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Abstract

Patellofemoral pain (PFP) is commonly caused by abnormal pressure on the knee due to

excessive load while standing, squatting, or going up or down stairs. To better understand

the pathophysiology of PFP, we conducted a noninvasive patellar tracking study using a C-

arm computed tomography (CT) scanner to assess the non-weight-bearing condition at 0˚

knee flexion (NWB0˚) in supine, weight-bearing at 0˚ (WB0˚) when upright, and at 30˚

(WB30˚) in a squat. Three-dimensional (3D) CT images were obtained from patients with

PFP (12 women, 6 men; mean age, 31 ± 9 years; mean weight, 68 ± 9 kg) and control sub-

jects (8 women, 10 men; mean age, 39 ± 15 years; mean weight, 71 ± 13 kg). Six 3D-land-

marks on the patella and femur were used to establish a joint coordinate system (JCS) and

kinematic degrees of freedom (DoF) values on the JCS were obtained: patellar tilt (PT, ˚),

patellar flexion (PF, ˚), patellar rotation (PR, ˚), patellar lateral-medial shift (PTx, mm), patel-

lar proximal-distal shift (PTy, mm), and patellar anterior-posterior shift (PTz, mm). Tests for

statistical significance (p < 0.05) showed that the PF during WB30˚, the PTy during NWB0˚,

and the PTz during NWB0˚, WB0˚, and WB30˚ showed clear differences between the

patients with PFP and healthy controls. In particular, the PF during WB30˚ (17.62˚, exten-

sion) and the PTz during WB0˚ (72.50 mm, posterior) had the largest rotational and transla-

tional differences (JCS Δ = patients with PFP—controls), respectively. The JCS coordinates

with statistically significant difference can serve as key biomarkers of patellar motion when

evaluating a patient suspected of having PFP. The proposed method could reveal diagnos-

tic biomarkers for accurately identifying PFP patients and be an effective addition to clinical

diagnosis before surgery and to help plan rehabilitation strategies.

Introduction

Approximately 25% of patients presenting with knee pain to musculoskeletal clinics are diag-

nosed with patellofemoral pain (PFP) [1]. Although extensively studied, the precise cause of

PFP has not yet been entirely resolved because of the complexity of the interactions of
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biomechanical factors that can influence the patellofemoral joint (soft tissue and bone) [2].

Clinically, PFP is a symptom of excessive loading and often, abnormal motion of the patella

(patellar maltracking) [3].

Typically, half of PFP patients are imprecisely diagnosed with patellar maltracking [4]

based on the lateral translation of the patella in full knee extension. To prevent this kind of

wrong diagnosis, we need to know the differences in the knee motion between patients and

healthy people. Especially, we can distinguish patellar maltracking by lateral translation of the

patella and other various features because the cause of PFP differs in patients with various fea-

tures. Hence, additional tools are needed to easily distinguish patellar maltracking by lateral

translation of the patella from the other features [5, 6].

Patellar tracking is typically performed by measuring the physical motion of the patella in

the upright, squatting, and supine positions [7, 8]. Patellar tracking provides useful informa-

tion during weight-bearing (WB) activities and can allow accurate diagnosis of PFP to ensure

appropriate treatment. If the direct patellar tracking test is too difficult for patients with PFP,

the treatment course can be determined by imaging only [9].

However, the understanding of patellar tracking remains limited. Few studies have

described static and dynamic patellofemoral alignments [10–13]. Most studies only described

restrictive conditions during non-weight-bearing (NWB) activities in the supine position [14–

18]. Especially, one study stated that patellar tracking by unnatural and forced contraction of

the quadriceps muscle is performed to assess the impact of joint loading [19, 20]. Another

study provided the patellar motion data only during the NWB condition [21]. Research using

tracking methods also has challenges. Some tracking marker studies used a metal pin (the

tracking marker) inserted into the leg. The metal pin is not part of the patients’ treatment and

may be unsafe [12]. One study introduced an electronic tracking device. However, they could

not accurately measure the natural patella motion from the patient due to the insecure sensor

attachment when moving. A signal sent by a device should be frequently corrected to get reli-

able data because of the sensor response and signal noise [22]. The devices can provide incor-

rect measurements during physiologic movement [23].

We previously introduced a biplane fluoroscopy imaging system [19, 20, 24–26]. The sys-

tem can measure two dual-orthogonal images. The patellar tracking can be visualized on the

2D images and the 3D model. The 3D model is calculated from a 3D scan using MRI. The 3D

scan typically requires a lot of measuring time, and the fluoroscopy imaging system is not suit-

able for application in clinical practice.

