
 International Journal of 

Molecular Sciences

Article

A Computational Method to Propose Mutations
in Enzymes Based on Structural Signature
Variation (SSV)

Diego César Batista Mariano 1,* , Lucianna Helene Santos 1 , Karina dos Santos Machado 2,
Adriano Velasque Werhli 2 , Leonardo Henrique França de Lima 3 and
Raquel Cardoso de Melo-Minardi 1

1 Laboratório de Bioinformática e Sistemas (LBS), Department of Computer Science,
Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; luciannahss@gmail.com (L.H.S.);
raquelcm@dcc.ufmg.br (R.C.d.M.-M.)

2 Laboratório de Biologia Computacional (COMBI-L). Centro de Ciências Computacionais-C3,
Universidade Federal do Rio Grande, 96203-900 Rio Grande, Brazil; karinaecomp@gmail.com (K.d.S.M.);
werhli@gmail.com (A.V.W.)

3 Laboratório de Modelagem Molecular e Bioinformática (LAMMB),
Departamento de ‘Ciências Exatas e Biológicas (DECEB). Universidade Federal de São João Del-Rei,
Campus Sete Lagoas, 35701-970 Sete Lagoas, Brazil; leofrancalima@ufsj.edu.br

* Correspondence: diegomariano@ufmg.br; Tel.: +55-31-3409-5896

Received: 20 November 2018; Accepted: 6 January 2019; Published: 15 January 2019
����������
�������

Abstract: With the use of genetic engineering, modified and sometimes more efficient enzymes can
be created for different purposes, including industrial applications. However, building modified
enzymes depends on several in vitro experiments, which may result in the process being expensive
and time-consuming. Therefore, computational approaches could reduce costs and accelerate the
discovery of new technological products. In this study, we present a method, called structural
signature variation (SSV), to propose mutations for improving enzymes’ activity. SSV uses the
structural signature variation between target enzymes and template enzymes (obtained from the
literature) to determine if randomly suggested mutations may provide some benefit for an enzyme,
such as improvement of catalytic activity, half-life, and thermostability, or resistance to inhibition.
To evaluate SSV, we carried out a case study that suggested mutations in β-glucosidases: Essential
enzymes used in biofuel production that suffer inhibition by their product. We collected 27 mutations
described in the literature, and manually classified them as beneficial or not. SSV was able to
classify the mutations with values of 0.89 and 0.92 for precision and specificity, respectively. Then,
we used SSV to propose mutations for Bgl1B, a low-performance β-glucosidase. We detected
15 mutations that could be beneficial. Three of these mutations (H228C, H228T, and H228V)
have been related in the literature to the mechanism of glucose tolerance and stimulation in GH1
β-glucosidase. Hence, SSV was capable of detecting promising mutations, already validated by
in vitro experiments, that improved the inhibition resistance of a β-glucosidase and, consequently, its
catalytic activity. SSV might be useful for the engineering of enzymes used in biofuel production or
other industrial applications.

Keywords: enzymes; prediction of mutations; second-generation biofuel

1. Introduction

Enzymes, in most cases, are proteins that accelerate biochemical reactions. They have applications
in several fields of the industry, such as the production of drugs, food, beverage, biofuel, and so
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on [1,2]. Moreover, genetic engineering has been used to construct more efficient enzymes for industrial
applications through mutations [3].

Techniques, such as error-prone PCR (epPCR), have been used to evaluate mutations
systematically in several works. In this technique, a modified DNA polymerase inserts random
mutations in the gene that codifies an enzyme during the replication process [4]. For instance, an epPCR
library was used to identify three efficient mutations for an enzyme used in biofuel production.
The combination of these mutations allowed the construction of a mutant enzyme that increased
sugarcane bagasse conversion to fermentable sugars by 14–35% [3]. However, the proposal of modified
enzymes depends on several in vitro and in vivo experiments, which may result in the process being
expensive and time-consuming due to the vast number of possible mutations. For example, a protein
with approximately 400 residues may present a total of 20400 residue combinations, which corresponds
to 2.58 × 10520 possible mutations. From all possible mutations, experimental techniques can evaluate
only hundreds of them. Therefore, a previous selection with a computational method may reduce
costs and allow a higher number of tests, with promising mutated enzymes.

When comparing proteins, sequence alignment is the most traditional computational method.
It identifies similar regions between proteins using substitution matrices [5]. For instance, an approach
based on protein sequence activity relationships (ProSAR) uses sequences to predict the contributions of
mutations on protein functions [6,7]. However, it does not consider the impact of the three-dimensional
structure or the physicochemical proprieties of the mutated residues, which may be a limitation when
suggesting mutations. Another approach to propose mutations is the evaluation of the variation of
free energy of Gibbs difference (∆∆G) to analyze the thermostability of molecules. However, these
computations are not feasible for all cases [8]. Hence, free energy calculations are not able to estimate
with accuracy the impact of a mutation in an enzyme, the interaction with substrates and products,
and the protein motion for more than a few examples. Hence, computational methods to propose and
to evaluate mutations in enzymes at a large scale are still necessary.

