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ABSTRACT Assembly of complex genomes using short reads remains a major challenge, which usually yields highly fragmented assemblies.
Generation of ultradense linkage maps is promising for anchoring such assemblies, but traditional linkage mapping methods are hindered by the
infrequency and unevenness of meiotic recombination that limit attainable map resolution. Here we develop a sequencing-based “in vitro” linkage
mapping approach (called RadMap), where chromosome breakage and segregation are realized by generating hundreds of “subhaploid” fosmid/
bacterial-artificial-chromosome clone pools, and by restriction site-associated DNA sequencing of these clone pools to produce an ultradense
whole-genome restriction map to facilitate genome scaffolding. A bootstrap-based minimum spanning tree algorithm is developed for grouping
and ordering of genome-wide markers and is implemented in a user-friendly, integrated software package (AMMO). We perform extensive
analyses to validate the power and accuracy of our approach in the model plant Arabidopsis thaliana and human. We also demonstrate the utility
of RadMap for enhancing the contiguity of a variety of whole-genome shotgun assemblies generated using either short Illumina reads (300 bp) or
long PacBio reads (6–14 kb), with up to 15-fold improvement of N50 (�816 kb-3.7 Mb) and high scaffolding accuracy (98.1–98.5%). RadMap
outperforms BioNano and Hi-C when input assembly is highly fragmented (contig N50 = 54 kb). RadMap can capture wide-range contiguity
information and provide an efficient and flexible tool for high-resolution physical mapping and scaffolding of highly fragmented assemblies.
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NEXT-GENERATION sequencing (NGS) technologies,
which enable the simultaneous production of billions

of short reads at a very low cost per sequenced base, have

provided unprecedented possibilities for genome sequencing
(Shendure and Ji 2008; van Dijk et al. 2014; Goodwin et al.
2016). The recent advances in sequencing throughput and
genome-assembly algorithms have resulted in a rapid prolif-
eration of whole-genome shotgun (WGS) assemblies that
represent the cornerstones for decoding genome structures
and functions in a wide range of organisms (Ellegren 2014).
Despite these significant advances, many of the produced
genome assemblies are highly fragmented, and one major
obstacle in using WGS assemblies for important research ap-
plications such as genome-wide association or comparative
genomics has been the lack of chromosomal positioning and
contextualization of short sequence contigs (Alkan et al.
2011; Mascher and Stein 2014). Currently, challenges re-
main in generating well-assembled reference genomes due
to the short reads produced via the NGS platforms and to the

Copyright © 2017 Dou et al.
doi: https://doi.org/10.1534/genetics.117.200303
Manuscript received January 18, 2017; accepted for publication April 17, 2017;
published Early Online May 2, 2017.
Available freely online through the author-supported open access option.
This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.
Supplemental material is available online at www.genetics.org/lookup/suppl/doi:10.
1534/genetics.117.200303/-/DC1.
1Present address: Department of Computational and Systems Biology, Genome
Institute of Singapore, Biopolis 138672, Singapore.

2These authors contributed equally to this work.
3Corresponding authors: College of Marine Life Sciences, Ocean University of China,
5 Yushan Rd., Qingdao 266003, Shandong, China. E-mail: swang@ouc.edu.cn; and
zmbao@ouc.edu.cn

Genetics, Vol. 206, 1237–1250 July 2017 1237

http://orcid.org/0000-0002-9571-9864
https://doi.org/10.1534/genetics.117.200303
http://creativecommons.org/licenses/by/4.0/
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.200303/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.200303/-/DC1
mailto:swang@ouc.edu.cn
mailto:zmbao@ouc.edu.cn


complexities of large eukaryotic genomes with high levels of
repetitive elements (Earl et al. 2011; Treangen and Salzberg
2012; Goodwin et al. 2016).

Diverse strategies have been developed to boost the con-
tiguity of WGS assemblies from short reads, with primary
efforts on either increasing the read length generated from
sequencing platforms or increasing the DNA fragment size
used for sequencing. However, none of these strategies offers
the “perfect” solution and each has its own strength and
weakness. Long-read sequencing technologies can provide
10–15-kbp reads to build larger contiguous sequences but
these are at the expense of high sequencing costs and/or high
error rates (e.g., PacBio SMRT or Oxford Nanopore) (Koren
et al. 2012; Voskoboynik et al. 2013; Goodwin et al. 2015).
Mate-pair libraries can be prepared from large-insert fosmid
clones (35–40 kb), but remain technically challenging as
custom-modified vectors are required and a complicated exper-
imental procedure is involved (Williams et al. 2012; Wu et al.
2012). The “subhaploid”-based sequencing methods [e.g.,
fosmid dilution pool sequencing, contiguity-preserving trans-
position sequencing (CPT-seq)] provide useful midrange con-
tiguity information, but rely on extensive sequencing of
hundreds to thousands of subhaploid pools (Kitzman et al.
2011; Zhang et al. 2012; Adey et al. 2014). The Hi-C and
related methods can capture long-range chromatin interac-
tions at multimegabase-length scales (Burton et al. 2013;
Kaplan and Dekker 2013; Putnam et al. 2016) but their per-
formance is usually suboptimal on input assemblies with
short scaffold sizes (Adey et al. 2014).

Physical maps are indispensable tools in early eukaryotic
genome projects where they provide an essential framework
for ordering and joining sequence data, genetically mapped
markers, and large-insert clones, and can also be used alone
to isolate genes of interest, to home in on particular regions
for sequencing, or to compare the organizations of different
species’ genomes (Meyers et al. 2004; Lewin et al. 2009;
van Oeveren et al. 2011). Despite these advantages, tradi-
tional physical mapping approaches have been, however, less
favorable in the NGS era, because the creation and profiling
of bacterial-artificial-chromosome (BAC) libraries remains la-
bor intensive, time consuming, and expensive; e.g., physical
mapping based on a 103 human BAC library would have to
deal with �200,000 BAC clones. As an appealing alternative
to clone-based physical mapping approaches, optical map-
ping generates genome-wide restrictionmaps based on sizing
of restriction fragments (Teague et al. 2010; Neely et al.
2011), which can provide both midrange and long-range
contiguity information and has been widely applied in finish-
ing large, complex eukaryotic genomes (Zhou et al. 2009;
Lam et al. 2012; Dong et al. 2013). Nevertheless, efficient
and accurate application of this methodology relies on expen-
sive instruments (e.g., OpGen Argus and BioNano Genomics
Irys systems) (Levy-Sakin and Ebenstein 2013), limiting its
accessibility to ordinary laboratories.