The notable features of the limitations in the above studies include: restrictive (posture)

conditions, unreal and forceful loading tasks, patient safety concerns, lack of reliability when

measuring, and unable to prepare 3D models. To overcome these limitations, we proposed a

study for the measurement of the real patellar motion with the following advantages: can be

applied in various (posture) conditions, can be used while standing upright (real and active

loading tasks), without markers (no safety concerns), without tracking devices (no lack of reli-

ability when measuring), and without the need for pre-information (no need to prepare a

prior 3D model). Especially, with the use of a C-arm CT system, we were able to obtain nonin-

vasive measurements of in vivo patellofemoral movements without the use of tracking devices

during full weight-bearing conditions in subjects with PF pain and control groups. To place

the findings for the full weight-bearing conditions in context, we also provided the measure-

ments during non-weight-bearing conditions in PFP patients and controls.

In this study, we used the 3D knee morphology obtained with this innovative approach to

investigate the differences in kinematics of the patellofemoral joint in patients with PFP com-

pared with healthy control subjects. We hypothesize that patients with PFP will have different
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JCS coordinates with statistical significance (p< 0.05) in vivo under NWB and under physio-

logically relevant WB conditions compared to healthy control subjects.

Material and methods

2.1 Study cohort

This study was approved by Stanford Institutional Review Board (IRB file #20144). All patient

data were acquired and used only after written informed consent was obtained. Under the

IRB-approved protocol, the study cohort included two groups: a PFP group consisting of 12

females and 6 males (mean age, 31 ± 9 years; mean weight, 68 ± 9 kg) who were treated for

more than 6 months, but achieved no symptom improvement, and a control group consisting

of 8 females and 10 males (mean age, 39 ± 15 years; mean weight, 71 ± 13 kg) with no symp-

toms of PFP. Included subjects in the PFP group suffered persistent anterior knee pain for at

least three months up to 11 years and reported reproducible pain during at least two of the fol-

lowing physical activities: squatting, stair ascent/descent, kneeling, prolonged sitting, or iso-

metric quadriceps contraction. The measurement conditions for patellar tracking were

NWB0˚ (supine), WB0˚ (upright), and WB30˚ (squat). Prior to testing, all study participants

received an explanation of the study aims and agreed to participate.

2.2 CT image acquisition

Knee joint alignment under the conditions of WB0˚ and WB30˚ was measured on 3D volu-

metric images acquired with a cone-beam-based C-arm CT imaging system (Artis Zeego; Sie-

mens Healthineers, Forchheim, Germany) as shown in Fig 1. Overexposure correction was

applied to obtain saturation-free images by attenuating the X-ray beam on the periphery of an

object [27]. The measurement parameters were as follows: photon energy, 80–125 KeV; resolu-

tion, 1240 × 960 pixels after 2 × 2 binning; and field-of-view, 300 × 400 mm2. The distance

between the X-ray source and the patient was 980 mm and that between the patient and the

detector was 218 mm. Measurements were acquired with the X-ray source and detector rotat-

ing around the patient in circular trajectory (π + fan angle). In total, 248 and 496 images were

Fig 1. The C-arm CT system (a) in the supine (NWB) and (b) upright (WB) positions under the conditions of 0˚

and 30˚ knee flexion. (a) The detector and X-ray source rotated around the knee of the patient in the supine position.

(b) The detector and X-ray source rotated around the knee of the patient in the upright posture.

https://doi.org/10.1371/journal.pone.0239907.g001
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acquired in the upright (WB) and supine (NWB) positions, respectively. Two-dimensional

projection images were reconstructed into a volumetric CT image using a filtered-backprojec-

tion method [28–30] implemented in our in-house reconstruction package, named CONRAD

(Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA) [31, 32]. A pipe-

line for the CONRAD software framework for cone-beam imaging is shown in Fig 2.

2.3 Patella tracking estimation

We set a reference of the joint coordinate system (JCS) as the knee joint of the left leg. Three

anatomical landmarks along the x, y, and z axes of the patella and three of the femur were used

to establish a JCS. As shown in Fig 3, points P_M (patella medial) and P_L (patella lateral)

were the most medial and lateral points with the highest (+) and lowest (−) values on the Xp

axis. Point P_B (patella bottom) was the lowest point on the patella. Points F_EPL_L (femur

lateral) and F_EPL_M (femur medial) were the most lateral and medial points with the high-

est (+) and lowest (−) values on the XF axis, and point F_GRV (femur groove) had the highest

value on the Zp (+) axis. Based on these anatomical landmarks, coordinate axes were estab-

lished on the patella [XP (+) axis, lateral; XP (−) axis, medial; YP (+) axis, proximal; YP (−) axis,

distal; ZP (+) axis, anterior; and ZP (−) axis, posterior] and the femur [XF (+) axis, lateral; XF