Structural signatures, also called fingerprints, may be an alternative to analyze the impact of
mutations as they provide a computationally feasible method to identify patterns of macromolecular
structural features that may be important for structure and function. They have been successfully
used in classification and automatic annotation of proteins [9,10], prediction of mutation effects
on protein stability [11], prediction of the impact of mutations on the affinity between protein
and ligands [12], and prediction of the mutation impact on the affinity between an antibody and
antigen [13]. The aCSM (atomic Cutoff Scanning Matrix) method, based on structural signatures,
calculates a structural signature, which is based on atomic pairwise distances, also considering their
physicochemical properties [14]. It was also successfully used for the prediction of protein-ligand
interactions. Hence, it may be used to characterize important regions that interact with the ligand.

In this paper, we propose a method based on structural signatures variation (SSV) to suggest
mutations for improving the activity of enzymes. Our method can be applied to several types of
enzymes. Despite the genericity of our method, we present a case study to demonstrate it and suggest
mutations in β-glucosidase enzymes used in second-generation biofuel production. In addition, we
carried out a comparative case study to analyze SSV performance to a similar structure-based approach
called BioGPS [15].

2. Results

2.1. SSV Definition

The structural signature variation (SSV) method is based on computing Euclidean distances
between signatures of: (i) A wild enzyme and an enzyme model with the most similar signature to the
wild type (called wild template); and (ii) a mutant enzyme and an enzyme model with the most similar
signature to the mutant (called mutant template). The difference between the two distances (herein
called the ∆∆SSV score) may be used to predict the impact of the mutation. The SSV method requires
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as input three-dimensional structures of a wild enzyme, a mutant enzyme (that can be modeled in
silico), and enzyme models (herein called templates, i.e., proteins with positive characteristics that you
want to transfer to other enzymes). SSV is computed using the following steps:

1. Most relevant residues’ extraction: For wild, mutated, and templates’ structures the most relevant
residues are extracted and saved in a new Protein Data Bank (PDB) file (Figure 1a–c). This
selection depends on the application and can be modified according to users’ needs. This step
is optional.

2. Structural signature construction: For every PDB file, we compute a vector with the cumulative
distribution of the pairwise distances among all pairs of atoms and their physicochemical
proprieties (aCSM algorithm) (Figure 1d).

3. Template definition: A template definition depends on a high-curated database of enzymes with
beneficial characteristics. This database should be manually and previously defined. We selected
as a template, proteins with the closest signature to wild and mutant proteins analyzed (Figure 1e).

4. Comparison between signatures: A distance matrix among all signatures is constructed (a similar
matrix is used to define the template). The Euclidean distance between two signatures is called
signature variation (∆SSV). The Euclidean distance between signatures of a wild enzyme and its
template is called (∆SSVWt). The Euclidean distance between signatures of a mutant enzyme and
its template is called (∆SSVMt). The difference between both values is the ∆∆SSV score. If the
∆∆SSV score is lower than zero, the mutant’s signature is more alike to the template signature
than to the wild’s signature, suggesting that the mutation is beneficial. If the ∆∆SSV score is
higher than zero, the mutant’s signature is more distant from the template signature than from
wild’s signature, suggesting that the mutation is not beneficial (Figure 1f).

2.2. Case Study 1: Evaluating Mutations for β-Glucosidase Collected from the Literature

β-glucosidases (E.C. 3.2.1.21) are enzymes that perform the hydrolysis of glucosidic bonds, mainly
in disaccharides [16,17]. They act in synergy with exoglucanases (E.C. 3.2.1.91) and endoglucanases
(E.C. 3.2.1.4) in the second-generation biofuel production process. In the biomass degradation,
endoglucanases attack the cellulose chain, releasing oligosaccharides of various lengths. Then,
exoglucanases act, producing mainly cellobiose. β-glucosidases hydrolyze the cellobiose in two
glucose molecules, which will be used in the fermentation process for ethanol production [18]. They
have a key role in this process by removing the cellobiose, which is a potent inhibitor of exoglucanases
and endoglucanases [19–23]. However, the majority of the known β-glucosidases has been described
as being inhibited by high concentrations of glucose [24–27]. Hence, the production of β-glucosidases
with a high tolerance for glucose inhibition may improve biofuel production [28].

To evaluate our method, we present a first case study for proposing mutations to improve the
activity of β-glucosidase enzymes even in high glucose concentrations. We compared wild and
mutant β-glucosidases with templates obtained in a manually curated database of glucose-tolerant
β-glucosidases [29]. The database holds a group of β-glucosidases with high resistance to glucose
inhibition and high industrial applications. However, few glucose-tolerant β-glucosidases have been
described in the literature [30]. We hypothesized that glucose-tolerant and non-tolerant β-glucosidases
have discriminant signatures. Hence, the signature of glucose-tolerant β-glucosidases previously
characterized can be used to define if mutations in non-tolerant β-glucosidases make their signature
similar to a tolerant β-glucosidase or not.
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Figure 1. The structural signature variation (SSV) schema. (a) SSV receives as input PDB files 
containing mutant and wild protein (in this example, a β-glucosidase enzyme). (b) The structures are 
structurally superposed to a template (Neotermes koshunensis β-glucosidase; PDB ID: 3VIK). (c) The 
corresponding residues of the catalytic pocket in the wild, mutant, and their templates’ structures are 
extracted. (d) Structural signatures for all files are computed using the aCSM (atomic Cutoff 
Scanning Matrix) algorithm. (e) The Euclidean distance is computed for every line of the templates’ 
signature matrix. The lowest values define the templates for wild and mutant. (f) The difference 
between the two distances (ΔΔSSV) is calculated. 
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Figure 1. The structural signature variation (SSV) schema. (a) SSV receives as input PDB files containing
mutant and wild protein (in this example, a β-glucosidase enzyme). (b) The structures are structurally
superposed to a template (Neotermes koshunensis β-glucosidase; PDB ID: 3VIK). (c) The corresponding
residues of the catalytic pocket in the wild, mutant, and their templates’ structures are extracted.
(d) Structural signatures for all files are computed using the aCSM (atomic Cutoff Scanning Matrix)
algorithm. (e) The Euclidean distance is computed for every line of the templates’ signature matrix.
The lowest values define the templates for wild and mutant. (f) The difference between the two
distances (∆∆SSV) is calculated.

