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Pulsatile flow simulations of non-Newtonian blood flow in an axisymmetric multistenosed artery, subjected to a static magnetic
field, are performed using FLUENT. The influence of artery size and magnetic field intensity on transient wall shear stress, mean
shear stress, and pressure drop is investigated. Three different types of blood, namely, healthy, diabetic, and anemic are considered.
It is found that using Newtonian viscosity model of blood in contrast to Carreau model underestimates the pressure drop and wall
shear stress by nearly 34% and 40%, respectively. In addition, it is found that using a magnetic field increases the pressure drop by
15%. Generally, doubling the artery diameter reduces the wall shear stress approximately by 1.6 times. Also increasing the stenosis
level frommoderate to severe results in reduction of the shear stress by 1.6 times. Furthermore, doubling the diameter ofmoderately
stenosed artery results in nearly 3-fold decrease in pressure drop. It is also found that diabetic blood results in higher shear stress
and greater pressure drop in comparison to healthy blood, whereas anemic blood has a decreasing effect on both wall shear stress
and pressure drop in comparison to healthy blood.

1. Introduction

Atherosclerosis is an accumulation of cholesterol-laden
plaque in arterial walls that causes a narrowing or stenosis
and a loss of elasticity in the arteries at various sites. The
diseased arteries often result in heart attacks and strokes both
of which are leaders in human mortality. The major cause of
stroke is blood vessel blockage or plaque rupture. Narrowing
of an arterial lumen tends to occur in regions of disturbed
flow and oscillating wall shear stress (WSS). Tan et al. [1]
linked the growth, progression, and structure of plaque in a
70% carotid symmetric stenosis at rupture to the oscillating
wall shear stresses using pulsatile transitional simulations.
Considering axially asymmetric stenosis andNewtonian fluid
model Gao et al. [2] found that the Womersley number
has a great influence on the vortex generation and the
WSS distribution and to a lesser extent on the Reynolds
number. Grinberg et al. [3] analyzed the flow in stenosed
carotid artery using three-dimensional transient model and

a simplified two-dimensional slice, since the latter is more
appropriate as clinical tool.Their results revealed that regions
of unsteady laminar flow characterize the state of the flow
and a subregion of turbulence, starting downstream of the
stenosis and extending about five to six centimeters farther
downstream.The flow in the subregion is found to laminarize
as the Reynolds number is decreased. Pulsatile flow of
Newtonian blood through stenosed porous medium with
periodic body acceleration under the influence of a uniform
transverse magnetic field was studied by Das and Saha [4].
The study proposed that varying the effect of the magnetic
field in, for example, clinicalmagnetotherapy, can regulate the
volumetric flow rate.

Numerical simulations have been proposed by Ku et al.
[5] as a method for predicting changes in flow distributions
and patterns from surgical bypass procedure. The simula-
tions’ results were temporally and spatially averaged and
compared against measurements obtained using magnetic
resonance imaging (MRI) techniques for a phantom model
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of a stenotic vessel with a bypass graft under conditions
suitable for surgical planning purposes. The maximum error
in the computed volumetric flow rates was 6% of the
measured values; also an excellent qualitative agreement was
obtained for the cross-sectional velocity profiles in both
magnitude and shape. Karmonik et al. [6] employed CFD
simulations for three vascular pathologies of the human aorta
with patient-specific geometries and inflow boundary condi-
tions.

The potential for obtaining information helpful in ther-
apeutic decision making was demonstrated by analyzing
selected hemodynamic parameters such as blood flow
pathlines, wall shear stresses, dynamics pressures, blood
flow velocities, and flow particle residence times. Sankara-
narayanan et al. [7] transient model of aorta-coronary bypass
graft showed that maximum perfusion of the occluded artery
occurs during middiastole, and the maximum wall shear
stress variation is observed around the distal anastomotic
region. Pulsatile flow through a stenosed artery using Casson
model for bloodwas investigated by Sankar and Lee [8].Their
results showed that intensifying the magnetic field leads to a
decrease in flow rate and an increase in skin friction. Casson,
Newtonian, and the hybrid blood constitutive models were
used in the pulsatile flow simulations in human carotid
bifurcation and were reported by Fan et al. [9]. The results
showed that Newtonian and the hybrid model gave similar
distributions of WSS and axial velocity. The study suggested
the inadequacy of using the Casson model for the entire flow
field and its use should be limited to flow regions where the
shear rate is low.