(−) axis, medial; YF (+) axis, proximal; YF (−) axis, distal; ZF (+) axis, anterior; and ZF (−) axis,

posterior]. Six kinematic degrees of freedom (DoF) values, representing translational and rota-

tional movements of the patella relative to the femur, were derived. According to Fig 4, patellar

Fig 2. The pipeline of the CONRAD program based on the filtered back projection algorithm. The four steps

before the filtered back projection step require accurate CT imaging.

https://doi.org/10.1371/journal.pone.0239907.g002

Fig 3. Anatomical landmarks on the patella (a) and femur (b) in left leg. The JCS axes are XP (+ L, − M), XF (+ L,

− M), YP (+ P1, − D), YF (+ P1, − D), ZP (+ A, − P2), and ZF (+ A, − P2). Landmarks are P_L (patella lateral), P_M

(patella medial), P_B (patella bottom), E_EPL_L (femur lateral), E_EPL_M (femur medial), and F_GRV (femur

groove). Abbreviations: A, anterior; D, distal; L, lateral; M, medial; P1, proximal; P2, posterior.

https://doi.org/10.1371/journal.pone.0239907.g003
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tilt (PT, ˚) between the ZP and ZF axis was (+ L) lateral and (− M) medial, patellar flexion

(PF, ˚) between the YF and YP axis was (+ F) flexion and (− E) extension, and patellar rotation

(PR, ˚) between the XP and XF axis was (+ C) clockwise and (− CC) counterclockwise. Patellar

anterior-posterior shift (PTz, mm), a shift of the patellar coordinate system origin projected on

the ZF axis, was (+ A) anterior and (− P2) posterior. Patellar proximal-distal shift (PTy, mm),

the shift projected on the YF axis, was (+ P1) proximal and (− D) distal. Patellar lateral-medial

shift (PTx, mm), the shift projected on the XF axis, was (+ L) lateral and (− M) medial. The

tracking points on the CT images are shown in Fig 5. Here, we describe the acquirement pro-

cess for the 3 rotational DOF values for the JCS. For example, let’s consider how to get the PF.

The angle size between the YF and YP axes is the PF magnitude. Next, we determine the sign of

the PF. The PF has a direction of rotation from the YF axis (femur) to the YP axis (patella). The

rotation direction (YF to YP) corresponds to one of two rotation directions (+ flexion, − exten-

sion) in Fig 6a. The sign in the corresponding direction becomes the sign of the PF value. The

sign of the PF is + (flexion). We can determine the magnitude and sign of the PF. We can find

the rest of the variables in the same way.

Next, we will describe the acquirement process of the 3 shifted DOF values for the JCS. For

example, let’s consider how to get ZF. We find a projection point (Cross_P2) of Po in the

Fig 4. The JCS coordinates of the (a) rotational and (b) translational DoF values of the patella in left leg. The

kinematic DoF values on JCS are patellar tilt (PT; + M, − L), patellar flexion (PF; + F, − E), patellar rotation (PR; + C,

− CC), patellar lateral-medial shift (PTx; + L, − M), patellar proximal-distal shift (PTy; + P1, − D), and patellar anterior-

posterior shift (PTz; + A, − P2). Abbreviations: A, anterior; D, distal; L, lateral; M, medial; P1, proximal; P2, posterior;

C, clockwise; CC, counterclockwise; E, extension; F, flexion.

https://doi.org/10.1371/journal.pone.0239907.g004

Fig 5. Representative tracking points on CT images. (a) Landmarks on the patella and femur. (b) Landmark on the

patella. Abbreviations: P_L, patella lateral; P_M, patella medial; P_B, patella bottom; E_EPL_L, femur lateral;

E_EPL_M, femur medial; F_GRV, femur groove.

https://doi.org/10.1371/journal.pone.0239907.g005
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extension line of the ZF axis. The projection is the orthogonal condition. The distance between

the projection point and Fo is the PTz magnitude. We determine the sign of the PTz. The direc-

tion from Fo to Cross_P2 (Fo to Cross_P2) corresponds to one of two directions (+ anterior,—

posterior) in Fig 6b. The sign of the PTz is + (anterior). We can determine the magnitude and

sign of the PTz. We can find the rest of the variables in the same way. The DoF values on JCS

were computed by the codes implemented in MATLAB R2015b (MathWorks, Natick, MA,

USA), as shown in Fig 6. Additionally, to identify the statistical differences between the sub-

jects and the PFP patients, we have summarized the p-values from t-tests in Table 2 for the

comparisons between the patients and the controls.