Physical ordering of genome-wide markers represents an
appealing way to generate high-resolution physical maps in a

rapid and cost-effective manner. The HAPPY mapping
method, which was invented by Dear and Cook (1993), holds
great promise to achieve this goal (Piper et al. 1998;
Konfortov et al. 2000; Hall et al. 2002; Eichinger et al.
2005). HAPPY mapping is a genome mapping method that
is analogous to classical linkage mapping except that the
chromosome breakage and segregation are replaced by
in-vitro analogs. Its procedure involves breaking intact geno-
mic DNA at random, segregating the fragments into aliquots
(�0.3–0.7 haploid genome equivalent; Dear 2005) by limit-
ing dilution and measuring the frequency of cosegregation of
markers among the aliquots. It generates a map based on the
premise that linked pairs of markers will cosegregate signif-
icantly more frequently than unlinked markers and in a man-
ner that is proportional to their physical proximity (Dear and
Cook 1993). Unlike classical linkage mapping methods,
HAPPY mapping does not require any polymorphic markers;
so any piece of DNA can be mapped to a genomic region.
HAPPY mapping can also be easily adapted to any desired
level of resolution, in particular, to a high resolution of ge-
nome maps (Konfortov et al. 2000), in contrast to limited
resolution of classical linkage mapping methods due to the
infrequency of meiotic recombination (e.g., for human, one
marker per 106 bp; White and Lalouel 1988). However, be-
cause each aliquot in a HAPPY panel contains very little ge-
nomic DNA (e.g.,,3 pg for humanDNA; Dear 2005), the lack
of faithful amplification of each aliquot DNA to provide
enough material for genotyping a large number of markers
has been the bottleneck of this method (Jiang et al. 2009),
and this has prevented such a simple and powerful method
from coming into general use since it was invented 20 years
ago.

Here, we develop a new approach by incorporating two
major technical improvements to the original HAPPY map-
ping method: (i) use of fosmid/BAC clone pools as a HAPPY
mapping panel to bypass the requirement of PCR-based am-
plification of each aliquot of DNA, and (ii) use of the 2b-
restriction site-associated DNA sequencing (2bRAD-seq)
(Wang et al. 2012) for high-throughput marker profiling
and whole-genome restriction mapping. The new approach,
which we called RadMap, provides an efficient and flexible
method for high-resolution physical mapping and genome
scaffolding. We perform extensive analyses (both in silico
and experimentally) to validate the power and accuracy of
our approach in human and the model plant Arabidopsis
thaliana by generating high-quality restriction maps and en-
hancing the contiguity of various WGS assemblies generated
using either short Illumina paired-end reads (300 bp) or long
PacBio reads (6–14 kb).

Materials and Methods

In silico data sets

Four simulation data sets were created from the genome
of the model plant A. thaliana (�120Mbp, five chromosomes,
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version TAIR10) and human genome (�3.1 Gbp, 22 auto-
somes + X + Y, version GRCh37), by in-silico generation
and sequencing of 100 fosmid (40-kb) and 100 BAC (100-kb)
clone pools for each species. Briefly, DNA fragments with a
mean size of 40 kb (fosmid) and 100 kb (BAC) were ran-
domly sampled from the reference genome sequence of
each species. These fragments were then distributed into
100 clone pools evenly, with each pool covering�0.53 hap-
loid genome. 2bRAD-seq was simulated by extracting all
BsaXI tags from each pool, constituting the final mapping
data sets.

Preparation of the fosmid mapping panel

Fosmid library pool construction for A. thaliana was per-
formed by basically following the experimental procedure
as previously described (Kitzman et al. 2011). Briefly, high
molecular weight (HMW) genomic DNAwas extracted from
leaf tissues using the conventional cetyltrimethyl ammo-
nium bromide method. The DNA was then end repaired
and size selected as 30- to 48-kb fragments using field in-
version agarose gel electrophoresis (FIGE; Bio-Rad, Hercu-
les, CA). Ligation of the collected fragments into the fosmid
vector pCC1FOS was according to the manufacturer’s pro-
tocols (CopyControl Fosmid Library Production kit; Epi-
centre). Fosmid clones were packaged using MaxPlaxi
Lambda Packaging Extract. After bulk infection, the library
was split into 164 pools with each consisting of �1000
clones (�0.33 haploid genome coverage). Clone DNA was
extracted from each pool using the FosmidMAX DNA Puri-
fication kit (Epicentre).

2bRAD-seq and genotyping

2bRAD librarieswere constructed for each clone pool by using
the type IIB restriction enzyme BsaXI, and following the pro-
tocol developed by Wang et al. (2012). The adaptors with 59-
NNN-39 overhangs were used to target all BsaXI fragments in
the A. thaliana genome. A unique barcode was incorporated
into each library during library preparation, and then all li-
braries were pooled for single-end sequencing (1 3 50 bp)
using an Illumina HiSeq2000 sequencer.

Raw reads were first preprocessed to remove unreliable
ones with no restriction site, ambiguous basecalls (N), long
homopolymer regions, or excessive low-quality positions
using the RADtyping program under default parameters (Fu
et al. 2013). The obtained high-quality reads were further
filtered by mapping against �103 MiSeq PE300 WGS data
set (generated in this study) using the SOAP2 program (pa-
rameters -M 4, -v 2, -p 1 -r 2; Li et al. 2009) to remove non-
Arabidopsis reads (e.g., derived from fosmid vector and host
bacteria). Clean reads from all clone pools were combined
together and assembled into “locus” clusters using the
Ustacks program (Catchen et al. 2011) by allowing at most
two mismatches (parameters -m 2 -M 4). A collection of
consensus sequences from all locus clusters comprises a
set of representative reference sites. For marker genotyping,
supposing that the cluster depth of the ith site in the jth pool is

Cij, this site is genotyped as “1” if Cij. c (c is set to 2 here), “0”
otherwise. Only representative sites with the percentage of
“presence” among all pools falling into the interval [a, 1-a]
(a is set to 0.1 here) were retained for further map
construction.

Grouping and ordering of restriction sites

We denote n as the total number of markers and Dij as the
Hamming distance of a pair of markers (li and lj). If the phys-
ical distance between the two markers is very large (typically
larger than DNA clone size), we have the expectation of Dij as
EðDijÞ ¼ 0:5n and PðDij , dÞ, e22ð0:5n2dÞ=n; where d, 0:5n;
the detailed proof can be found in Wu et al. (2008). To elim-
inate the effect of genotype uncertainties on the accuracy of
map order, we develop a bootstrap-based minimum span-
ning tree (bMST) algorithm for grouping and ordering the
markers.