Using Large Eddy Simulation (LES) in a three-dimen-
sional geometry of an arterial stenosis Molla and Paul [10]
performed pulsatile transition-to-turbulent non-Newtonian
blood flow with various blood viscosity models. The effects
of the various viscosity models are investigated in terms of
the shear rate, poststenotic recirculation zone, mean shear
stress, mean pressure, and turbulent kinetic energy. Pulsatile
flow in an arterial stenosis and in the presence of a transverse
magnetic field has been studied by Ikbal et al. [11]. Results
have shown that both the vessel wall flexibility and Reynolds
number affect the flow characteristics and the development of
recirculation zones upstream of the constricted site, while the
magnetic field causes reduction of the flow rate. In addition,
many researchers reported an association between blood
viscosity changes and human cardiovascular diseases such as
hypertension, spasm, and thromboembolism [12, 13]. Kuke
et al. showed that blood viscosity has large effect on duration
of cerebral ischemia and reperfusion [14]. Many studies also
focused on several factors that influence the blood viscosity
[15–19].

Moreover, apparent viscosity of human blood was found
to be significantly influenced by magnetic field. Haik and
coworkers reported a 30% decrease in blood flow rate when
subjected to a high magnetic field of 10 tesla, which indicated
an increase in the apparent viscosity [20]. Yadav et al.
reported a 30%decrease in blood flow rate and a 45% increase
in the apparent blood viscosity in a capillary tube model
subjected to a magnetic field of 0.002 tesla [21]. Bali and
Awasthi [22] investigated the effect of external magnetic field

on blood flow in stenosed artery and considered the viscosity
of blood as radial coordinate dependent. Assuming blood
a Newtonian fluid and accounting for ferrohydrodynamics
and magnetohydrodynamics effects, Tzirzilakis, in his steady
flow model, predicted a generation of stronger vortices
downstream of the stenosis throat when magnetic field was
applied [23]. However, blood is a non-Newtonian fluid and
was modeled as a generalized Power law fluid by Ikbal et al.
[11] to investigate atherosclerotic arteries with mathemat-
ical models that represent non-Newtonian flow of blood
through a stenosed artery in the presence of a transverse
magnetic field. On the contrary, Li and Huang [24] predicted
suppression in the vortex formation downstream of the
stenosis when blood was assumed to be a Power law fluid
rather than a Newtonian fluid. Kenjereš [25] presented a
numerical analysis of blood flow in realistic arteries subjected
to strong nonuniform magnetic field. Habibi and Ghasemi
[26] investigated the effect of a magnetic field on the volume
concentration ofmagnetic nanoparticles of a non-Newtonian
blood. Kwon et al. [27] studied the effect of blood viscosity
on oxygen transport in residual stenosed artery. Sankar
et al. [28] numerically investigated pulsatile laminar blood
flow through a mild symmetric stenosis treating blood as
Hershcel-Bulkley fluid concluded that velocity decreased
with increasingHartmann number and amplitude of the flow.
Tashtoush and Magableh [29] studied the effect of magnetic
field on blood flow through multistenosed artery treating
the blood as Newtonian fluid, whereas Alshare et al. [30]
investigated steady flow in moderate and sever stenosed
arteries in the presence of magnetic field and treating the
blood as non-Newtonian by applying the Carreau viscosity
model.