2.4 Statistical analysis

We evaluated the kinematic difference between the two groups (patients with patellofemoral

pain and controls) using five statistical tests: 1. Unpaired t-test (Table 2), 2. One way analysis

of variance (ANOVA) (S1 Table), 3. Wilcoxon rank sum (S1 Table), 4. Mann-Whitney test (S1

Table), and 5. Kolmogorov-Smirnov test (S1 Table). A p-value less than 0.05 was considered

statistically significant and could differentiate the kinematics between the two groups.

ANOVA was implemented using the Python program language; all other statistical methods

were implemented using MATLAB.

Results

3.1 Patella tracking parameter analysis

The mean kinematic DoF (± standard deviation, SD) values include patellar medial-lateral

shift (PTx, mm), proximal-distal shift (PTy, mm), anterior-posterior shift (PTz, mm), tilt (PT,

˚), flexion (PF, ˚), and rotation (PR, ˚), respectively. The three conditions were NWB0˚, WB0˚,

and WB30˚, respectively. The obtained DoF values are shown in Table 1 and Figs 7 and 8.

As shown in Table 2, the statistical analysis based on the unpaired t-test resulted in five dif-

ferent JCS coordinates with significant differences (p< 0.05) between patients with PFP and

control subjects. The statistically significant JCS coordinates included patellar anterior-poste-

rior shift under all three loading conditions, patellar proximal-distal shift under NWB0˚, and

patellar flexion under WB30˚. These statistically significant results generally corresponded

well to the results based on the other four representative statistical methods, except for the

Fig 6. The JCS of the patella and femur and the kinematic DoF values of the six landmarks on the left leg, and the

(a) rotational and (b) translational DoF values of the left leg. The kinematic DoF values in the JCS are patellar tilt

(PT; + M, − L), patellar flexion (PF; + F, − E), patellar rotation (PR; + C, − CC), patellar lateral-medial shift (PTx; + L,

− M), patellar proximal-distal shift (PTy; + P1, − D), and patellar anterior-posterior shift (PTz; + A, − P2).

Abbreviations: A, anterior; C, clockwise; CC, counterclockwise; D, distal; E, extension; F, flexion; L, lateral; M, medial;

P1, proximal; P2, posterior; PFP, patellofemoral pain; DoF, degrees of freedom.

https://doi.org/10.1371/journal.pone.0239907.g006
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Table 1. The mean DoF (± SD) values of three conditions (NWB0˚, WB0˚, and WB30˚) in both groups (control

subjects and patients with PFP).

JCS coordinates Control subjects

NWB0˚ WB0˚ WB30˚

Patellar tilt (˚) 8.36 (±7.3) 8.44 (±6.76) 4.75 (±2.1)

Patellar flexion (˚) 5.75 (±9.3) 10.04 (±8.38) 23.63 (±6.35)

Patellar rotation (˚) -1.07 (±7.59) -1.21 (±3.37) -3.98 (±6.26)

Patellar lateral-medial shift (mm) 15.65 (±28.15) 6.21(±18.52) 3.96 (±5)

Patellar proximal-distal shift (mm) 4.6 (±19.13) -10.07 (±18.33) -13.84 (±31.21)

Patellar anterior-posterior shift (mm) 109.47 (±28.86) 118.05 (±15.56) 81.09 (±12.46)

Patellofemoral pain patients

NWB0˚ WB0˚ WB30˚

Patellar tilt (˚) 6.58 (±8.11) 5.82 (±8.05) 3.96 (±6.93)

Patellar flexion (˚) 4.82 (±7.4) 7.48 (±5.76) 6.01 (±8.95)

Patellar rotation (˚) -2.94 (±4.75) -3.12 (±6.72) -0.38 (±6.24)

Patellar lateral-medial shift (mm) 4.73 (±6.22) 6.39 (±4.64) -0.44 (±3.15)

Patellar proximal-distal shift (mm) -6.36 (±4.36) -5.78 (±9.28) -1.47 (±10.83)

Patellar anterior-posterior shift (mm) 46.58 (±4.91) 45.55 (±4.82) 41.92 (±4.65)

aNWB0˚ (supine), NWB at 0˚ knee flexion; bWB0˚(upright), WB at 0˚ knee flexion; cWB30˚(squat), WB at 0˚ 30˚

knee flexion; dJCS, joint coordinate system (n = 18/group), Abbreviations: PFP, patellofemoral pain; DoF, degrees of

freedom; SD, Standard deviation.

https://doi.org/10.1371/journal.pone.0239907.t001

Fig 7. Patellar tilt (a), flexion (b), rotation (c), and mean DoF (± SD) values under three conditions: NWB0˚

(supine), WB0˚ (upright), and WB30˚ (squat). Abbreviations: C, clockwise; CC, counterclockwise; E, extension; F,

flexion; L, lateral; M, medial; PFP, patellofemoral pain; DoF, degrees of freedom; SD, Standard deviation.

https://doi.org/10.1371/journal.pone.0239907.g007

Fig 8. Patellar medial-lateral shift (PTx) (a), proximal-distal shift (PTy) (b), anterior-posterior shift (PTz) (c), and

mean DoF (± SD) values under three conditions: NWB0˚ (supine), WB0˚ (upright), and WB30˚ (squat).