Our iteration procedure is described as follows. Setting the
initial iteration s ¼ 0;we subsample 80% of samples from the
original data set and obtain the corresponding Hamming dis-
tance Ds

ij for each pair of markers. We perform R replicates
and obtain the distance vector for each pair of markers (li and
lj) as fDs0

ij ;D
s1
ij ; . . . ;D

sR
ij g. The pair of markers will be assigned

into one group if there are at least 0.6R replicates satisfying
Dsr
ij ,0:5nf1þ ln½pðsÞ�g; where pðsÞ is chosen from 1022 to

10220 to produce about n/100 initial groups (n= total num-
ber of markers). Applying this rule to all the pairs of markers,
we can obtain the initial linkage groups fLs1; Ls2; . . . ; Lsskg.
The minimum spanning tree (MST) algorithm (Wu et al.
2008) is used to determine an optimal order of markers
within each linkage group.

In the second phase, we set the iteration s ¼ sþ 1 and
regard the above-determined linkage groups as k nodes,
and define the distance between the nodes i and j as
dsij ¼ minfDs0

ab

�� a 2 Lsi ; b 2 Lsjg. Similarity, we also perform
R replicates by subsampling 80% of samples and obtain the
distance vector for each pair of groups (i and j) as
fds0ij ; ds1ij ; . . . ; dsRij g. The pair of groups will be clustered into
the supergroup if there are at least 0.6R replicates satisfying
dsrij , 0:5nf1þ ln½pðsÞ�g. In this way, we can get the corre-
sponding supergroups fLs1; Ls2; . . . ; Lsskg The MST algorithm
is used again to determine an optimal order of markers within
each supergroup. Then, the process of the second phase is
repeated and stops when there is no change in the number of
groups or the number of groups is smaller than the threshold
defined by the user.

We have developed a user-friendly, integrated software
package (AMMO) for implementing themarker grouping and
ordering algorithms (Supplemental Material, File S1), the
newest version of which is freely available at http://www2.
ouc.edu.cn/mollusk/detailen.asp?id=752.

Determination of the optimal sequencing coverage
for RadMap

The choice of sequencing coverage is critical because
proper sequencing coverage saves the total sequencing
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cost but without excessive false genotyping negatives. To
determine the optimal sequencing coverage for RadMap,
we conducted a mathematical analysis of the relationship
of sequencing coverage and marker false negative rate
(FNR).

Denote the average sequencing coverage as C. For a 2bRAD
data set, the read depth k for each unique restriction site theo-
retically follows the Poisson distribution, assuming that all sites
across the genome are evenly sequenced (Dou et al. 2012):

Poissonðk j CÞ � Cke2C

k!
:

If the observed depth of one site is no more than 2, we regard
the genotype of this site as 0 or “undetermined,” indicating
that this marker information cannot be captured using the
threshold method. Therefore, the FNR can be represented as:

FNR ¼
X

k,3

Cke2C

k!
¼ e2C�1þ C þ 0:5C2�:

Input WGS assemblies and RadMap-based scaffolding

Shotgun genomic libraries were prepared for the ecotype
Columbia (Col-0) of A. thaliana, and were sequenced based
on Illumina MiSeq and PacBio RSII platforms. One paired-
end DNA library with insert size of �500–550 bp was con-
structed by following the Illumina standard DNA library
preparation protocol and was then sequenced using the Illu-
mina MiSeq PE300 platform. Raw reads were first filtered to
remove low-quality reads resulting from base-calling dupli-
cations or adapter contamination. Clean reads were assem-
bled using four de novo assemblers: Celera (Myers et al.
2000), SOAPdenovo2 (Luo et al. 2012), ABySS (Simpson
et al. 2009), and SPAdes (Bankevich et al. 2012). PacBio
library preparation and sequencing was performed at the
Yale Center for Genome Analysis (read length: 5–8 kb).
PacBio reads were first preprocessed and error corrected based
on Illumina PE300 reads using ECTools pipeline (Lee et al.
2014), and then they were assembled into contigs using a
simple greedy algorithm implemented in IPython and Python
(http://nbviewer.ipython.org/urls/raw.github.com/cschin/
Write_A_Genome_Assembler_With_IPython/master/Write_
An_Assembler.ipynb). The PacBio assembly data set (from a
20-kb insert library) recently released for the ecotype Ler-0
of A. thaliana was also included in our analysis, which was
retrieved from the Pacific BiosciencesWeb site (http://www.
pacb.com/blog/new-data-release-arabidopsis-assembly/).

The obtained WGS assemblies were used as the input for
RadMap-aided scaffolding based on the hierarchical assem-
bly algorithm. The RadMap-based scaffolding approach is
analogous to the marker grouping and ordering method as
described above except that the BsaXI tags derived from the
same contig were preassigned into one linkage group (i.e.,
fL01; L02;⋯L00kg are the contigs consisting of at least one BsaXI
tag). The effectiveness of RadMap in scaffolding WGS

assemblies was evaluated using a series of metrics including
linkage group number, N50 size, N90 size, genome cover-
age, and average map accuracy. The N50/N90 size is a
weighted median statistic such that 50 or 90% of the entire
assembly is contained in contigs or scaffolds equal to or
larger than this value. Genome coverage refers to the per-
centage of the genome that is contained in the assembly. The
contigs that are not anchored by scaffolding technologies
are not included for calculation of genome coverage. The
average map accuracy was measured using Kendall’s statis-
tic and a detailed description about Kendall’s statistic can be
seen in Wu et al. (2008). The gap sizes between contigs
or scaffolds were estimated using the piecewise cubic Her-
mite interpolation method. We extracted and compared
the physical distance and corresponding map distance of
pairs of BsaXI tags that were located in the same contigs,
and used this information for model training and parameter
estimation.

Genome scaffolding of A. thaliana by BioNano and Hi- C

Scaffolding the WGS assemblies of A. thaliana by BioNano
(optical mapping) and Hi-C was conducted for comparison
with RadMap. For the BioNano technique, an assembled
optical map (total size, 124.0 Mb; N50, �1.86 Mb; 101 con-
tigs) of A. thaliana Col-0 generated by a previous study
(Kawakatsu et al. 2016) was downloaded from http://
signal.salk.edu/opticalmaps/Col-0.cmap. This physical map
was generated from HMW DNA nicked with the Nt.BspQI
enzyme using the IrysView platform (BioNano Genomics).
The WGS assemblies of A. thaliana derived from short Illu-
mina reads or long PacBio reads were converted into .cmap
format and then aligned to the Col-0 optical map using the
perl script (stitch.pl; Shelton et al. 2015) with default param-
eters (-e BspQI -f_con 20 -f_algn 40 -s_con 15 -s_algn 90 -n
20000 -T 1e-8). For the Hi-C technique, we retrieved the Hi-C
data [National Center for Biotechnology Information Se-
quence Read Archive (SRA) accession number SRP043612]
of A. thaliana Col-0 from a previous study (Feng et al. 2014),
which were sequenced on an Illumina HiSeq2000 platform
with pair-end 50-/51-nt reads. A total of 43.8 million Hi-C
reads were aligned to the WGS assemblies of A. thaliana
(�94.7% mapping rate, �17003 coverage), which were
then used to construct the scaffold graph and later to orient
and order contigs using the tool SALSA (Ghurye et al.
2016) with the default settings (link score.0; at least five
links for a pair of contigs). For technical comparison of
RadMap with BioNano or Hi-C, we focus on three metrics:
genome coverage, N50 and N90 of contig size, and scaf-
folding accuracy.