In this work, a pulsatile two-dimensional analysis of
blood flow with variable viscosity through arteries with mul-
tiple stenosis in the presence of magnetic field is investigated.
In order to establish the applicability of the investigated
model in the realm of blood rheology, the blood viscosity will
be considered for two cases, namely, when blood viscosity
is constant and when blood viscosity is allowed to vary
with shear rate according to the Carreau-Yasuda model. In
addition, three blood types are investigated using the Carreau
model of viscosity, namely, healthy, diabetic, and anemic
blood. The governing equations with their corresponding
boundary conditions are solved using CFD.

2. Method

2.1. Mathematical Modeling and Problem Formulation. Blood
is considered as an electrically conducting fluid; when sub-
jected to a magnetic field an electromagnetic force is pro-
duced and an electrical current flows as a result.The problem
consists of the solution of the transient governingmomentum
Navier-Stokes equations and the electricalMaxwell’s relations
for the magnetic field.

The current density 𝐽 is expressed by

𝐽 = 𝜎 (𝐸 + 𝑉 × 𝐵) , (1)
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Figure 1: The geometry of artery with multistenosed sections.

where 𝐸 is the electrical field intensity, 𝜎 is the electrical
conductivity, and 𝑉 is the velocity vector. In the momentum
equation, the electromagnetic force, 𝐹

𝑚
, is defined as follows:

𝐹
𝑚
= 𝐽 × 𝐵 = 𝜎 (𝐸 + 𝑉 × 𝐵) × 𝐵. (2)

The multistenosis artery under consideration is assumed to
be a rigid cylindrical tube containing a homogeneous non-
Newtonian fluid representing the blood. Use the cylindrical
coordinate system (𝑟, 𝜃, 𝑧), where the 𝑧-axis is taken along the
axis of the artery, while 𝑟 is taken along the radial direction.
Since the flow is assumed to be axisymmetric, the angle, 𝜃,
effect is neglected.The geometry of the stenosis in the arterial
lumen is shown in Figure 1 and is taken as follows [31]:

𝑅 (𝑧) = 𝑅
𝑜
[1 − 𝛼 (1.48𝑧 − 0.7398𝑧

2

+ 0.1485𝑧
3

− 0.013955𝑧
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6

)] .

(3)

𝑅(𝑧) indicates the radius of the artery in the region of interest
and 𝑅

𝑜
is the radius of the normal artery; 𝐿 is the length of

the stenosis and 𝛼 is the degree of stenosis.
The continuity, momentum, and energy equations gov-

erning the flow under consideration, in cylindrical coordi-
nates, are as follows.

Continuity Equation. Consider
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Axial Momentum Equation. Consider
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The boundary conditions associated with the governing
equations for the problem are as follows:

No slip condition at the artery wall:

V
𝑟
= V
𝑧
= 0 at 𝑟 = 𝑅

𝑜
. (7)

At the center line, the blood velocity is finite:

𝜕V
𝑧

𝜕𝑟
= 0 at 𝑟 = 0. (8)

2.2. Method of Solution. The dimensional-form of the gov-
erning equations along with the boundary conditions, (4)–
(8), is solved in terms of the primitive variables. The nondi-
mensional equations and the relevant dimensionless numbers
in this study such as Reynolds and Hartman numbers were
not utilized since, in non-Newtonian model, the dynamic
viscosity, which is dependent on the shear rate, enters both
dimensionless numbers.

2.3. Non-Newtonian Fluid Model. The Carreau-Yasuda
model is used in hemodynamical simulations given as
follows [32, 33]:

𝜇 (�̇�) = 𝜇
∞
+ (𝜇o − 𝜇

∞
) [1 + (𝜆�̇�)

𝑎

]
(𝑛−1)/𝑎

, (9)

where 𝑎, 𝑛, and𝜆 are empirical constants; �̇� is a scalarmeasure
of the rate of deformation tensor [34]. In this study, the values
obtained by Gijsen et al. [32] are used and given as follows:

𝜇o = 22 × 10
−3 Pa s,

𝜇
∞

= 2.2 × 10
−3 Pa s,

𝑎 = 0.644,

𝑛 = 0.392,

𝜆 = 0.11 s.