Abbreviations: A, anterior; D, distal; L, lateral; M, medial; P1, proximal; P2, posterior; PFP, patellofemoral pain; DoF,

degrees of freedom; SD, Standard deviation.

https://doi.org/10.1371/journal.pone.0239907.g008
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Kolmogorov-Smirnov test, as shown in S1 Table. The Kolmogorov-Smirnov test identified

two additional JCS coordinates with significant differences, namely the patellar rotation under

NWB0˚ and the patellar proximal-distal shift under WB30˚.

Fig 7a–7c show the rotational DoF values for patellar tilt (PT, ˚), flexion (PF, ˚), and rota-

tion (PR, ˚). As shown in Fig 7a, the PT values of the control group were similar during

NWB0˚ (+8.36˚ ± 7.3˚) and WB0˚ (+8.44˚ ± 6.76˚) toward the medial direction (+ M) and

were tilted during WB0˚ (+8.44˚ ± 6.76˚) to WB30˚ (+4.75˚ ± 2.1˚) toward the lateral direction

(− L). The PT values of the PFP group differed during NWB0˚ (+6.58˚ ± 8.11˚), WB0˚ (+5.82˚

± 8.05˚), and WB30˚ (+3.96˚ ± 6.93˚).

As shown in Fig 7b, the PF values of the subjects differed during NWB0˚ (+5.75˚ ± 9.3˚)

and WB0˚ (+10.04˚ ± 8.38˚). The PF values of the control group were dramatically tilted dur-

ing WB0˚ (+10.04˚ ± 8.38˚) to WB30˚ (+26.63˚ ± 6.35˚) toward the flexion direction (+ F). On

the other hand, the PT values of the patients differed during NWB0˚ (+4.82˚ ± 7.4˚), WB0˚

(+7.48˚ ± 5.76˚), and WB30˚ (+6.01˚ ± 8.95˚). The PF values of the PFP group changed little,

as compared with the control group.

As shown in Fig 7c, the PR values of the control group were similar during NWB0˚ (−1.07˚

± 7.59˚) and WB0˚ (−1.21˚ ± 3.37˚), and were also similar in the PFP group during NWB0˚

(−2.94˚ ± 4.75˚) and WB0˚ (−3.12˚ ± 6.72˚). However, each PR value of the PFP and control

groups were reversed during WB0˚ to WB30˚.

Fig 8a–8c show the DoF values of patellar medial-lateral (PTx, mm), proximal-distal (PTy,

mm), and anterior-posterior shift (PTz, mm). In Fig 8a, the PTx values of the subjects differed

during NWB0˚ (+15.65 ± 28.15 mm) and WB0˚ (+6.21 ± 18.52 mm), and were tilted from

WB0˚ (+6.21 ± 18.52 mm) and WB30˚ (+3.96 ± 5 mm) toward the medial direction (− M).

The PTx values of the PFP group differed during NWB0˚ (4.73 ± 6.22 mm) and WB0˚

(6.39 ± 4.64 mm), and were tilted from WB0˚ (6.39 ± 4.64 mm) to WB30˚ (−0.44 ± 3.15 mm)

toward the medial direction (− M). In Fig 8b, The PTy values of the subjects differed during

NWB0˚ (+4.6 ± 19.13 mm) and WB0˚ (−10.07 ± 18.33 mm), and were tilted from WB0˚

(−10.07 ± 18.33 mm) to WB30˚ (−13.84 ± 31.21 mm) toward the distal direction (− D).

The PTy values of the PFP group differed during NWB0˚ (−6.36 ± 4.36 mm) and WB0˚

(−5.78 ± 9.28 mm), and were tilted from WB0˚ (−5.78 ± 9.28 mm) to WB30˚ (−1.47 ± 10.83

mm) toward the proximal direction (+ P1). In Fig 8c, the PTz values of the subjects differed

during NWB0˚ (109.47 ± 28.86 mm) and WB0˚ (118.05 ± 15.56 mm), and were tilted from

WB0˚ (118.05 ± 15.56 mm) to WB30˚ (81.09 ± 12.46 mm) toward the posterior direction

Table 2. The p-values (Unpaired t-test) of three conditions (NWB0˚, WB0˚, and WB30˚) in control subjects and

patients with PFP. The p-values highlighted in boldface indicate statistical significance (p<0.05).