2.2.1. Data Collection and Manual Classification of Mutation Effects

We collected 27 mutations in β-glucosidases from the literature and the UniProt database
(https://uniprot.org) (Table 1). Every mutation was manually classified as beneficial or not according
to the impact description in the β-glucosidase activity. We classified as “beneficial” mutations that
tend to improve the saccharification process, such as mutations reported as responsible for improving
the glucose tolerance, increasing optimal temperature, increasing the catalytic efficiency, reducing the
affinity for the product, or improving the affinity for the substrate. On the other hand, we classified as
“not beneficial” mutations that tend to reduce the saccharification process, such as mutations reported
as responsible for decreasing the affinity for the substrate, increasing the affinity for the product, or

https://uniprot.org
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reducing the catalytic activity. For example, the mutation, H228T, in the β-glucosidase, Bgl1B, has been
described as responsible for improving the glucose tolerance [27]. Hence, we classified it as beneficial.
On the other hand, the mutation, V168Y, in the human cytosolic β-glucosidase has been described as
responsible for reducing the specific activity [31]. Hence, we classified it as not beneficial.

Table 1. Mutations collected from the literature and UniProt.

ID Mutation Effect Classification Source

1 H228T Improves glucose tolerance. Beneficial [27]

2 V174C/A404V/L441F Increases the optimal temperature of 50 ◦C to
60 ◦C, reduces the optimal pH of 6 to 5.5. Beneficial [3]

3 H184F Increases the inhibition constant for glucose. Beneficial [32]
4 P172L Increases catalytic efficiency. Beneficial [33]
5 P172L/F250A Increases catalytic efficiency. Beneficial [33]

6 L167W Increases the optimal temperature and glucose
tolerance. Beneficial [33]

7 L167W/P172L Increases the activity (2×). Beneficial [34]
8 L167W/P172L/P338F Increases the activity (1,3×). Beneficial [34]
9 V168Y Reduction in the specific activity. Not beneficial [31]
10 F225S Reduction in the specific activity. Not beneficial [31]
11 Y308F Reduction in the specific activity. Not beneficial [31]
12 Y308A Reduction in the specific activity. Not beneficial [31]
13 I207V Increases the specificity constant (Kcat/Km). Beneficial [35]
14 N218H Decreases the Km about 2-fold. Beneficial [36]
15 N273V Increases the Km about 5-fold. Not beneficial [36]
16 F252I Reduces substrate affinity. Not beneficial [37]
17 F252W Reduces substrate affinity. Not beneficial [37]
18 F252Y Reduces substrate affinity. Not beneficial [37]

19 M284N Reduction of Kcat/Km 7 to 30-fold depending on
the substrate. Not beneficial [35]

20 H276M Reduction of Kcat/Km 2 to 6-fold depending on the
substrate. Not beneficial [38]

21 V173C Decreases affinity for cellobiose. Not beneficial [39]
22 M177L Decreases affinity for cellobiose (small reduction). Not beneficial [39]
23 D229N Decreases affinity for cellobiose (high reduction). Not beneficial [39]
24 H231D Decreases affinity for cellobiose. Not beneficial [39]
25 E96K Improves the thermostability. Beneficial [40]

26 N223G Reduction of transglycosylation, glucose tolerance,
and activity. Not beneficial [41]

27 N223Q Reduction of transglycosylation, glucose tolerance,
and activity. Not beneficial [41]

2.2.2. Predicting the Impact of Mutations

We performed the SSV method (Figure 1), evaluated the ∆∆SSV score for the 27 mutations in
β-glucosidases, and compared them to the expected results. For mutations classified as beneficial,
we expected a negative ∆∆SSV score; and for mutations classified as not beneficial, in turn, a positive
∆∆SSV score.

SSV predicted correctly eight in a total of nine beneficial mutations (Table 2). For the non-beneficial
mutations, where the expected ∆∆SSV was higher than zero, SSV predicted correctly 12 out of 18.
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Table 2. ∆∆SSV score expected and the value predicted by SSV.