(10)

Three blood types are investigated using the Carreau model
of viscosity, namely, healthy, diabetic, and anemic blood.This
is accomplished by varying viscosity parameters in themodel
to correspond to different hematocrit level in the blood that
represents these conditions. Following experimental data of
Kwon et al. [27] a blood with hematocrit count of 45% is
considered healthy blood, whereas a diabetic and an anemic
patient’s blood hematocrit count is 65% and 25%, respectively.
Summarized in Table 1 are the hematocrit count and the
corresponding viscosity parameters.

2.4. Computational Model and Validation. A commercially
available package ANSYS Work Bench FLUENT 15.0 [35]
which is based on Finite Volume Method (FVM) was used.
The axisymmetric computational domain of themultistenosis
artery geometry given by (3) was constructed and meshed
using design modeler and mesh tool, respectively. Temporal
discretization was by the second-order implicit backward
Euler scheme [36]. The second order upwind scheme was
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Table 1: Experimental data for hematocrit counts and viscosity [27].

Hct 𝜇
𝑜
(Pa⋅s) 𝜇

∞
(Pa⋅s) 𝜆 (s) 𝑛 Blood

25% 0.0178 0.00257 12.448 0.33 Anemic
45% 0.0161 0.00345 39.418 0.48 Healthy
65% 0.8592 0.00802 103.09 0.39 Diabetic

Table 2: Grid independence study using average skin friction factor
as a parameter.

Grid size (𝑧, 𝑟)
Artery size (mm)

2.5 5 10
𝐶
𝑓

(110, 20) 0.21875718 0.11173887 0.062403215
(110, 40) 0.21922512 0.11167075 0.061809526
(110, 80) 0.21956481 0.11156201 0.061426839
(110, 110) 0.21939050 0.11174184 0.061336323
(110, 220) 0.21939277 0.11150201 0.061194006

(a)

(b)

Figure 2: An axisymmetric section of a 10mm diameter of stenosed
artery showing the computational mesh (a) and a figure (b) scaled
up 20 times in the 𝑟-direction for illustration clarity.

utilized in the spatial discretization. Pressure-velocity decou-
plingwas handled using the SIMPLE algorithm [37].The inlet
wave form of the cardiac cycle is monitored.The residuals for
the convergence were monitored and solutions are converged
when the mass and velocity residuals were less than 10−7. A
nonuniform mesh of 130 × 130 shown in Figure 2 was used
in all the simulations.

A progression of increasing mesh sizes was tested to
ensure mesh independent results as shown by the average
skin friction factor, 𝐶

𝑓
, values given in Table 2 for the three

artery sizes considered in the study. The variation of local
skin friction factor with various grid sizes is also illustrated
in Figure 3.

In order to validate the numerical results a computational
domain of an axisymmetric artery with a single stenosis,
shown in Figure 4, similar to the experimentally tested
stenosis geometry by Tiari et al. [38] is considered.
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Figure 3: Show the local skin friction factor using 5 different grid
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Figure 4: The computational domain used for the validation of the
model with experimental data of Tiari et al. [38]. Actual domain
(top) and stenosis section (bottom) are shown zoomed in for clarity.

First, the domain and the used grid were tested without
stenosis and the pressure drop in the planar artery region
beyond the entrance length where the flow is fully developed
is checked with the Poiseuille law, the error in the pressure
drop is found to be less than 0.1%. Then a single stenosis
with a severity level of 54% is employed. The inlet pulsatile
volumetric flow rate wave form used in the experiment which
has a peak value of 9mL/s is utilized. The resulting mean
pressure drop across the stenosis is nearly 9.5mmHg as
shown in Figure 5.

