI) p value

Drugs affecting kidney function in 48 h preceding randomisation, n (%)
 No 89 (40%) 16 (35%) 105 (39%) Ref.
 Yes 131 (60%) 30 (65%) 161 (61%) 1.27 (0.66–2.47) 0.48a

NSAIDs or aminoglycosides in 48 h preceding randomisation, n (%)
 No 169 (77%) 31 (67%) 200 (75%) Ref.
 Yes 51 (23%) 15 (33%) 66 (25%) 1.60 (0.80–3.20) 0.18a

Drugs affecting kidney function during trial days 1–7, n (%)
 No 87 (40%) 17 (37%) 104 (39%) Ref.
 Yes 133 (60%) 29 (63%) 162 (61%) 1.12 (0.58–2.15) 0.74a

NSAIDs or aminoglycosides during trial days 1–7, n (%)
 No 188 (85%) 35 (76%) 223 (84%) Ref.
 Yes 32 (15%) 11 (24%) 43 (16%) 1.85 (0.85–4.00) 0.12a

Table 5  Multivariable analysis of risk factors for mKIDGO-defined AKI in CAMERA2 trial

AKI acute kidney injury, AUC  area under the concentration–time curve, CI confidence interval, IQR interquartile range, OR odds ratio, Ref. ref-
erence
a 3 missing inferred vancomycin AUC at 48 h; scaled variable included in regression OR describes fold-change in odds of AKI for a 50 mg×h/L 
increase in AUC 

Exposure variable No AKI (n = 217) AKI (n = 46) Total (n = 263) Adjusted OR (95% CI) p value

Age, median (IQR), years 66 (51–79) 56 (43–73) 65 (49–79) 0.98 (0.97–1.00) 0.12
Sex, n (%)
 Female 72 (33%) 20 (43%) 92 (35%) Ref.
 Male 145 (67%) 26 (57%) 171 (65%) 0.54 (0.26–1.14) 0.11

Baseline creatinine level, µmol/L, n (%)
 < 110 133 (61%) 33 (72%) 166 (63%) Ref.
 110 to < 231 61 (28%) 7 (15%) 68 (26%) 0.51 (0.20–1.34) 0.16
 ≥ 231 23 (11%) 6 (13%) 29 (11%) 2.27 (0.72–7.08) 0.46

β-lactam treatment received, n (%)
 None 119 (55%) 13 (28%) 132 (50%) Ref.
 Any (flu)cloxacillin 74 (34%) 32 (70%) 106 (40%) 4.50 (2.09–9.70) < 0.001
 Cefazolin only 24 (11%) 1 (2%) 25 (10%) 0.30 (0.03–2.60) 0.25

Vancomycin AUC at 48 h, 
mg×h/L, median (IQR)a

400
(296–491)

461
(312–561)

408
(299–508)

1.10 (1.01–1.21) 0.04
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The biological mechanisms for (flu)cloxacillin causing 
AKI in patients with MRSA bacteraemia receiving concur-
rent vancomycin remain unknown. Penicillin and cephalo-
sporin antibiotics are considered a rare cause of nephrotoxic-
ity, primarily mediated by acute interstitial nephritis (AIN) 
related to hypersensitivity [36–39]. However, piperacillin 
(with tazobactam) has been reported to increase the rate of 
nephrotoxicity when combined with vancomycin, particu-
larly compared with vancomycin with cefepime or mero-
penem [40–42]. For piperacillin, the most popular hypoth-
esis for this effect is a combination of AIN caused by the 
penicillin and direct cellular toxicity from vancomycin [43]. 
Very limited data from kidney biopsies of patients on van-
comycin and piperacillin and tazobactam show AIN, acute 
tubular necrosis or both [44]. There are flaws in interpreting 
an elevated creatinine as synonymous with kidney injury, the 
combination of piperacillin (with tazobactam) and vancomy-
cin could be causing a hypercreatinineamia without kidney 
injury (i.e. pseudonephrotoxicity) related to the blockade 
of secretory pathways or reabsorption [45]. Additionally, 
some beta-lactams (e.g. flucloxacillin) affect organic anion 
cotransporter 3, which facilitates uptake into proximal tubu-
lar cells, where vancomycin may also be present in sufficient 
concentrations to cause damage [46, 47]. Interaction with 
this transporter was most pronounced with nafcillin and 
was related to drug lipophilicity. This theory also accounts 
for why hydrophilic beta-lactams (i.e. aminopenicillins and 
cephalosporins) may be safer in combination with vanco-
mycin. The risk of AKI may also be increased when vanco-
mycin is used with penicillins because of physical incom-
patibilities causing precipitation that could accumulate in 
kidney tubules; however, as the flucloxacillin was adminis-
tered separately to the vancomycin, this is less likely [48].

In our analysis, the patient numbers were too small to sep-
arate flucloxacillin and cloxacillin, thus it remains unclear 
if the risk of AKI applies to both drugs equally. The rates 
of AKI were similar for flucloxacillin (25/90 [28%]) and 
cloxacillin (5/21 [24%]) [16]. Therefore, we expected these 
drugs to perform similarly, and to avoid overfitting with the 
small sample size, we did not separate them in the multivari-
able analysis.

The risk of AKI with flucloxacillin may be underappre-
ciated in clinical practice. In an analysis of patients with 
AIN confirmed by kidney biopsy, flucloxacillin was the most 
common beta-lactam implicated [49]. Even with only 24 
hours of flucloxacillin for surgical prophylaxis, the rate of 
AKI was 8.5% when used as monotherapy, with the rate of 
AKI increasing when flucloxacillin was used in combination 
with gentamicin [50, 51].

This analysis has limitations, the CAMERA2 study and 
data collection were not designed to identify clinical pre-
dictors of AKI. Concomitant drugs were included in the 
model without consideration of dose or duration of therapy, 

limiting our ability to truly understand the effects of these 
drugs on the development of AKI. We included one group 
of ‘true nephrotoxins’ separately to a larger group of these 
nephrotoxins with drugs that can affect kidney function 
(though are not nephrotoxins) or have been shown in other 
research to be associated with vancomycin-induced nephro-
toxicity, despite not generally considered nephrotoxic when 
used in isolation (e.g. loop diuretics, angiotensin-converting 
enzyme inhibitors, angiotensin receptor blockers) [15, 52]. 
Vancomycin-induced kidney injury in the monotherapy arm 
was low at 6%. Thus, only a small cohort of patients were 
included who experienced AKI, and the analysis may be 
underpowered to detect significant predictors of AKI (e.g. 
the traditional risk factors associated with vancomycin-
induced nephrotoxicity). An analysis combining the results 
of CAMERA2 and PROVIDE (another prospective study 
that focused on the relationship between vancomycin expo-
sure and kidney injury [53]) demonstrated that exposure 
toxicity relationships were highly similar between the two 
prospective trials, with CAMERA2 demonstrating a slightly 
lower rate of AKI [54]. Another important limitation is a 
lack of clinical information about the presumed aetiology of 
the AKI; kidney biopsies were not performed, and urinary 
characteristics (i.e. presence of eosinophils) were not avail-
able. Hospital-specific factors were not considered; however, 
treatment was largely standardised by virtue of enrolment in 
the clinical trial.

5  Conclusions

In this post hoc analysis of patients in the CAMERA2 trial 
who received vancomycin, the use of (flu)cloxacillin and 
vancomycin AUC were risk factors for AKI, though a defi-
nite biological mechanism for this effect remains undefined. 
Combination therapy represents a modifiable risk factor for 
nephrotoxicity, with significant implications for recommend-
ing antimicrobial therapy for MRSA bacteraemia.
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