ID Mutation ∆∆SSV Expected ∆∆SSV Score Hit

1 H228T ∆∆SSV < 0 −186.18
√

2 V174C/A404V/L441F ∆∆SSV < 0 −246.22
√

3 H184F ∆∆SSV < 0 100.37
4 P172L ∆∆SSV < 0 −6.29

√

5 P172L/F250A ∆∆SSV < 0 −6.29
√

6 L167W ∆∆SSV < 0 −602.80
√

7 L167W/P172L ∆∆SSV < 0 −615.46
√

8 L167W/P172L/P338F ∆∆SSV < 0 −615.46
√

9 V168Y ∆∆SSV > 0 330.56
√

10 F225S ∆∆SSV > 0 −365.07
11 Y308F ∆∆SSV > 0 34.19

√

12 Y308A ∆∆SSV > 0 −108.62
13 I207V ∆∆SSV < 0 −71.56

√

14 N218H ∆∆SSV < 0 −230.61
√

15 N273V ∆∆SSV > 0 −55.26
16 F252I ∆∆SSV > 0 86.70

√

17 F252W ∆∆SSV > 0 129.97
√

18 F252Y ∆∆SSV > 0 37.86
√

19 M284N ∆∆SSV > 0 −127.35
20 H276M ∆∆SSV > 0 −501.32
21 V173C ∆∆SSV > 0 13.59

√

22 M177L ∆∆SSV > 0 20.86
√

23 D229N ∆∆SSV > 0 18.11
√

24 H231D ∆∆SSV > 0 −54.22
25 E96K ∆∆SSV < 0 −31.08

√

26 N223G ∆∆SSV > 0 39.37
√

27 N223Q ∆∆SSV > 0 264.34
√

2.2.3. Comparison with Other Methods

We compared our method to the support vector machine (SVM) implemented on the Weka
(Waikato Environment for Knowledge Analysis) tool [42]. SVM is a learning algorithm for classification.
We performed four experiments: (i) SSV; (ii) SVM using as input only wild signatures; (iii) SVM using as
input only mutant signatures; and (iv) SVM using as input the difference of the wild vector and mutant
vector. For these experiments, we evaluated the following metrics: Precision, accuracy, specificity,
sensibility, and the F-measure [43].

We observed that the precision and specificity of SSV were superior to the other method. SSV
obtained a precision of 0.89 and a specificity of 0.92 (Table 3). It also performed better in the prediction
of beneficial mutations than the SVM.

Table 3. Metrics used to evaluate SSV.

Metric SSV SVM (Wild) SVM (Mutant) SVM (Wild-Mutant)

Precision 0.89 0.64 0.36 0.36
Accuracy 0.74 0.81 0.74 0.74
Specificity 0.92 0.79 0.70 0.70
Sensitivity 0.57 0.88 1.00 1.00
F-measure 0.70 0.74 0.53 0.53

2.3. Case Study 2: Proposing Mutations for a Non-Tolerant β-Glucosidase

In the second case study, we described a real application for the method SSV. We chose a
non-tolerant β-glucosidase, Bgl1B (UniProt accession number: D0VEC8), to suggest mutations using
SSV. Bgl1B was extracted from a marine metagenome and presented the half maximal inhibitory
concentration (IC50) of 50 mM for glucose [44]. For comparison, Bgl1A, a glucose-tolerant β-glucosidase
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also extracted from a marine metagenome, presented IC50 of 1000 mM [45]. In a recent study, several
mutations for improving the activity in higher glucose concentrations were proposed for Bgl1B [27].
This study will be used to compare the results of the mutations proposed by the SSV method.

We modeled point mutations by homology for all residues of the catalytic pocket (composed
by 22 residues around the active site). For each residue, 19 mutations were proposed, in a total of
418 mutants (Figure 2a). Then, we defined the template with the most similar signature (Figure 2b).
Also, we used this template to evaluate the mutant that inserts more similar characteristics to the
template (Figure 2c). Note that, in this example, the wild and template have a similar folding,
but different sequences (Figure 2a). Wild (Bgl1B) and template (Bgl1A) have an identity of 55%
(243 similar residues in a total of 443). Thus, it is necessary to evaluate hundreds of mutations to detect
beneficial mutations using simply sequence alignment. SSV takes into consideration the changes in
the protein environment, for example, changes in the residues volume, atoms distances, and their
pharmacophoric proprieties.
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Figure 2. (a) Wild and template have a similar folding, but differences in the sequence (illustrated by
blue dots in the wild enzyme and by red dots in the template enzyme). Several point mutations were
proposed for the wild enzyme (green dots). The template enzyme is defined based on a curated database
of enzymes with desired characteristics (in this case study, Betagdb). For instance, in (b) the template,
T2 was defined as the template (T) for the wild enzyme (W). SSV is illustrated by a two-dimensional
visualization in (b) and (c). Euclidean distances between signatures of the wild/mutants and the
template (signature variation) are used to define the best template (b) and mutant (c). In this example,
the mutant, M3, was defined as the mutation that best inserts characteristics similar to the template (c).
Images generated using PyMOL software (http://pymol.org).

After running SSV, we detected 86 mutations with negative ∆∆SSV (available in the
Supplementary File). In a real application, this could still be a high value of mutations for a bench
test. Hence, we proposed additional steps to limit the number of promising mutations (a detailed
description is available in the Section 4). We removed nine mutations that occurred in the residues,
H125, N169, E170, Y298, E353, and W399, because they were conserved in 100% of glucose-tolerant
β-glucosidases. We also removed 58 mutations indicated as being not allowed in the GH1 family
by the SIFT (Sorting Intolerant From Tolerant) software [46]. SIFT uses the physical properties of
amino acids and sequence homology to predict the effect of an amino acid substitution on the protein
function. Then, we analyzed the mutation impact in the structure using mCSM (mutation Cutoff

http://pymol.org
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Scanning Matrix) [11]. The mCSM software uses graph-based signatures to predict the effect of
mutations in proteins. For 19 remaining mutations, mCSM considered four as highly destabilizing.
In the end, 15 mutations were proposed for Bgl1B (Table 4). These mutations affect five residues:
F172 (three mutations), G246 (two mutations), H228 (eight mutations), T299 (one mutation), and V227
(one mutation).