It is generally in good agreement with experimentally
obtained value of 7.6mmHg. The deviation between the
results could be attributed to a number of factors including
tube compliance, curvature uncertainty, and experimental
uncertainties. The computational model assumes a rigid
artery wall while in the experiments a compliant tube with
elastic properties similar to that of a coronary artery is used.

2.5. Inlet Boundary Condition and Additional Source Terms.
The Womersley method was used to define the pulsatile
velocity waveform [39, 40] at the inlet of the computational
domain. The transient and patient-specific inflow velocity
waveform following [1] is illustrated in Figure 6.
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Figure 5: Pressure drop across a single stenosis (54%) in a 3.12mm
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The physiological waveform of the heart was segmented
into three portions. Each segment is fitted with a high-order
polynomial function over a subinterval of time. The fitted
waveformwas coupled to the computationalmodel through a
user-defined function (UDF) capability offered by FLUENT.
The blood is investigated using the constant viscosity model
and non-Newtonian fluid model. The latter is introduced in
the model using UDF.

The imposed constant magnetic field that appears in the
axial momentum equation as an additional source term and
represents the Lorentz force was handled with UDF.
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Figure 7: Effect of artery size on mean wall shear stress; artery
diameter, 2.5mm, 5mm, and 10mm; magnetic field, 4 tesla; non-
Newtonian viscosity, moderate stenosis condition.

Bloodwas treated as a non-Newtonian fluidwith a density
of 1050 kg/m3 and a viscosity governed by (9). This was
compared with the case where blood was assumed to be
Newtonianwith a viscosity of 3.0mPa⋅s.Non-Newtonian vis-
cosity was incorporated into FLUENT computational model
through UDF. Each simulation is carried out using 3 cardiac
cycles. Each cycle is one second, which is subdivided into 90
time steps.

3. Results and Discussion

Hemodynamics in arteries has an unsteady character caused
by the cyclic pumping of the heart. Both blood flow and pres-
sure are pulsatile. The interplay between oscillatory inertia
forces and viscous forces in flowing blood is characterized
by the Womersley number, a nondimensional parameter
relevant to this type of flow. Figure 6 illustrates the unsteady
inlet waveform employed in this study. However, the non-
Newtonian viscosity along with pulsatile velocity which is
a function of the strain rate resulting in changing viscosity
not only spatially but also temporally makes it meaningless
to compute a Womersley number under such conditions.
In the following discussion, we will consider the geometric,
viscosity, and magnetic parameters effects on the mean wall
shear stress and mean pressure drop.

The effect of the artery size on the mean axial shear stress
for both moderate and severe stenoses is shown in Figures 7
and 8, respectively.

Artery diameters of 2.5, 5, and 10mm are investigated. As
the artery diameter decreases by half, the mean wall shear
stress increases by nearly 1.6 times, whereas if the diameter
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is reduced by 4-fold, the mean shear stress increases by
2.6 times. Generally, this implies that doubling the artery
diameter will decrease the shear stress by approximately 1.6
times for both moderate and severe stenosis. When the level
of stenosis increases from moderate to severe, the mean wall
shear stress increases by 1.6 times on the average for all artery
sizes. To nullify the effect of increased level of severity on
shear stress, the artery size has to be doubled.

Modeling the blood as Newtonian fluid in contrast
to the non-Newtonian, namely, Carreau-Yasuda results in
underestimating the mean wall shear stress by about 40% as
illustrated in Figure 9.

Modeling the blood, as non-Newtonian fluid, is essential
as the diameter of arteries decreases and the shear thinning is
exhibited which allows the red blood cells to squeeze through
the small capillaries. When the shear rate is low the non-
Newtonian character also shows up and the red blood cells
agglomerate into larger particles.

The effect of doubling the magnetic field from 4 to 8
tesla increases the pressure drop by nearly 15% as given by
Figure 10, but it shows marginal influence on the wall shear
stress.

However, using Newtonian fluid model of blood in
contrast to non-Newtonian Carreau viscosity model under-
estimates the pressure nearly by 34% as can be inferred from
Figure 11.

