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Abstract: Amphibians have developed successful defensive strategies for combating predators and
invasive microorganisms encountered in their broad range of environments, which involve secretion
of complex cocktails of noxious, toxic and diverse bioactive molecules from the skins. In recent years,
amphibian skin secretions have been considered as an extraordinary warehouse for the discovery
of therapeutic medicines. In this study, through bioactivity screening of the Hylarana latouchii skin
secretion-derived fractions, a novel peptide belonging to ranatensin subfamily (ranatensin-HLa) was
discovered, and structurally and pharmacologically-characterised. It consists of 15 amino acid residues,
pGlu-NGDRAPQWAVGHFM-NH2, and its synthetic replicate was found to exhibit pharmacological
activities on increasing the contraction of the in vitro rat bladder and uterus smooth muscles.
Corresponding characteristic sigmoidal dose-response curves with EC50 values of 7.1 nM and 5.5 nM
were produced, respectively, in bladder and uterus. Moreover, the precursor of ranatensin-HLa showed
a high degree of similarity to those of bombesin-like peptides from Odorrana grahami and Odorrana
schmackeri. Hylarana latouchii skin continues to serve as a storehouse with diverse lead compounds for
the development of therapeutically effective medicines.

Keywords: frog; mass spectrometry; molecular cloning; bombesin-related peptide; smooth muscle

Key Contribution: A novel pentadecapeptide falling within ranatensin subfamily, which possessed
myotropic effects, was identified. It demonstrated moderate myoactivity on rat bladder and uterus,
and its biosynthetic precursor exhibited high homology with that of some other bombesin-like
peptides from Ranidae family.

1. Introduction

The word “amphibian”, amphi meaning both and bios meaning life, tells us much about the amphibian
lifestyle—a double life. More specifically, amphibians are a class of animals that many of them have
a biphasic lifestyle, undergoing shift from strictly aquatic larvae to more terrestrial adults. They are
widespread on the majority of continents apart from Antarctica [1,2]. In the present day, there are 7975
species of amphibians in total within the Class Amphibia, with 88% of anurans (frogs and toads) [3].
From aquatically to terrestrially, amphibians have gone through drastic environmental changes, in which
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the highly-specialised skin plays a multitude of vital roles in their adaptability, including respiration,
thermoregulation, water absorption, camouflage, defensive barrier, and osmoregulation [4]. Amphibian
skin is characterised by numerous dispersed mucous glands which excrete mucus continually to maintain
the moisture of skin, and granular glands that discharge extremely toxic components to ward off predators
and pathologic microorganisms [5,6].

Amphibian skin secretions contain a very high level of diversity of biochemical compounds such as
bioactive peptides/proteins, biogenic amines, steroids and alkaloids, possessing various pharmacological
properties like hallucinogenic, cardiotonic, analgesic, antibacterial, antifungal, antidiabetic and
antineoplastic activities [7–9]. Peptides constitute the most significant molecular group in the secretions
of frog skin, and can be broadly classified into two main groups—antimicrobial peptides and
pharmacologically-active peptides [8,10]. The former group of peptides are the fundamental elements
of frogs’ innate immune system against pathogen attack, serving as the front line of an anti-infective
defence barrier [11]; the second group of peptides execute irreplaceable responsibilities of regulating the
physiological functions of the skin itself [12] and disrupting the homeostatic balance of predators [13].
Since analogues of a number of amphibian skin-derived peptides can be found in mammalian
gastrointestinal tract, nervous tissues and endocrine organs but exist in extremely high quantities
in amphibian skin, they have excited the interest of scientists in developing novel therapeutic drugs and
elucidating relevant physiological processes in mammals [10,14].