P-values (Patients with PFP vs Controls)

JCS coordinates Unpaired t-test

NWB0˚ WB0˚ WB30˚

Patellar tilt (˚) 0.527 0.358 0.716

Patellar flexion (˚) 0.759 0.365 0.003
Patellar rotation (˚) 0.422 0.343 0.357

Patellar lateral-medial shift (mm) 0.162 0.974 0.176

Patellar proximal-distal shift (mm) 0.046 0.456 0.489

Patellar anterior-posterior shift (mm) <0.001 <0.001 0.007

aNWB0˚ (supine), NWB at 0˚ knee flexion; bWB0˚(upright), WB at 0˚ knee flexion; cWB30˚(squat), WB at 0˚ 30˚

knee flexion; dJCS, joint coordinate system (n = 18/group). Abbreviations: PFP, patellofemoral pain.

https://doi.org/10.1371/journal.pone.0239907.t002
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(− P2). The PTz values of the PFP group differed during NWB0˚ (46.58 ± 4.91 mm) and WB0˚

(45.55 ± 4.82 mm), and were somewhat tilted from WB0˚ (45.55 ± 4.82 mm) to WB30˚

(41.92 ± 4.65 mm) toward the posterior direction (− P2). Overall, there were significant differ-

ences in the PTz values between the PFP and control groups.

Fig 9 shows the differences in the DoF values between the PFP patients and healthy subjects.

The DoF values showed the largest translational differences in the PF during WB30˚ with

extension (− E: − 17.62˚) (p < 0.01) and the largest rotational differences in the PTz during

WB0˚ toward the posterior direction (− P2: − 72.50 mm) (p< 0.01).

The PFP trends between males and females are shown in S1 and S2 Figs. The largest differ-

ences between females and males in the control group were observed in the PF (6.29˚) and PTy

(36.42 mm) values during WB30˚. The greatest differences between males and females in the

PFP group were observed in PF values (−17.25˚) during WB30˚ and PTz values (−71.47 mm)

during WB0˚.

Discussion

In this study, we hypothesized that patients with PFP will show different JCS coordinates in

vivo under NWB and under physiologically relevant WB conditions compared to healthy con-

trol subjects. This hypothesis was supported by the findings presented in the current study.

The data for the 18 patients confirmed that the PF during WB30˚, the PTy during NWB0˚, and

the PTz during NWB0˚, WB0˚, and WB30˚ were statistically different (p<0.05) between the

patients with PFP and healthy controls. Of the five statistically significant JCS coordinates pre-

sented, two p-values (PF and PTz during WB30˚) were less than 0.01 and the other two (PTz

during NWB0˚, WB0˚) were less than 0.001 (Table 2). Given that p<0.001 is generally consid-

ered to indicate high statistical significance, the significant JCS coordinates presented in this

study can serve as accurate biomarkers to diagnose knee conditions.

A study by Bruno et al. [33] reported that despite contraction of the quadriceps, there were

obvious differences in the lateral translation of the patella relative to the femur during WB0˚ in

Fig 9. Differences in mean DoF values between the PFP and control groups under three conditions: NWB0˚

(supine), WB0˚ (upright), and WB30˚ (squat). Patellar medial-lateral shift (PTx, mm), proximal-distal shift (PTy,

mm), anterior-posterior shift (PTz, mm), tilt (PT, ˚), flexion (PF, ˚), and rotation (PR, ˚). Abbreviations: A, anterior; C,

clockwise; CC, counterclockwise; D, distal; E, extension; F, flexion; L, lateral; M, medial; P1, proximal; P2, posterior;

DoF, degrees of freedom; PFP, patellofemoral pain.

https://doi.org/10.1371/journal.pone.0239907.g009
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the upright position and NWB0˚ in the supine position. Hence, we focused on patellar track-

ing during the following conditions: NWB0˚, WB0˚, and WB30˚.

Some reports have provided measurements during unrealistic conditions, such as PFP eval-

uation in the supine position only [34] or while leaning on the equipment during the loading

task [23]. For example, in a study by Esfandiarpour et al. [19], the lunge test was performed

with one leg supported on the ground, while the knee of the other leg was flexed at 90˚. The

lunge, supine, and leaning tests differ from actual conditions that involve squatting or straight-

ening to mimic movements performed in daily activities. Hence, the conditions used in several

previous studies were controversial and not practical for the study of PFP. Therefore, clinically

relevant weight-bearing conditions were employed in the present study (WB0˚ and WB30˚)

for the diagnosis of PFP.