The effect of the artery diameter and stenosis severity on
pressure drop is very large as shown in Figures 12 and 13.

Doubling the diameter of stenosed artery results in
approximately 3-fold decrease in pressure drop. The pressure
drop trends, which do not follow the Poiseuille law, are
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indicative of the significance of the role the inertial term effect
on the pressure drop.The stenosis sections present location of
favorable pressure gradient, as evident by three local “humps”
on each curve. The implication of this local acceleration
and in particular when the stenosis is of a severe level is
detrimental. It would assist in dislodging and mobilization
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of fresh thrombus material, which can be heighted during
catheterization procedure. On the other hand, increasing the
stenosis frommoderate to the severe results in approximately
3-fold increase in pressure drop, which can be attributed
to decreased effective area available for the flow and the
aforementioned physiological adverse effects will hold again.
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Newtonian viscosity, severe stenosis condition.

Therefore, the effect of increasing stenosis from moderate
to severe has the same effect as halving the artery diameter
on the increase in pressure drop. The conjugated effect that
is increasing the stenosis level from moderate to severe in
conjunction of halving the diameter will result in a 9-fold
increase in pressure drop. A moderate stenosis in 2.5, 5,
and 10mm arteries results in a pressure drop of 8, 2.5, and
1mmHg, respectively. Meanwhile, a severe stenosis in the
same sizes has a pressure drop of 20, 6.7, and 2.6mmHg.

In order to further assess local effects of the viscosity
model, the axial velocity along the artery centerline and at a
cross section in themiddle of the artery is plotted in Figure 14.

It is apparent that using the Carreau viscosity model will
decrease the local velocity by nearly 7%.

Instantaneous values of wall shear stress and pressure
drop are plotted in Figure 15 at selected sequential time steps
of the cardiac cycle.

Due to the nature of the cardiac cycle illustrated by
the pulsated velocity profile in Figure 6, the instantaneous
wall shear stress increases with the corresponding increase
in velocity but also it increases due to local acceleration
in the stenosed sections as depicted by peak to valley
sequence along the profiles. In addition, the pressure drop
increases with increasing velocity and decreases with increas-
ing local acceleration due to favorable pressure gradient in the
stenosed zones.

Simulations of pulsatile flow through a 5mm diameter
artery using Carreau viscosity models according to the
parameters given in Table 1 is carried out. Figure 16 shows a
snapshot of the local viscosity for the three blood types at a
midsection in the stenosed artery.
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Figure 14: (a) Effect of viscosity on axial velocity profile (artery centerline); artery size, 5mm; magnetic field, 4 tesla; Newtonian and non-
Newtonian, moderate stenosis, pulsatile flow. (b) Effect of viscosity on axial velocity profile (cross section in middle of artery); artery size,
5mm; magnetic field, 4 tesla; Newtonian and non-Newtonian, pulsatile flow.

It can be seen that a diabetic blood has higher viscosity,
due to higher volume percentage of red blood cell or “thicker”
blood. This translates to higher resistance or greater shear
stress at the artery wall of diabetic blood in comparison to
healthy blood as shown in Figure 17.

The greater resistive forces result in higher pressure drop
as shown in Figure 18.

The action of high local shear stress may worsen stenosed
preexisting condition of atherosclerosis lesions and possibly
will lead to rupture of plaque or thrombosis which will be
mobilized and is likely to occlude in smaller downstream
branches forming thromboembolism or blood clot with
catastrophic effects. However, anemic blood, which is caused
by low red blood cell count, means that the blood acts as
Newtonian fluid. The low viscosity of blood leads to lower
wall shear stress and pressure drop. Nonetheless, it is also
problematic, for the heart, as it is required to work harder to
compensate for low count of red blood cell in order to provide
adequate supply of needed oxygenated blood. The impact of
viscosity and its shear thinning behavior is illustrated by the
velocity contours in Figure 19.