Bombesin, identified in the skin of Bombina bombina [15], is one of the most important neuropeptides,
whose discovery promoted the isolation of two counterparts in mammals—gastrin-releasing peptide (GRP)
and neuromedin B (NMB) [16,17]. Bombesin-like peptides exhibit numerous pharmacological functions,
such as stimulation of vascular and extra vascular smooth muscle contraction, renal circulation and gastric
secretion [18]. They can be divided into three subfamilies: bombesin, ranatensin/litorin and phyllolitorin [19,20];
each member of them has a common structure in the C-terminal tetrapeptide amide. For bombesins, the final
four amino acids are -Gly-His-Leu-Met-NH2; -Gly-His-Phe-Met-NH2 is at the C-termini of ranatensin/litorin
subfamily; and phyllolitorin subfamily ends with -Gly-Ser-Phe/Leu-Met-NH2 [21,22]. They function by
binding to five closely-related bombesin-like G-protein coupled receptors, including the NMB receptor (BB1-R),
the GRP receptor (BB2-R), the bombesin receptor subtype-3 (BB3-R), the bombesin receptor subtype-4 (BB4-R)
and the bombesin receptor subtype-3.5 (BB3.5-R) [21,23–25].

Here, from the skin secretion of the broad-folded frog, Hylarana latouchii, a structurally novel
ranatensin-related peptide was isolated and investigated for its pharmacological activity. It evoked
contractile effects on rat bladder and uterus by binding to NMB receptor and GRP receptor in the
in vitro smooth muscle assays. Furthermore, prepropeptides of ranatensin-HLa and other closely
related peptides including previously discovered ranatensin-HL were analysed to illustrate the
evolutionary strategies of some species in the Ranidae family.

2. Results

2.1. Bioactivity Screening Resulted in Discovery of Ranatensin-HLa

Following chromatographic fractionation of H. latouchii skin secretion, the bioactivity screening of
sequential fractions resulted in the authentication of a component in fraction # 93 possessing considerable
myoactivities towards rat urinary bladder and uterus. The active fraction was in accord with an absorbance
peak in chromatogram with retention time of about 93 min as shown in Figure 1. Matrix-assisted laser
desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometric analysis indicated that this fraction
comprised a single predominant peptide with molecular weight of 1695.32 Da. Its primary structure
was further analysed by MS/MS fragmentation sequencing (Figure 2), which was followed by structural
bioinformatic analysis inquiring the National Centre for Biotechnology Information-Basic Local Alignment
Search Tool Protein Database (NCBI-BLASTp), indicating the highest sequence similarity with a proline
rich bombesin-related peptide (PR-bombesin) from Bombina maxima and ranatensin from Rana pipiens.
The sequence alignment of mature PR-bombesin, ranatensin and ranatensin-HLa was shown in Figure 3.
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Due to the identity of the C-terminal 4 residues (-Gly-His-Phe-Met-NH2) with the typical ranatensin
subfamily peptide, this peptide was regarded as a member of the ranatensin group and was assigned
a name of ranatensin-HLa (“HL” represented Hylarana latouchii and “a” represented distinction from
a previously described peptide named ranatensin-HL).
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Figure 3. Sequences alignment of the mature peptides with the highest similarity in the bioinformatic analysis
of ranatensin-HLa through inquiring NCBI-BLASTp database. Ranatensin-HLa and a bombesin-related
peptide (PR-bombesin) (Bombina maxima) (Accession number: AAM10624.1) showed 62% identity. Meanwhile,
Ranatensin-HLa and ranatensin (Rana pipiens) (Accession number: 701177B) showed 60% identity.