Table 4. Mutations proposed by the SSV method for the non-tolerant β-glucosidase, Bgl1B. Mutations
underlined and in bold were found in the literature.

F172 G246 H228 T299 V227

F172I G246S H228A T299S V227M
F172K G246T H228C
F172V H228M

H228N
H228P
H228Q
H228T
H228V

Experimental data is available in the literature for three proposed mutations: H228C, H228T,
and H228V [27]. These single-point mutants keep the relative activity even in higher glucose
concentrations than wild Bgl1B. This suggests that the SSV method can be promising to propose
beneficial mutations for β-glucosidases.

2.4. Case Study 3: Comparing to BioGPS Descriptors

In this case study, we compared SSV to the analysis performed in the BioGPS study [15]. BioGPS
is a bioinformatics methodology for rational engineering of enzyme promiscuity that uses chemical,
geometrical, and physical-chemical features of three-dimensional structures. BioGPS compares actives
sites’ properties, taking into consideration more than the sequence structure. Therefore, we considered
a similar approach to SSV.

In the BioGPS study, eight mutants experimentally evaluated (Table 5) for a lipase B from Candida
antarctica (CaLB) were used to validate the method [47]. CaLB is a stable lipase that belongs to the
serine-hydrolases super-family. The insertion of amidase activity in CaLB has many applications for
the industry [15,47,48]. BioGPS classified the mutations based on the improvement factor (IF) referred
to CaLB wild-type activity. The IF is equal to the amidase activity of the mutant, divided by the
amidase activity of the CaLB wild [15]. We considered IF > 1 as beneficial mutations, and IF < 1 as not
beneficial mutations (Table 5). Also, SSV considered the mutant, M8, as a possible neutral mutation for
presenting an IF slightly over 1.

Table 5. CaLB’s mutants evaluated by SSV for comparison to BioGPS. These values were obtained
from references [15,47,48].

Mutant Mutation IF Classification ∆∆SSV Hit

M1 G39A/W104F/L278A 6.3 Beneficial −841
√

M2 G39A/T103G/L278A 3.8 Beneficial −121
√

M3 G39A/T103G/W104F/L278A 11.2 Beneficial −841
√

M4 G39A 2.8 Beneficial 150
M5 G39A/L278A 3.3 Beneficial −121

√

M6 I189A 0.4 Not beneficial −94
M7 T40A 0.4 Not beneficial 40

√

M8 T103G 1.1 Neutral/Beneficial 0
√

We collected the residues presented in the region near the catalytic triad and ran SSV using M3
as the template (see the Section 4 for details). For the seven mutations validated by BioGPS, SSV
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correctly predicted five (M3 was tested as a control experiment and should not be considered in the
calculation of accuracy). However, this case study could present some biases that will be discussed in
the next section.

3. Discussion

We hypothesized that the more similar the signature of a β-glucosidase is to another β-glucosidase,
classified as tolerant, the more they will preserve common characteristics. Hence, if a mutation turns
the signature of a β-glucosidase more similar to the signature of a glucose-tolerant β-glucosidase,
it might show comparable characteristics for biofuel production. The same could be inferred if the
method was applied to another enzyme.

To validate our method, we collected 27 mutations from the literature, manually classified as
beneficial or not, submitted it to three other methods, and compared it with the expected ∆∆SSV
score. We highlighted that our method does not have a direct competitor or another method that
does exactly the same thing. Thus, three alternative methods based on SVM are proposed, which is
the state of the art in machine learning for comparison. We attained 0.89 and 0.92 for the precision
and specificity, respectively (Table 3). Precision is an appropriate metric to evaluate this case study
as it emphasizes hits in beneficial mutations. This value of precision indicated that out of the nine
beneficial mutations for β-glucosidases, SSV predicted eight correctly. The results showed that the
Euclidean distance, implemented by SSV, achieved better results in the beneficial impact of mutation
prediction than SVM (specificity and precision). However, SSV is not directly comparable to SVM. SSV
is a simple strategy to model and compare the impact of mutations based on efficient proteins for a
pre-established activity detected in nature. It uses the Euclidean distance to construct a score that will
be used to compare structural signatures. SVM is a learning algorithm for supervised classification.
In the case study, SVM received as input the structural signature matrix calculated by a step of the
SSV method. We comprehend that this is not a straightforward comparison, but our intention is to
demonstrate that our method is capable of classifying beneficial mutations correctly and achieves
better results than using a model based on an SVM classifier.

3.1. Improving the Activity of a Non-Tolerant β-Glucosidase

A total of 15 mutations was proposed for improvement in the activity of Bgl1B (Figure 3a).
The principal mutation site appeared to be the H228 residue. Our method proposed eight mutations
for this site. Also, we found experimental data for three of these mutations: H228C, H228T, and H228V
(Figure 3b–d). These mutations showed an activity improvement of Bgl1B even in higher glucose
concentrations. Histidine is an amino acid classified as positively charged and bulky. The substitution
of a histidine by an amino acid of a shorter side chain, such as cysteine, threonine, or valine,
would provide a space that could allow a better allocation for glucose, agreeing with the study
of Yang et al. [27]. Most of the other mutations proposed for H228 by SSV also provide a reduction
in the side chain. Hence, we suggest that they could provide the same effect. The F172, G246, T299,
and V227 residues are in the neighborhood of H228 (Figure 3a). We suppose that mutations in these
sites could affect the exit pathway of the glucose from the active site. Also, these sites are near the loop
C, a region in the entrance of the channel that guides to the active site. The geometrical differences
around the loop C were described by Fang et al. [45] as being probably responsible for the characteristic
of the glucose tolerance in β-glucosidase enzymes (Figure 3a). Taken together, the SSV results might
indicate that our method was able to find some of the same beneficial mutations obtained by in vitro
experiments and propose new ones to be tested.
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3.2. Evaluating Mutations in CaLB