4. Conclusions

A pulsatile two-dimensional analysis of blood flow with
variable viscosity through arteries with multiple stenosis in
the presence of transversemagnetic field is studied.The blood
flow is assumed laminar, incompressible; both Newtonian
and Carreau viscosity models are employed. Moderate and

severe stenosis are taken under consideration to offer better
understanding of practical problems of blood flow through
stenosed artery. Three different types of blood, namely,
healthy, diabetic, and anemic are studied.

Using Newtonian viscosity model of blood in contrast to
Carreau model is found to underestimate the pressure drop
and wall shear stress by nearly by 34% and 40%, respectively.
In addition, it is found that using a magnetic field increases
the pressure drop by 15%. In addition, doubling the artery
diameter would reduce the wall shear stress by approximately
1.6 times. Also increasing the stenosis level frommoderate to
severe results in reduction of the shear stress by 1.6 times. To
nullify the effect of increased level of severity on shear stress
the artery size has to be doubled.

The effect of the artery diameter on pressure drop is even
greater. Doubling the diameter of moderately stenosis artery
results in approximately 3-fold decrease in pressure drop.
However, increasing the stenosis level from moderate to the
severe results in approximately 3-fold increase in pressure
drop. The instantaneous wall shear stress increases with
the increase in velocity and local acceleration. In addition,
the instantaneous pressure drop increases with increasing
velocity and decreases with increasing local acceleration due
to favorable pressure gradient in the stenosed sections.

It is also found that a diabetic blood results in higher shear
stress and greater pressure drop in comparison to healthy
blood, whereas anemic blood has a decreasing effect on both
wall shear stress and pressure drop in comparison to healthy
blood.
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Figure 15: Continued.
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Figure 15: (a) Instantaneous wall shear stress (Pa) at different time steps in the cardiac cycle. Artery diameter 5mm with moderate stenosis.
(b) Instantaneous pressure drop (Pa) at different time steps in the cardiac cycle. Artery diameter of 5mm with moderate stenosis.
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Figure 16: Carreau viscosity for anemic, diabetic, and healthy blood
type, taken at cross section in the middle of the artery.

Nomenclature

𝐵: Magnetic flux intensity, tesla
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: Skin friction coefficient, 𝐶
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= 𝜏
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/0.5𝜌𝑈

2

𝑜

𝐷
𝑜
: Diameter of the artery, m

𝐸: Electric field intensity, V/m
𝐹
𝑚
: Electromotive force, N

𝐽: Current density, Amp/m
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Figure 17: Mean wall shear stress. Artery diameter of 5mm with
moderate stenosis, using anemic, diabetic, and healthy blood types.

𝐿: Artery length, m2
𝑝: Pressure, Pa
𝑟: Radial coordinate, m
𝑅
𝑜
: Dimensional radius of the artery, m

V
𝑧
: Axial velocity, m/s

𝑈
𝑜
: Average velocity at inlet, m/s

V
𝑟
: Radial component of velocity, m/s

𝑉: Dimensionless radial velocity
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Figure 18: Mean pressure drop. Artery diameter of 5mm with moderate stenosis, using anemic, diabetic, and healthy blood types.
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Figure 19: Velocitymagnitude contours; artery size, 5mm;magnetic field, 4 tesla; viscosity, constant viscosity (a) andCarreau viscositymodel
(b) (radial direction scaled up by a factor of 20 for better illustration).

𝑧: Axial coordinate, m
𝛼: Degree of stenosis, %
𝜆: Empirical constant, (9)
𝜂: Dynamic viscosity of blood, kg/m s
𝜇
𝑜
, 𝜇
∞
: Asymptotic viscosities equation (9)

𝜌: Density of blood, Kg/m3
𝜎: Electrical conductivity, 1/Ωm
𝛾: Scalar measure of the rate of deformation

tensor
𝜏
𝑤
: Wall shear stress, Pa⋅s.
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