Data availability

The sequencing data generated by this studywere archived in
the SRA database (2bRAD data, SRP068747; Illumina MiSeq
and PacBio WGS data, SRP068748 and SRP068751). Simu-
lated data and codes were included in the supplementary
AMMO software package.
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Results

Overview of the RadMap approach

The schematic illustration of the RadMap approach is shown
in Figure 1. Briefly, a mapping panel is created by generating
hundreds of large-insert fosmid/BAC clone pools, with each
pool covering less than one haploid genome (e.g., �0.3–
0.73; Figure 1A). Unlike other clone-based physical mapping
approaches [e.g., whole-genome profiling (WGP), van Oeve-
ren et al. 2011; BAC-HAPPY (BAP), Vu et al. 2010], our clone
pooling approach (see Materials and Methods for details)
does not require isolation and maintenance of individual
fosmid/BAC clones in multiwell plates, the procedure of
which can be labor intensive, time consuming, and expen-
sive. The cloned DNA isolated from each pool is subject to
2bRAD-seq and genotyping, with each marker genotyped
based on its presence or “absence” in a given pool (Figure
1B). The genotypes collected from all pools are used to
estimate the pair-wise distance between markers. To de-
termine an optimal marker order, we develop a bMST al-
gorithm for the grouping and ordering of genome-wide
markers (Figure 1C; see Materials and Methods for algo-
rithm details), which is well suited for dealing with noisy
or incomplete mapping data. For genome scaffolding,
contigs/scaffolds from preassemblies can be directly an-
chored with the aid of the constructed map or similarly
ordered by regarding contigs/scaffolds as nodes (Figure
1D). The gap size between anchored contigs/scaffolds can

be estimated based on a linear regression model that is
established by comparing the map distance and true phys-
ical distance between markers. To facilitate the research
community to implement our approach, a user-friendly,
integrated software package (AMMO) is developed for
whole-genome restriction mapping and genome scaffold-
ing (File S1).

In silico analysis

Simulation-based evaluation of the RadMap approach was
first performed to investigate themethodological feasibility
and optimalmapping parameters. Four simulation data sets
were created from the entire A. thaliana genome (five
chromosomes) and human genome (22 autosomes + X +
Y) by generating 100 fosmid (40-kb) and 100 BAC (100-kb)
clone pools for each species for in silico 2bRAD-seq and
genotyping (BsaXI enzyme used here). A total of 35,618
unique BsaXI tags (i.e., markers) were successfully typed
for A. thaliana, whereas 1,118,736 unique BsaXI tags were
typed for human, with average marker distances of 3.3 and
3.0 kb, respectively (Table S1 in File S2). For the Arabi-
dopsis 40-kb data set, the 35,618 markers fell into 40 link-
age groups, while the linkage groups further reduced to
20 when the cloned fragment size increased to 100 kb
(Table 1). The performance of RadMap is also prominent for
human mapping panels with high marker density, where
407 and 361 linkage groups were obtained for the 40- and
100-kb data sets, respectively. The map continuity and

Figure 1 Overview of the RadMap ap-
proach for restriction mapping and genome
scaffolding. (A) Generation and sequencing
of subhaploid clone pools. A mapping
panel is created by generating a large-insert
fosmid (40 kb) or BAC (100 kb) library and
then splitting it into hundreds of clone
pools, with each pool representing less than
one haploid genome (�0.3–0.73). 2bRAD
libraries are prepared for each pool and
then pooled together for high-throughput
sequencing. (B) Marker genotyping. The
presence (1) or absence (0) of a marker in
each pool is determined according to the
sequencing depth of the marker, and the
coexisting frequencies of pairs of markers
across clone pools are used to estimate
the pair-wise distances between markers.
(C) Marker grouping and ordering. A bMST
algorithm is developed for grouping and
ordering genome-wide markers. For each
iteration, a certain number of clone pools
are randomly picked up to estimate the
pair-wise distance between markers, and
then markers are assigned into different
groups according to a specified threshold.

One pair of markers will be placed together if they exist in one group for .60% of replications. A new cycle starts by regarding the groups generated
from former cycle as new nodes, and the pair-wise distance between groups defined as the minimal distance among tags mapped along them. (D)
Genome scaffolding and gap-size estimation. For scaffolding a WGS-based preassembly, the bMST algorithm can take the contigs/scaffolds from the
assembly as the input for grouping and ordering as long as each contig/scaffold contains at least one BsaXI tag. The gap size between anchored contigs/
scaffolds can be estimated based on a linear regression model established by comparing the map distance and true physical distance between markers.
ctg, contig.
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accuracy statistics during the iterative marker-grouping
process are detailed in Table S2 in File S2. As expected,
many initially produced groups were comprised of rela-
tively fewer markers with few grouping errors, and further
grouping led to progressively larger groups with few mis-
assemblies introduced. Only slight changes in group num-
bers were observed after the ninth iteration. The final N50
sizes of obtained restriction maps for Arabidopsis-40 kb,
Arabidopsis-100 kb, human-40 kb, and human-100 kb
were 4.1, 12.7, 9.7, and 11.0 Mb, respectively (Table 1).
Remarkably, the average accuracy of within-group marker
orders as measured by Kendall’s metrics was .99.7% for
all cases (Figure S1 in File S2 and Table 1). Optimal se-
quencing coverage analysis suggests that the average se-
quencing coverage of RadMap should be no less than 73 to
ensure a low FNR (, 0.05) of marker genotyping (Figure
S2 in File S2); but in practice, higher sequencing coverage
(e.g., 10–203) may be preferred to account for noisy prac-
tical data. Overall, our simulation analysis supports that
the RadMap approach coupled with the hierarchical map-
ping algorithm allows for the effective build of high-quality
restriction maps even in species with large and complex
genomes.