2.2. Molecular Cloning of the cDNA Encoding the Biosynthetic Precursor of Ranatensin-HLa

According to the primary structure of ranatensin-HLa, a degenerate primer was designed and
used to clone the complete cDNA encoding the prepropeptide of ranatensin-HLa. Consequently,
the full-length cDNA was iteratively cloned from the cDNA library established from H. latouchii skin
secretion through RACE PCR. The translated amino acid sequence of the open-reading frame (ORF)
of the precursor was composed of 72 residues which was constituted by a canonical architecture
involving a putative signal peptide domain, an N-terminal spacer peptide domain flanked by
a typical constructive dibasic amino acid cleavage site (-RR-), a single copy of mature peptide
(15 amino acids) and a short C-terminal extended peptide containing another convertase cleavage
site (-KK-) and a amide donor (glycine) (Figure 4). The sequence of ranatensin-HLa open-reading
frame was analysed by searching for the nucleotide and protein database within NCBI-BLAST,
indicating significant sequence homology with bombesin-like peptide precursors identified in Odorrana
grahami (odorranain-BLP-4) and Odorrana schmackeri (bombesin-OS), respectively. The corresponding
open-reading frame nucleotide and amino acid sequences alignments were shown in Figure 5.
The cDNA sequence of ranatensin-HLa precursor with accession code LR032001 has been deposited in
the EMBL Nucleotide Sequence Database.Toxins 2019, 11, x FOR PEER REVIEW 5 of 14 
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Figure 4. Nucleotide and amino acid sequences of the cDNA encoding the prepropeptide of
ranatensin-HLa. Putative signal peptide domain is double-underlined, mature peptide sequence
is single-underlined and stop codon is marked by an asterisk. The constructive convertase processing
sites for the release of mature peptide are squared in red.
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Figure 5. Sequence alignments of the full-length open-reading frames of prepro-ranatensin-HLa and the
precursors with the highest sequence homology in the bioinformatic analysis using NCBI-BLAST nucleotide
and protein database. (a) Ranatensin-HLa ORF and a bombesin-like peptide (odorranain-BLP-4) precursor
(Odorrana grahami) (Accession number: DQ836112.1) showed 92% of sequence identity; (b) Ranatensin-HLa
ORF and a bombesin (bombesin-OS) precursor (Odorrana schmackeri) (Accession number: ATP61827.1)
showed 90% of sequence identity.

2.3. Pharmacological Effects of Ranatensin-HLa on Rat Smooth Muscles

The purified synthetic replicates of ranatensin-HLa were used to assess the biological activities on
isolated bladder and uterus muscle strips, in which it exhibited pacific pharmacological activities on
stimulating contraction of bladder and enhancing the periodicity of spontaneously contractive activity
of uterus with EC50 values of 7.1 nM and 5.5 nM in a dose-dependent manner (Figure 6).
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Figure 6. Myotropic effects of synthetic ranatensin-HLa on isolated smooth muscle preparations from
rat bladder and uterus. (a) Dose-response curve of the effectiveness of ranatensin-HLa on bladder
smooth muscles (EC50 = 7.1 nM); (b) Dose-response curve of the effectiveness of ranatensin-HLa on
uterus smooth muscles (EC50 = 5.5 nM). Five determinations were conducted for the generation of each
data point.

3. Discussion

In recent years, natural drug discovery has been intensified and extended to structurally- and
functionally-diverse compounds of amphibian origin. In reality, since ancient times, amphibian-derived
substances have been applied for many conditions; for instance, the skin secretion of poison-dart frogs
have been used for the purpose of effective hunting by Native Americans up to the present [26,27],
and Chan Su, processed from the dried skin secretion of Bufo bufo gargarizans Cantor or Bufo melanostictus
Schneider with the efficacy of detoxification, has been an important traditional remedy for around
3000 years [28–31]. With the advancement in the technologies of isolation, identification and analysis,
it has been recognised that the skin of amphibians is an extraordinary arsenal of a plethora of
biologically-active components possessing diverse pharmacological properties [7–9]. These bioactive
compounds are endogenously produced and deposited in granular glands, being discharged to
the surface of integument upon stimulation to implement diverse physiological and defensive
functions [14,32].