Using structural bioinformatics strategies for proposing mutations appears to complement
sequence strategies. In general, methods based on sequences present a lower computational cost, such
as the one implemented in ProSAR [6]. However, SSV is a method based on structural comparisons,
with low computational costs. Other tools, models, and algorithms have been reported to use three
dimensional structures with similar approaches to SSV to propose mutations, such as the active site
constellations method [49], where distances between functional groups of the protein active site and
the substrate are calculated and used as the template in a search for matches in structural databases,
and BioGPS descriptors [15].

We analyzed eight mutations assessed in the BioGPS study using SSV. To construct our case study,
we performed some modifications in the methodology. Ferrari et al. [15] used a database composed
of 42 serine-hydrolases to construct the BioGPS fingerprint. However, the selection was performed
according to their annotated E.C. number, which is a target of debate among the enzymologist
community due to the lack of quality control. Despite the dubious quality, the authors considered the
database as consistent to their research. However, SSV requires high-accuracy databases of templates.

http://pymol.org
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Hence, we used the M3 mutant as a unique template. M3 was the mutant that inserted the highest
value in the improvement factor in CaLB.

In addition, we evaluated the M3 mutant using the same file as the template for producing a
control experiment. Indeed, the negative ∆∆SSV value for the M3 mutation demonstrates that SSV
correctly predicted the structural similarities between the mutant and template (Table 5).

From the SSV results, we could infer that W104F appear to be the most important mutation
for improving the activity of CaLB. Although G39A presents some improvements in CaLB activity
according to BioGPS, SSV was not able to detect the improvement. We can hypothesize that the
substitution of a glycine by an alanine, the change of a hydrogen by a CH3 group, is not sufficient
to perform large modifications in the cumulative distribution of pairwise atoms calculated by aCSM.
However, the substitution of a glycine could affect the mobility of secondary structures in the region,
which would be detected using high-cost computation strategies, such as molecular dynamics. Indeed,
the authors of BioGPS used 500 ns of molecular dynamics using the software, GROMACS [50],
to construct and evaluate the mutants’ fingerprints. Molecular dynamics have a high computational
cost, and their use could make the assessment of mutations on a large scale not feasible.

Interestingly, the T103G mutation (found in M8) occurs in a region distant to the active site.
For this reason, SSV predicted a neutral impact in the activity. Indeed, T103G proposed a slight
improvement in the mutant activity (IF: 1.1), hence we consider this prediction correct.

The SSV mistake for mutant M6 could be related to the small number of elements in the template
database. SSV depends on enzymes with efficient catalytic activities previously reported to be used as
templates. For the β-glucosidase case study, we previously performed a systematic literature review,
collected several mutations that were beneficial and not beneficial, and constructed a highly accurate
database (Betagdb). However, a systematic literature review demands great effort, and the necessity to
perform this kind of the previous study to construct a template database may be a negative point of
the SSV approach.

Lastly, SSV presents a user-friendly interface, which could be easily run by users. Therefore,
it could be used together with other strategies, such as BioGPS, ProSAR, or active site constellations,
to aid in the proposition of more efficient mutations before performing in vitro experiments.

3.3. Important Issues before Using SSV

The use of SSV may present some drawbacks. First, the method depends on three-dimensional
structure models to determine the structural signature. Models are obtained by computational
heuristics and, for this reason, they can present differences to structures obtained by experimental
methods, such as X-ray crystallography. However, achieving structures by experimental methods
may be time consuming and expensive. Also, to propose mutations, SSV depends on templates with
favorable characteristics, for example, mutations described in the literature, which are responsible for
improvements in thermostability or catalytic activity, which may be hard to find.

SSV uses structural signature variations to detect patterns in enzymes with appropriate industrial
applications and transfer them, testing random point mutations, to other enzymes that do not present
similar behavior.

A final difficulty is a need for a curated database with positive and negative examples. In this
work, we presented a case study, where we used a database obtained by a systematic literature review.
Reviews like that take a long time to prepare and they are expensive. The SSV method may be
reproduced using the three basic inputs: (i) A wild enzyme; (ii) a mutant of this enzyme; (iii) a template
enzyme with positive characteristics for some industrial application that you desire to transmit for
the mutant. Furthermore, we believe that in real scenarios, researchers involved in protein engineer
processes should know interesting positive and negative examples to use as templates.
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4. Materials and Methods

4.1. Method Description

4.1.1. Extraction of the Catalytic Pocket

The residues of the catalytic pocket were collected from every β-glucosidase structure (Figure 1a).
The catalytic pocket consists in the channel region that guides to the active site. This channel has been
described as being responsible for the characteristic of glucose tolerance for β-glucosidases [51].