Restriction mapping based on real data sets

To evaluate the performance of RadMap on real data sets,
we generated and sequenced 164 fosmid clone pools from
A. thaliana, with each pool targeting �0.33 haploid ge-
nome. A total of 1.5 billion 2bRAD reads were produced for
the 164 clone pools, with an average sequencing depth of
473 per pool (Table S3 in File S2). To check the quality of
obtained mapping data, we reconstructed fosmid clones in
each pool by detecting the blocks of mapped tags along the
reference genome (Figure 2A), based on the premise that
the tags derived from the same clone will be positioned
next to their correct neighbors, generating one cluster
along the reference genome. The mean size of recon-
structed clones was �35 kb (�65% of clones in the range
of 20–40 kb), using the average marker distance (3.4 kb)
as the basis for clone size estimation (Figure 2B). Some
reconstructed clones (28%) were longer than 40 kb,
likely resulting from the emergence of overlapping clones
during clone reconstruction. Each pool contained �665
reconstructed clones, representing 0.223 haploid genome
(Figure 2C).

One of the challenges in de novo analyzing of real RadMap
data is to reconstruct high-quality reference restriction sites
from noisy sequencing data. In our approach, BsaXI tags were
first filtered by mapping against �103WGS data (Figure S3
in File S2) to remove non-Arabidopsis tags (e.g., derived from
fosmid vector and host bacteria). The “clean” tags were then
clustered, resulting in 34,753 reference BsaXI sites. After
eliminating those sites that gave fewer (,16) or no positive
typing, or gave an unreasonably high proportion of positive
typing (.148 positives of 164 pools); 32,378 reference sites
ultimately remained. These reference sites represent 91% of

the unique BsaXI sites in silico predicted from the A. thali-
ana genome, highlighting the effectiveness of our de novo
site-reconstruction strategy. Marker linkage analysis first
generated 1398 primary linkage groups, and after the ninth
grouping step, the number of linkage groups shrunk in
1066 (�24% reduction) with the overall accuracy of marker
order being 97.8% (Table 2). The generated restriction map
has an N50 size of 265 kb and covers�109 Mb (92%) of the
A. thaliana genome, providing a valuable high-resolution
physical map for genome scaffolding and other genomic
applications.

Genome scaffolding by RadMap

We then evaluated the performance of RadMap for genome
scaffolding by generating a variety of WGS assemblies
(Table S4 in File S2) for A. thaliana using either short
Illumina reads (300 bp) or long PacBio reads (6–14 kb).
For the Illumina MiSeq data set, �253 paired-end reads
(PE300) were produced and used to create draft assem-
blies using four de novo assemblers: Celera (Myers et al.
2000), SOAPdenovo2 (Luo et al. 2012), ABySS (Simpson
et al. 2009), and SPAdes (Bankevich et al. 2012). Among
these assemblers, Celera generated the best assembly with
the contig N50 of 54 kb and a total length of 116 Mb (Table
S5 in File S2), which was chosen for further analysis. Our
RadMap approach facilitated anchoring 3322 contigs with
a genome coverage of 93% (Figure 3A). The final assembly
contained 460 scaffolds with an N50 size of 0.82 Mb (Table
3), representing a 15-fold improvement of N50 from the
initial assembly (Figure 4A). The consistency between the
obtained marker order by RadMap and actual marker po-
sitions along the reference genome was shown in Figure
3B, where most scaffolds contained no significant trans-
location or inversion errors. The gap distribution for the
final assembly was investigated, and most gaps were lo-
cated in the regions with a relatively low density of BsaXI
tags (Figure 3A). Among all the 2877 contigs links, only
56 errors (i.e., mis-joined contigs) were observed, indicat-
ing that 98.1% contigs were positioned next to the correct
neighbors by RadMap. Figure 5A shows the alignment of
a representative scaffold (scf276) to chromosome 1 of

Table 1 Summary of RadMap restriction mapping based on
simulation data sets

A. thaliana H. sapiens

Clone size (kb) 40 100 40 100

No. of linkage groups 40 20 407 361
N50 (Mb)a 4.1 12.7 9.7 11.0
N90 (Mb)a 0.8 4.9 2.7 2.8
Coverage (%)b 98.4 98.5 99.2 99.4
Accuracy (%)c 99.7 99.9 99.9 99.9
a The N50 of a map is defined as the length N for which 50% of the entire map is
contained in linkage groups with lengths equal to or larger than N. The map N90 is
similarly defined.

b Genome/chromosome coverage refers to the percentage of the genome/chro-
mosome that is contained in the map.

c Calculated according to Kendall’s statistic.
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A. thaliana (1.45–2.40 Mb), with its zoomed-in details
shown in Figure 5B. This scaffold consisted of 20 contigs,
with no linkage error introduced during the RadMap-
based scaffolding process.

We next sequenced a PacBio genomic library generated
from the ecotype Col-0 of A. thaliana, with the average read
length of 5.3 kb after error correction using Illumina short
reads (Table S4 in File S2). After assembling these long reads
at only 53 sequencing coverage, we were able to produce an
assembly with the contig N50 of 183 kb (Table 3), which was
three times better than the Illumina PE300-based assembly
(Celera version: 54 kb). By using 2640 contigs as the input,
RadMap assigned them into 273 scaffolds, with a 6-fold im-
provement of N50 (1.0 Mb) and 12-fold improvement of N90
(192 kb) (Figure 4B and Table 3). Among all the 620 links,
only 11 wrong links were observed, indicating a high accu-
racy of 98.2% for RadMap in contig anchoring (Figure 3B and
Table 3).

We also attempted to generate a chromosome-scale as-
sembly for the ecotype Ler-0 of A. thaliana by coupling
RadMap with the recently released long reads (�14 kb)
generated from the PacBio RSII system. The contig N50
obtained by assembling these long reads reached up to
553 kb when using only 53 sequencing reads. RadMap could
efficiently anchor input contigs with the final assembly hav-
ing an N50 size of 3.6 Mb, �6.6 times better than that of the
initial assembly (Figure 4C and Table 3). Overall, our results
suggest that RadMap can impressively boost the contiguity of

de novo genome assemblies, especially for those that are
highly fragmented.

As for gap-size estimation, we reasoned that the map
distance between a pair of markers might enable the estima-
tion of gap sizes between contigs/scaffolds. Figure 5A shows
howmap distance related to the known physical distances for
427,522 pairs of markers (,50 kb apart). Larger SE of phys-
ical distance could be observed with the increasing map dis-
tance, because a fosmid-range panel contains DNA fragments
with a mean size of �40 kb, beyond which linkage informa-
tion is not significantly above the background “noise” as seen
between unlinkedmarkers.We predicted the inter-contig gap
sizes using the piecewise cubic Hermite interpolation method
inwhich themodel was trained using the data set from Figure
6A, with the corresponding comparison between the true and

Figure 2 Generation and sequencing of 164 subhaploid clone pools in A. thaliana. (A) Visualization of fosmid clones distributed along the reference
genome. A partial region of chromosome 1 (0–1 Mb) is chosen for display of 10 clone pools. One red • represents a BsaXI tag. (B) The histogram of
estimated insert sizes of fosmid clones. It is shown that �65% of clones fall into the range of 20–40 kb. (C) Distribution of inferred clone numbers across
all clone pools. The average number of clones per pools is 665 (representing 0.223 haploid genome), with an SD of 85.