Esfandiarpour et al. [19] reported that the PT values of the PFP patients during NWB0˚

were laterally tilted (− L) as compared with those of the control group due to the stabilization

by the retinacula and ligaments, as well as the articular geometry. In the present study, the PT

values during NWB0˚ of the PFP and control groups (p<0.53) were +8.36˚ ± 7.3˚ and +6.58˚

± 8.11˚, respectively. On the other hand, the PT values of the PFP group during WB0˚

(p<0.36) and WB30˚ (p<0.72) showed abnormal lateral patellar tilt as compared with the con-

trol group. The PT values of the control group remained relatively constant. Regarding the dif-

ference between the PT values of the PFP and control groups, our results are generally

consistent with the trends in value change compared to the referenced study [19]. However,

our values are different from the referenced study’s values.

Draper et al. [23] reported that the PTx values of the PFP group were lower during WB0˚

than NWB0˚. In the cited study, patellar motion is generally generated by quadriceps contrac-

tion. The quadriceps contraction has a gap between the WB0˚ (weight-bearing) and NWB0˚

(non-weight-bearing). The quadriceps contraction during NWB0˚ shows unbalanced activa-

tion by the vastus medialis obliquus. However, the quadriceps contraction during WB0˚

doesn’t have unbalanced activation in the quadriceps. The quadriceps contraction during

NWB0˚, due to unbalanced quadriceps motion, causes more lateral patella translation com-

pare to that during WB0˚.

Conversely, we have a different opinion than the authors of the cited study. Abnormal pres-

sure on the patella surface by wrong alignment of the patella causes pain when the patella isn’t

precisely in the center of the groove of the femur. To avoid the pain, patients generally try to

move the patella to a region with less pain. A laterally translated patella typically is not located

in the center. Therefore, the patient unconsciously contracts muscles that makes it move in the

opposite direction (medial translation) to alleviate the pain. The patella can move relative to

the medial direction. The PTx values of the PFP group were higher during WB0˚ than NWB0˚.

Unlike the cited study, our PTx values of the PFP group were greater during WB0˚ than

NWB0˚ (6.39 ± 4.64 vs. 4.73 ± 6.22 mm, respectively).

Additionally, our NWB0˚ are different from those in the cited study. In our NWB0˚, the

whole body is in contact with the ground. However, in the cited study’s NWB0˚, the upper

part of the body is in contact with the ground, but the legs are not. The patella indirectly

receives the load from the lower leg. The cited study’s condition is not actually NWB0˚. Our

NWB0˚ is a more suitable NWB condition than the cited study’s NWB0˚.

Esfandiarpour et al. [19] also reported a difference in PR values between the PFP and con-

trol groups during NWB0˚ and WB0˚ of about 40˚, while in the present study, there was a dif-

ference in the cross-flexion angle of about 10˚ between NWB0˚ and WB0˚.

We focused on the resulting patellar flexion (PF, ˚), patellar anterior-posterior shift (PTz,

mm), and patellar proximal-distal shift (PTy, mm) values. First, as shown in Figs 8b, 9b and 9c,

the PF, PTz, and PTy values during WB0˚ to WB30˚ were significantly changed in the control
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group. In contrast, those of the PFP group during WB0˚ to WB30˚ changed very little. Second,

as shown in Fig 7b, there were differences in PF value gaps during NWB0˚ vs. WB0˚ with the

greatest difference during WB30˚. Third, as shown in Fig 8b, the PTy values during NWB0˚

and WB 0˚ were reversed the PFP and control group. Fourth, as shown in Fig 8c, there were

differences in PTz values during NWB0˚, WB0˚, and WB30˚ between the PFP and control

groups. Lastly, as shown in Fig 9, the largest differences were observed in the values of PF dur-

ing WB30˚ (− E: − 17.62˚) (p< 0.01) and PTz during WB0˚ (− P2: − 72.50 mm) (p< 0.01)

between the PFP patients and healthy subjects which suggests that PF during WB30˚ and PTz

during WB0˚ can be used as diagnostic biomarkers for identifying patients with PFP.

Carlson et al. showed that a strongly contracted quadriceps reduce the bony constraint on

the patella, causing the patella to deviate from normal tracking along the femoral groove [34].

Especially, in weight-bearing conditions, an activation imbalance of quadriceps causes the

abnormal action of the patella in the PFP group [19]. Previous studies have speculated that the

cause of the activation imbalance of quadriceps might be that the muscles in the PFP group

adapted to reduce the concentrated joint stress and consequently reduce pain, increasing the

area of patellofemoral contact [35, 36]. Moreover, the patellofemoral joint contact area

increases with PF [37] and PF is highly corrected with PTz. Our results showed that the largest

differences in DoF values between the PFP and control group was observed in PF during

WB30˚ (− E: − 17.62˚) (p< 0.01) and PTz during WB0˚ (− P2: − 72.50 mm) (p< 0.01), which

suggests that the PFP group presumably adapted to avoid knee pain. To further understand

the origin of knee pain, we suggest evaluation of the patellofemoral contact area between the

patella and the femur on CT images.