We extracted the residues up to 6.5 Å of the ligand using in-house scripts. This distance was
selected based on a cutoff to characterize pockets for the structural signature [14]. Pires et al. [14]
performed tests with 35,000 pockets to define how far from the ligand are the most important residues
to construct a representative signature. They observed that all signature methods of aCSM present
high p-values cutoff between 6.0 Å and 7.0 Å. Thus, they concluded that 6.0 Å was the best atomic
cutoff for the pocket definition for their classification system. We extended the distance to 6.5 Å to
include the corresponding residues to TRP169, an important amino acid for the glucose tolerance of
β-glucosidases described in some studies [51].

We used, as a reference, the β-glucosidase in complex with cellobiose extracted from the termite,
Neotermes koshunensis (PDB ID: 3VIK; [52]; Figure 1b). The residues of the 3VIK catalytic pocket are
Q45, H148, W149, N192, S193, L195, T196, D199, M207, N253, I254, N255, Y273, N335, F336, Y337, T338,
L340, W374, E402, W444, E451, W452, and F460. Then, we performed structural alignments between
3VIK and the β-glucosidases evaluated using the MultiProt tool [53] and selected the corresponding
residues (Figure 1c). Optionally, the entire protein could be used in this step. However, we believe that
calculating the signature of a specific region could improve the results.

4.1.2. Structural Signature Construction

Structural signatures were constructed using aCSM [14]. The aCSM tool (UFMG, Belo Horizonte,
Brazil) creates graph-based signatures to describe proteins. We used the version, aCSM-ALL, that also
includes the pharmacophore classes: Hydrophobic, positively charged, negatively charged, hydrogen
acceptor, hydrogen donor, aromatic, sulfur, and neutral. For each protein, aCSM-ALL calculates the
pairwise distances among all pairs of atoms and constructs a distance matrix with the cumulative
distribution. We used the cutoff range of 0 to 10 Å, and the cutoff step of 0.1 Å. For each protein,
aCSM-ALL returns a vector with 3636 columns. The vector represents a unique structural signature,
which may be used to identify the protein or compare it with other similar proteins.

In the aCSM-ALL matrix, the lines represent the protein, and the columns represent the cumulative
distribution of pairwise atoms. Hence, for a cutoff of 0–10 Å and a step of 0.1 Å, aCSM-ALL calculates
the number of atom pairs at cutoff distances of 0 to 0.1 Å, 0.1 to 0.2 Å, 0.2 to 0.3 Å, ( . . . ), 9.8 to 9.9 Å,
and 9.9 to 10 Å. For example, a protein could present 100, 200, 50, 300, and 20 pairs of hydrophobic
residues at cutoff distances of 2.0 to 2.1 Å, 3.0 to 3.1 Å, 5.3 to 5.4 Å, 7.4 to 7.5 Å, and 9.7 to 9.8 Å,
respectively. All these numbers and other cutoffs were included in the matrix. Also, aCSM-ALL
verified some combinations of residues, for instance, how many atom pairs of positively charged and
negatively charged there were for all cutoffs’ values. For this reason, each line of the aCSM-ALL matrix
presented 3636 columns.

4.1.3. Template Definition

Templates are a three-dimensional structure of glucose-tolerant β-glucosidases that are used
as models by SSV to define if mutations are beneficial or not. SSV depends on good templates to
perform comparisons between signatures. Templates should be empirically selected based on the
literature information.

We collected 23 PDB files of glucose-tolerant β-glucosidases from Betagdb (a list is available in
the Supplementary File). Betagdb (http://bioinfo.dcc.ufmg.br/betagdb) is a database that contains

http://bioinfo.dcc.ufmg.br/betagdb
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structures of β-glucosidases with high efficiency for biofuel production collected from a systematic
literature review [29]. We previously calculated the structural signature of every glucose-tolerant
β-glucosidase using the same parameters for wild and mutant signatures and stored it in the Betagdb
signature matrix. We used the Euclidean distance to calculate the signature variation for each wild
(∆SSVWt) and mutant (∆SSVMt) protein. The lowest value for the distance defines the template
(Figure 1e). Wild and mutant β-glucosidases may have the same template or different templates.

4.1.4. Comparison between Signatures

The ∆∆SSV score is calculated from the comparison between signature variations (Figure 1f). This
score is binary: If it is positive, the mutation is not beneficial (Figure 4b,d); if it is negative, the mutation
is beneficial (Figure 4a,c). When wild and mutants have the same template (Figure 4a,b), SSV performs
a simple distance comparison between the Euclidean distances of wild’s and mutant’s signatures to
the template’s signature. However, if a mutation causes a large change in the β-glucosidase signature,
the mutant can show greater similarity in its signature to a second template (Figure 4c,d). The ∆∆SSV
is calculated using the difference of the distance variation for the mutant and the second template by
the distance variation for the wild and the first template. In this case, the change in the signature is
significant, which should indicate that the mutation is not beneficial. However, a significant signature
change also can indicate that the mutant’s signature is closer to another template. Therefore, high
impacting mutations also may be beneficial (Figure 4c).
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Figure 4. Two-dimensional representation of comparisons between signatures. (a) and (b) show simple
comparisons (same template). (c) and (d) show comparisons with two different templates (T1, T2,
and T3). The gray arrows highlight that a second template was used. The dotted lines are used to show
whether a mutation becomes more similar to a second template than the original. (a) and (c) represent
beneficial mutations. (b) and (d) represent non-beneficial mutations.