Table 2 Summary of hierarchical restriction mapping for the real
data set of A. thaliana

No. of groups No. of groups (>10 tags)

Step 1 1398 638
Step 2 1273 608
Step 3 1221 593
Step 4 1174 581
Step 5 1141 575
Step 6 1113 565
Step 7 1097 565
Step 8 1073 557
Step 9 1066 554
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predicted gap sizes shown in Figure 6B. It can be fitted well
using the linear regression model y = 0.7752x + 2496, with
the Pearson correlation r of 0.75, indicating a reasonable
estimation of gap sizes using this model.

Scaffolding comparison of RadMap with BioNano
and Hi- C

We further compared the scaffolding performance of RadMap
with the twomost widely used scaffolding methods, BioNano
(Lam et al. 2012) and Hi-C (Burton et al. 2013). The BioNano
and Hi-C data of A. thaliana Col-0 were retrieved from pre-
vious studies (Feng et al. 2014; Kawakatsu et al. 2016) and
their scaffolding performance was evaluated based on the
same set of input WGS assemblies that were used in RadMap
evaluation. In terms of the completeness of scaffolded assem-
blies (i.e., genome coverage), RadMap performs well (91.7–
98.1%), and is comparable to Hi-C (87.8–100%), but much
better than BioNano (30.1–62.8%) (Table 3). The poor per-
formance of BioNano may be related to its relatively high
mapping error rates (e.g., fragment sizing errors, false cuts,
and missing cuts; Li et al. 2016; Verzotto et al. 2016) and/or
inefficiency of capturing small contigs that contain too few
nicking sites to be useful for alignments. Further comparison
of RadMap and Hi-C revealed that RadMap performs better
than Hi-C in scaffolding the highly fragmented Illumina-
based input assembly (input N50, 54 kb; N90, 12 kb). The
N50 and N90 contiguity of the input Illumina assembly is
remarkably improved by RadMap to 816 and 145 kb, respec-
tively, in contrast to 373 and 65 kb in Hi-C (Table 3). For

PacBio-based input assemblies, Hi-C is apparently advanta-
geous over RadMap in producing a much longer N50 (5.4–
20.7 Mb vs. 1.0–3.7 Mb in RadMap) and N90 (583–2914 kb
vs. 192–482 kb in RadMap), though its scaffolding accuracy
(92.9–98.0%) is slightly lower than RadMap (98.2–98.5%)
(Table 3). Overall, our results suggest that RadMap would be
most advantageous in scaffolding highly fragmented assem-
blies, which can be a common situation if initial assemblies
are generated using short-read sequencing platforms.

Discussion

Technical barriers conquered by RadMap

The concept of HAPPY mapping, though very attractive, has
not come into general use since its invention �20 years ago,
due to the technical barriers imbedded in its original meth-
odology (Dear and Cook 1993; Jiang et al. 2009). It has been
envisioned as an “old-can-be-new-again” methodology in
the NGS era (Jiang et al. 2009), which calls for the develop-
ment of “next-generation” HAPPY mapping approach(es)
based on NGS platforms. In this study, we developed the
RadMap approach by incorporating technical improvements
to the original HAPPY mapping method and by combining
this with NGS platforms to provide an efficient and flexi-
ble way for high-resolution physical mapping and genome
scaffolding.

Mapping panel: In the RadMap approach, fosmid or BAC
clone pools are used to constitute a mapping panel to bypass

Figure 3 RadMap scaffolding of
different WGS assemblies of A.
thaliana. (A) Overview of three
RadMap-based assemblies, with
15.1-, 5.7-, and 6.6-fold improve-
ment of assembly contiguity.
From inner to outer rings are ge-
nome coordinates, BsaXI sites
with between-site distances over
40 kb, and RadMap scaffolding
of three WGS assemblies gener-
ated based on Illumina MiSeq
PE300, PacBio-5 kb, and PacBio-
14 kb data sets (Table 3), respec-
tively. The junctions between the
red and green bands for the out-
ermost three rings represent
the gaps in the assembled ge-
nome, and most gaps result from
genomic regions containing very
sparse BsaXI sites (between-site
distances .40 kb). (B) Dot-plot
comparison of the RadMap-based
assemblies and the reference ge-
nome (five chromosomes), showing
high accuracy of contig linkage with
Kendall’s statistic .0.98 (Table 3).
One red • represents one BsaXI
tag. Ctg, contig; Scaf, scaffold.
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the requirement of in-vitro amplification of a trace amount
of DNA (e.g., the haploid DNA mass is �3 pg for human;
Dear 2005) in the classic HAPPY mapping experiments,
which is technical challenging and has been considered
as the bottleneck of the original methodology (Jiang
et al. 2009). Such “in-vivo” propagation of each fragment
in bacteria ensures the unbiased “amplification” of the
whole fragment, and is thus superior to the PCR- or
multiple displacement amplification-based amplification
approaches. In addition, fosmid and BAC libraries are rel-
atively easy to establish (e.g., commercial kits and ser-
vices are available), and for many model species, such
libraries already exist. Even for nonmodel species, creating
new mapping panels is relatively easy and cost effective
because our clone pooling approach does not involve
the isolation and maintenance of individual fosmid/BAC
clones.

Marker system: Traditional HAPPY mapping experiments
weremostlybasedon low-throughput, labor-intensivemarker
systems (e.g., PCR-based STS markers; Dear 2005). The
advent of NGS technologies has greatly stimulated the de-
velopment of a variety of high-throughput genotyping-by-

sequencing (GBS) methods that use restriction enzymes for
genome complexity reduction to achieve genome-wide geno-
typing at minimal labor and cost (Andrews et al. 2016;
Wang et al. 2017). Among available GBS methods, 2bRAD
is more competent for coupling with the HAPPY mapping
approach. First, 2bRAD can produce short uniform tags
(32–36 bp) by using type IIB restriction enzymes to achieve
an even sequencing depth across restriction sites (Wang et al.
2012), which serves as an important technical basis for reli-
able dominant marker genotyping (i.e., tag presence vs. ab-
sence) as demonstrated in our previous studies (Fu et al.
2013; Jiao et al. 2014; Tian et al. 2015). Second, 2bRAD
can potentially target all restriction sites in the genome of
interest (Wang et al. 2012), and is thus well suited for gen-
erating a high-resolution physical map. Third, 2bRAD offers a
very simple library preparation procedure, which only con-
sists of four major steps (digestion, ligation, amplification,
and barcoding) and can be completed in �4 hr (Wang et al.
2012). Lastly, 2bRAD library preparation and sequencing are
very cost effective. With our recent technical improvements
(i.e., five tag concatenation for Illumina paired-end sequenc-
ing), the cost can reach �$8 per sample for library prepara-
tion and �$9 for sequencing 10 million reads per sample
(Wang et al. 2016).