There were several limitations to this study: (1) factors involved with patellar movement,

such as joint morphology, knee muscle activity, and tendon function [23] were not considered;

(2) PFP should be accurately distinguished from other types of anterior knee pain, such as

patellar tendinopathy [35]; (3) other clinical causes of knee pain attributed to rheumatologic

or neurologic pathologies should be ruled out [35]; (4) although patellar maltracking is some-

times related to the condition of the peripatellar fat pads [38], the effects of the peripatellar fat

pads were not considered; and (5) we did not consider the function of the patellofemoral joint

with more common causes of PFP such as when walking or using the stairs. However, Bruno

et al. [33] reported that it is not always possible to apply more than 25% of the body weight

with knee flexion of 90˚. (6) It is imperative to evaluate the entire kinetic chain in a compre-

hensive approach to the treatment of PFP [39]. We should keep in mind the dynamic relation-

ships of the hip and ankle joints with the knee joints. These relationships are complex because

the hip and ankle joints can affect the knee joints. For example, excessive rearfoot eversion is a

factor correlated with the development and persistence of PFP in some cases. For patients with

chronic PFP, psychological factors should be considered [40]. Therefore, future research

should consider the combined effects of various factors under appropriate circumstances in

PFP patients. We will plan to investigate the patellofemoral contact area between the patella

and femur in a future study.

Conclusion

This study proposed an innovative approach to accurately diagnose patellar motion such as

patellar maltracking in PFP patients by using a clinical C-arm CT scanner capable of acquiring

a volumetric CT image of patients under realistic weight-bearing (WB0˚ and WB30˚) and

supine, non-weight-bearing conditions (NWB0˚). When comparing the patients with PFP and

control subjects, significant differences (p< 0.05) were observed for patellar proximal-distal

shift (PTy) during NWB0˚, patella flexion (PF) during WB30˚, and patella anterior-posterior
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shift (PTz) during NWB0˚, WB0˚, and WB30˚ on the CT scan. In particular, the rotational and

translational differences (JCS Δ = patients with PFP—controls) in DoF values were clearly seen

in the PF during WB30˚ (−17.62 ˚, extension) (p< 0.001) and the PTz during WB0˚ (−72.50

mm, posterior) (p = 0.007). We showed that the action was revealed by the PTy during

NWB0˚, the PF during WB30˚, and the PTz during NWB0˚, WB0˚, and WB30˚, which could

be used as diagnostic biomarkers for identifying patients with PFP. Our results provide new

insights toward an improved understanding of patellofemoral joint movement during non-

and weight-bearing conditions. The proposed method is an effective adjunct for clinical diag-

nosis before surgery and to help plan rehabilitation strategies.

Supporting information

S1 Fig. Mean DoF values (± SD) of females vs. males in the PFP group under three condi-

tions: NWB0˚ (supine), WB0˚ (upright), and WB30˚ (squat). (a) Patellar tilt (PT, ˚), flexion

(PF, ˚), and rotation (PR, ˚). (b) Patellar medial-lateral shift (PTx, mm), proximal-distal shift

(PTy, mm), and anterior-posterior shift (PTz, mm). Abbreviations: A, anterior; C, clockwise;

CC, counterclockwise; D, distal; E, extension; F, flexion; L, lateral; M, medial; P1, proximal; P2,

posterior; PFP, patellofemoral pain; DoF, degrees of freedom; SD, Standard deviation.

(TIF)

S2 Fig. Mean DoF values (± SD) of females vs. males in the control group under three con-

ditions: NWB0˚ (supine), WB0˚ (upright), and WB30˚ (squat). (a) Patellar tilt (PT, ˚), flex-

ion (PF, ˚), and rotation (PR, ˚). (b) Patellar medial-lateral shift (PTx, mm), proximal-distal

shift (PTy, mm), and anterior-posterior shift (PTz, mm). Abbreviations: A, anterior; C, clock-

wise; CC, counterclockwise; D, distal; E, extension; F, flexion; L, lateral; M, medial; P1, proxi-

mal; P2, posterior; DoF, degrees of freedom; SD, Standard deviation.

(TIF)

S1 Table. The p-values (one-way ANOVA, Wilcoxon rank sum test, Mann-Whitney U-test,

and Kolmogorov-Smirnov test) of three conditions (NWB0˚, WB0˚, and WB30˚) in sub-

jects and patients with PFP. The p-values highlighted in boldface indicate statistical signifi-

cance (p<0.05).
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