4.2. Case Study 1

We collected 27 mutations for β-glucosidases in the literature (Table S1), applied the calculations
of signature variations, and evaluated the method’s precision, accuracy, specificity, sensibility,
and F-measure. Sequences were collected in the databases, GenBank (http://www.ncbi.nlm.nih.
gov/genbank) and UniProt (http://www.uniprot.org). Three-dimensional structures were collected
in the Protein Data Bank (PDB) [54]. The sequences without available three-dimensional structures
were modeled by homology [55]. We selected the templates for modeling using the NCBI BLAST
web interface [56] and built 100 models for each protein using MODELLER [57–59]. The best models
were selected using the DOPE score. Mutations were modeled using the script for point mutations
from MODELLER. For each of the 27 mutations, we extracted the catalytic pockets using in-house

http://www.ncbi.nlm.nih.gov/genbank
http://www.ncbi.nlm.nih.gov/genbank
http://www.uniprot.org


Int. J. Mol. Sci. 2019, 20, 333 14 of 18

scripts and constructed the structural signature. Then, we determined the templates and calculated
the ∆∆SSV score.

4.3. Case Study 2

The sequence of Bgl1B was obtained in UniProt (accession number: D0VEC8). We constructed
100 models using MODELLER. We used as a model the GH1 β-glucosidase from Exiguobacterium
antarcticum B7 (PDB ID: 5DT5; coverage: 96%; and identity: 44%). We selected the best model using
the DOPE score [57–59]. Point mutations were performed in the residues of Bgl1B’s catalytic pocket.
Each one of the 22 residues was mutated according to 19 possibilities using MODELLER’s mutation
script, resulting in 418 mutant proteins. We aligned the PDB files with the β-glucosidase in the
complex with cellobiose (3VIK) and extracted the residues of the catalytic pocket based on residues
established previously. We generated the structural signatures for all files and calculated the ∆∆SSV
score (Table S2).

In addition, we proposed additional steps to limit the number of mutations proposed. We removed
mutations proposed based on three evaluations: (i) Mutations in conserved residues; (ii) residues
that are not found in a specific position in the family; and (iii) mutations that potentially cause high
destabilization in the protein structure.

Residue conservation is an important metric used to evaluate mutations. Highly conserved residues
tend to present essential functions for the protein activity. We performed sequence alignment of
catalytic pocket residues among Bgl1B and the β-glucosidases of Betagdb using Clustal Omega [60,61].
We detected six conserved residues: H125, N169, E170, Y298, E353, and W399. We removed mutations
in these residues indicated by SSV.

Then, we used the SIFT Sequence [46] to analyze the substitution allowed in the GH1 family for
every residue of the catalytic pocket (Table S3). We removed mutations not detected in that position
for the GH1 family.

Mutations can affect the protein structure, causing a destabilization that may compromise the
protein activity. We evaluated the impact of mutations in the protein structure using mCSM (FIOCRUZ
MINAS, Belo Horizonte, Brazil), which predicts the variation of free energy (∆∆G) [11]. Indeed, most
of the mutations cause destabilization; however, some can cause high destabilization, which may
change the protein folding state. We removed the mutations indicated by mCSM as highly destabilizing
(Table S4). The remaining mutants were the final mutations proposed by our workflow for tests in vitro.
Lastly, we compared the results with the mutations tested experimentally in the literature.

4.4. Case Study 3

The three-dimensional structure of CaLB was obtained from the PDB (PDB ID: 1TCA). The mutants
from M1 to M8 were constructed using the mutagenesis tool of the software, PyMOL (http://pymol.org).
Water molecules were removed. To detect the residues of the pocket near the active site, we performed
molecular docking in the wild-type and mutants using the software, AutoDock Vina (The Scripps
Research Institute, La Jolla, CA, USA) [62]. We used N-benzyl-2-chloroacetamide, the same ligand used
to determine amidase activities in CaLB [47]. The ligand was collected from the Zinc database [63].
We used parameter exhaustiveness = 50, a box of 15 Å × 15 Å × 15 Å, and the box center was defined
based on the position of the last atom of the catalytic serine (residue S105; atom OG). We used the first
conformation obtained by docking and collected all residues at the distance of 6.5 Å from any atom of
the ligand. Then, we removed the ligand and saved the structures as PDB files. We performed tests
in the SSV web tool using the wild-type, the eight mutants, and the template database (for this step,
we compressed the mutant, M3, in a zip file). The links for the projects created in the SSV tool are
available in the Supplementary Material (Table S5; Figure S1).

http://pymol.org
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5. Conclusions

In this paper, we proposed structural signature variation (SSV), which is a novel method to
compute and compare structural and physicochemical signatures of proteins, with the purpose of
proposing beneficial mutations to support protein engineering processes. SSV can be used together
with other methods, tools, and algorithms to suggest mutations with greater reliability for reducing
costs of in vitro experiments.

We evaluated the quality of the predictions through two case studies with realistic examples for
the protein engineering of β-glucosidases, enzymes involved in biofuel production. SSV presented a
high precision for 27 mutations collected from the literature and was capable of detecting beneficial
mutations already proposed in the literature for Bgl1B, starting from random point mutations. SSV
was shown to be an efficient method to propose mutations for non-tolerant β-glucosidases and may
help yield enzymes with more glucose tolerance for second-generation biofuel production.

In addition, we constructed a website, with a user-friendly interface, that implements the SSV
method. It is available at (http://bioinfo.dcc.ufmg.br/ssv).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/2/333/
s1.
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