Marker ordering algorithm: Searching for an optimal
order of high-densitymarkers is computationally challeng-
ing. Enumerating all the possible orders quickly becomes
infeasible because the total number of distinct orders is
proportional to n!, which can be very large even for a
small number n of markers (Wu et al. 2008). To circum-
vent this problem, we developed a bMST algorithm for
grouping and ordering of genome-wide markers. The
MST algorithm efficiently determines the optimal order
of markers by computing the MST of an associated graph,
and has been previously shown to outperform other com-
monly used tools (e.g., JOINMAP, CARTHAGENE, and
RECORD) for construction of genetic linkage maps (Wu et al.
2008). Because HAPPY mapping data can be noisy or in-
complete, our bMST algorithm groups and orders markers
in a stepwise manner, and by combining MST with a boot-
strap sampling strategy, the reliability of marker order
is iteratively measured and controlled. Our bMST algo-
rithm is therefore well suited for dealing with noisy
or incomplete mapping data, and its effectiveness has
been demonstrated in our simulation and real data-based
analyses.

Comparison of RadMap with other physical mapping/
genome scaffolding methods

Physical maps provide an essential framework not only for
ordering and joining sequence data, but also for detecting
structural variations or comparing the genome organiza-
tions of different species (Lewin et al. 2009). RadMap can
generate high-resolution physical maps in a rapid and cost-
effective manner, with several advantages over existing

Table 3 Metrics for scaffolding the WGS assemblies of A. thaliana
by RadMap, BioNano, and Hi-C

De novo WGS
assemblies MiSeq PacBio1 PacBio2

Read length (bp) 300 5000 14,000
Read depth 253 53 53
Coverage 115.7 (97.2%) 121.7 (101.6%) 124.9 (104.3%)
No. of contigs 4502 2640 799
N50 size (kb) 54.1 183.4 552.7
N90 size (kb) 12.2 15.5 100.5

RadMap-based scaffolding
Coverage 109.8 (91.7%) 115.9 (96.7%) 117.5 (98.1%)
No. of scaffolds 460 273 99
N50 size (kb) 815.9 1038.0 3,653.3
N90 size (kb) 144.5 191.9 481.7
No. of links 2877 620 268
No. of wrong linksa 56 11 4
Accuracy (%) 98.1 98.2 98.5

BioNano-based scaffolding
Coverage 36.1 (30.1%) 72.3 (60.4%) 75.2 (62.8%)
No. of scaffolds 34 56 35
N50 size (kb) 1433.3 1700.7 2,596.9
N90 size (kb) 572.9 685.2 1,164.7
No. of links 75 166 87
No. of wrong linksa 0 0 0
Accuracy (%) 100 100 100

Hi-C-based scaffolding
Coverage 105.1 (87.8%) 117.6 (98.2%) 120.3 (100.5%)
No. of scaffolds 618 126 62
N50 size (kb) 373.1 5441.1 20,739
N90 size (kb) 64.9 582.8 2,914
No. of links 2063 1413 439
No. of wrong linksa 22 28 31
Accuracy (%) 98.9 98.0 92.9

a Wrong links refer to the cases where contigs are positioned next to the wrong
neighbors when comparing to the reference genome.
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physical mapping methods. A technical comparison be-
tween RadMap and other physical mapping methods is
summarized in Table 4. First, RadMap and optical mapping
can achieve high-resolution mapping by the construction
of genome restriction maps, while other maps are usually
of lower resolution due to the low-throughput marker

system used in the traditional HAPPY map and radiation
hybrid (RH) map (Cox et al. 1990) or the ordering of only
large-insert clones but not markers (i.e., tags within a
clone are unordered) in the WGP approach (van Oeveren
et al. 2011). Second, though being analogous to optical
mapping, RadMap is sequence based and is thus more

Figure 5 Examples of RadMap-
linked contigs. (A) Overview and
(B) zoomed-in detail of one geno-
mic region located on the chro-
mosome 1 (1.45–2.40 Mb) of A.
thaliana, which consists of 20 con-
tigs generated from 253 MiSeq
PE300 data set, with BsaXI tag
or contig orders highly consistent
with the reference genome. Chr,
chromosome; Ctg, contig.

Figure 4 The continuity of the RadMap-based assemblies. The A. thaliana chromosomes are painted with assembled contigs. Alternating shades
indicate adjacent contigs, and each vertical transition from gray to black represents a contig boundary or alignment breakpoint. The left half of each
chromosome shows the input assembly of (A) 253MiSeq PE300 data set, (B) 53 PacBio-5 kb data set, and (C) 53 PacBio-14 kb data set, while the right
half shows the corresponding RadMap-based assembly. The RadMap-based assemblies are considerably more continuous, with 15-, 6-, and 7-fold
improvement of N50 and 12-, 12-, and 5-fold improvement of N90. Chr, chromosome.
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convenient to be used in downstream applications (e.g.,
a single unique tag is enough for anchoring a contig/
scaffold). Third, RadMap does not rely on expensive special-
ized instruments or cell lines (as in optical mapping and
the RH map), and is therefore more cost effective and ac-
cessible to laboratories focusing on diverse nonmodel spe-
cies. Lastly, unlike other clone-based methods (e.g., WGP,
BAP), RadMap only creates subhaploid clone pools, and
does not require the isolation and maintenance of individ-
ual fosmid/BAC clones, which can be a labor-intensive,
time-consuming, and expensive procedure.

Our study shows that RadMap outperforms BioNano and
Hi-C (the two most widely used scaffolding methods) when
the contigN50 of input assembly is as low as 54 kb, suggesting
that RadMap is well suited for scaffolding highly fragmented
assemblies (which is common when initial assemblies are
generatedusing short-read sequencingplatforms).As for cost,
producing a whole-genome restrictionmap for Arabidopsis by
RadMap is �$1800, which includes the costs of the fosmid/
2bRAD library preparation and Illumina sequencing of
100 subhaploid clone pools with 5 million reads for each
pool. The commercial price for generation of a BioNano
map for Arabidopsis is �$4000 (from DNA extraction to
BioNano sequencing), while it is �$1900 for Hi-C library
preparation and sequencing of a single Arabidopsis sample.
Therefore, the cost for producing a whole-genome restriction
map by RadMap is comparable to or cheaper than using
the commercial services of Hi-C and BioNano. In addition,
RadMap does not require a specialized instrument (compared
with BioNano) and is relatively less technically demanding
(compared to Hi-C), as fosmid/BAC library construction and
RAD sequencing are both widely applied techniques. These
advantages make RadMap an attractive method for genome

scaffolding applications, especially when dealing with highly
fragmented assemblies.

Population sequencing (POPSEQ) is analogous to RadMap
but is based on a genetic-linkage mapping strategy (Mascher
et al. 2013). Through whole-genome sequencing of a map-
ping population, POPSEQ allows for construction of an ultra-
high-density genetic map to facilitate the genome scaffolding
process (Mascher et al. 2013). While the POPSEQ method is
powerful, RadMap does have advantages over POPSEQ in
some situations. First, RadMap is suited for genome mapping
in species where making a controlled cross is impossible.
Second, RadMap relies on in-vitro random chromosome
breakage and segregation, whereas POPSEQ relies on in-vivo
genetic recombination. POPSEQ may not be an appropriate
choice when the target species has a highly uneven distribu-
tion of genetic recombination across the chromosome (e.g., in
an extreme case, recombination occurred only in�13% of the
chromosome; see Sandhu and Gill 2002). Third, for genome
scaffolding, gap size between contigs can be readily estimated
by RadMap since it generates a physical map. The gap-size
estimation is, however, difficult for POPSEQ as it generates a
genetic map and “genetic” distance is more difficult to be con-
verted to “physical” distance without prior knowledge of the
recombination characteristics of target species.

To date, assembling highly heterozygous, polyploid, or
largely expanded genomes remains very challenging. For
mapping heterozygous genomes, we expect no major barrier
for theRadMapapproach. 2bRADtags are very short (�35bp)
so they should have very little chance of carrying many poly-
morphic loci. For example, containing one, two, and three
polymorphic loci in a single tag corresponds to heterozygosity
levels of 2.9, 5.7, and 8.6%, respectively, but the latter two
levels are rarely seen in existing eukaryotic genomes (Leffler

Figure 6 Gap-size estimation. (A)
The relationship between map dis-
tance and true physical distance.
The inter-contig map distances are
obtained from the RadMap assem-
bly generated using the MiSeq
PE300 data set and the corre-
sponding true physical distances
are determined according to the
reference genome. The map dis-
tances range from 0 to 0.5 and
are split into 50 bins. The red line
refers to the average physical dis-
tance of pairs of markers for each
bin, and the cyan region denotes
the corresponding SE region. Note
only the pairs of markers with phys-
ical distance no longer than 50-kb
apart are included here. (B) Com-
parison of the true and predicted
inter-contig gap sizes. The dashed
line indicates the linear least
squares fit of y = 0.7752x +
2496, with the Pearson correlation
r of 0.75.
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et al. 2012). Therefore, for most heterozygous genomes, the
majority of 2bRAD tags in the genome should contain 0–1
polymorphic loci which would not affect the tag identity and
mapping accuracy. In fact, RadMap may be a good choice
for scaffolding heterozygous genomes as assembly of hetero-
zygous genomes based on short-read platforms usually pro-
duces highly fragmented assemblies, and RadMap apparently
outperforms other scaffolding methods (e.g., BioNano and
Hi-C) in such situations. However, for polyploid or largely
expanded genomes, application of the RadMap approach
may meet difficulties due to inefficient distinction of short
tags from different genomic regions with high sequence sim-
ilarity and/or insufficient clone sizes for forming effective
linkage groups. In such situations, alternative methodologies
may be more appropriate, e.g., PacBio sequencing and assem-
bly of fosmid/BAC dilution pools followed by Hi-C-based
scaffolding.

Genome scaffolding with high flexibility

Having a high-quality reference genome assembly for an
organism is critical to the understanding of its biology
and evolutionary relationship with other organisms. How-
ever, finishing a whole-genome assembly is often difficult
(especially based on NGS platforms), leading to very few
high-quality, chromosome-scale assemblies currently being
available for large and complex genomes. Diverse strategies
have been developed to boost the contiguity of WGS genome
assemblies from short reads, with some competent at captur-
ing midrange contiguity (e.g., mate-pair sequencing and
CPT-seq) and others at capturing chromosome-scale conti-
guity (e.g., Hi-C and related methods). It is preferable for all
levels of contiguity information to be collected from one
approach. However, such “one-size-fits-all” approach re-
mains yet underdeveloped. RadMap holds great potential
to achieve this goal, as it can facilitate genome scaffolding
with high flexibility in both genome connectivity and map-
ping resolution.

Choice of clone size: RadMap can be coupled with different
types of clone libraries to cover a wide range of genome
connectivity, such as plasmid (�2–4 kb), l-phage (up to
25 kb), fosmid (�35–40 kb), BAC (�100–300 kb), yeast
artificial chromosome (YAC) (up to 2 Mb). While we expect
that fosmid/BAC libraries should be effective in most ge-
nome scaffolding applications, long-span libraries (e.g.,
YAC) may be necessary when dealing with very large
genomes.

Adjustment of marker density: Apart from the restriction-
enzyme replacement that is usually adopted in other GBS
methods for marker density adjustment, the 2bRAD marker
system also provides a convenient and reproducible way to
fine tune marker density by means of selective adaptors
(Wang et al. 2012; Jiao et al. 2014). For example, a wide
range of representations can be potentially achieved in Arab-
idopsis, ranging from one-quarter of all sites (NNR overhang
on both adaptors) to 1/256th of all sites (NGG overhangs on
both adaptors). With this option, researchers can fine tune
map resolution to meet specific purposes (e.g., high marker
density for fosmid/BAC libraries and lowmarker density for a
long-span YAC library).

Conclusion

Wedevelop a sequencing-basedHAPPYmapping approach,
which provides an efficient and flexible tool for high-
resolution physical mapping and genome scaffolding. We
perform extensive analyses to validate the power and ac-
curacy of our approach in bothmodel and nonmodel species
for generating high-quality restriction maps and enhancing
the contiguity of WGS assemblies generated from short-
read and long-read platforms. We envision that RadMap
will become an integral part of the growing suite of scaf-
folding technologies for routine application in complex
genome-sequencing projects to achieve chromosome-scale
genome assemblies.

Table 4 Technical comparison between RadMap and other physical mapping methods

RadMap HAPPY map RH map WGP Optical mapping

Map element Restriction site STS markers STS markers BAC clones Restriction site
Map resolution (kb) �4 14 40 �100–200 0.65
Clone format Subhaploid

clone pools
NA NA Individual clones NA

Cell lines NA NA Required NA NA
Marker system 2bRAD STS STS AFLP NA
Sequencing based Yes No No Yes No
Specialized instrument NA NA Linear accelerator NA OpGen Argus or BioNano

Irys systems
Accessibility to a wide

range of organisms
High High Low High High

Cost (including time and labor)
for high-resolution map

Low High High High Medium
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