In this study, another bombesin-like peptide termed ranatensin-HLa with new structure and belonged
to ranatensin subfamily was isolated from the skin secretion of H. latouchii following the discovery
of ranatensin-HL in 2017. The overall structure of ranatensin-HLa precursor was consistent with other
prepropeptides from frog skin, containing a characteristic construction of “signal peptide–N-terminal spacer
peptide–mature peptide”. Besides, as other neuropeptides from amphibian skin, including ranatensin-HL,
the N-terminal glutamine of ranatensin-HLa was also converted into pyroglutamine, and it was also
C-terminally amidated. Nevertheless, compared with ranatensin-HL which was released peculiarly from
a 125-amino acid residue large precursor, the size of ranatensin-HLa precursor (72 amino acid residues)
was similar to that of other ranid frogs-derived bombesin-related peptide precursors [33]. Moreover,
like most biosynthetic precursors of bombesin-related peptide formerly cloned from Ranidae family,
yet unlike ranatensin-HL precursor, the N-terminal of ranatensin-HLa was flanked by a common convertase
proteolytic site made up of dibasic amino acids (Arg-Arg) (Figure 4). According to the sequence comparison
of the nucleotides and amino acids of the open-reading frames of ranatensin-HL and ranatensin-HLa
(Figure 7), the signal peptides and N-terminal spacer peptides were highly conserved, while the mature
peptides were significantly distinct, implying that they might originate from a mutual ancestral gene and
became C-terminally different due to the stress response to the threats encountered in which the functional
region should evolve rapidly in order to overcome different predators and microorganisms existing in
a certain ecological niche. It has been speculated that such diverse molecules in a single species may result
from the associated effects of gene duplications, mutation and positive selection [34–36]. Consequently,
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it makes predators or pathogens more difficult to fight against the components in such complicated cocktails
of skin secretions and protects frogs from predators’ attack or invasive microorganisms to some extent.
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Figure 7. Comparison of the nucleotide and amino acid sequences of the biosynthetic precursors of
ranatensin-HL [33] and ranatensin-HLa. (a) Comparison of the translated amino acid sequences of
ranatensin-HL and ranatensin-HLa precursors; (b) Nucleotide sequences comparison of ranatensin-HL
and ranatensin-HLa precursors.
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The nucleotide and amino acid sequences of the biosynthetic precursor of ranatensin-HLa were
highly homological to those of bombesin-like peptides from Odorrana grahami (odorranain-BLP-4) and
Odorrana schmackeri (bombesin-OS) (Figure 5). Additionally, taking the high homology of ranatensin-HL
from H. latouchii and another bombesin-related peptide from Lithobates catesbeianus [33] into consideration,
we guessed that H. latouchii, Odorrana graham, Odorrana schmackeri and Lithobates catesbeianus were likely
to have retained bombesin/ranatensin peptides in their skin secretion, or these peptides might be the
outcome of convergent evolution [37].

In terms of the pharmacological activity of ranatensin-HLa, it stimulated similar contractile
frequency in rat uterus as ranatensin-HL and was more potent in evoking rat bladder contraction
(Table 1). Since NMB- and GRP-preferring subtype receptors are expressed in bladder and uterus
respectively [38,39], it was speculated that both ranatensin-HL and ranatensin-HLa might cause
myotropic contraction by binding to the NMB receptor in bladder and GRP receptor in uterus.
The greater potency of ranatensin-HLa towards bladder may be attributed to either the length or
the composition of the N-terminal amino acids (Figure 8). Furthermore, as both ranatensin-HL and
ranatensin-HLa were more effective than ranatensin-HL-10 in tested smooth muscles, it further
suggested that the longer stretch of N-terminal might be beneficial to the efficacy of peptides [40] in
exposing functional cores or extending half-life [41] (Figure 8 and Table 1).

Table 1. Comparison of ranatensin-HLs on the myoactivities [33].

Peptides Bladder
(EC50, nM)

Uterus
(EC50, nM)

Ranatensin-HLa 7.1 5.5
Ranatensin-HL 19.2 5.4

Ranatensin-HL-10 63.8 70.9
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Figure 8. Comparison of ranatensin-HLs on the primary structures [33].

Undoubtedly, frog skin will continue to serve as a treasury with extraordinarily-diverse lead
compounds for the development of therapeutically effective medicines. Moreover, the dissimilar bioactive
peptides present in different species and the corresponding precursor-encoding cDNA sequences will offer
an additional insight into the evolutionary relationships between different specie [32,42].

4. Conclusions

Through the combination of mass spectrometry and molecular cloning, another naturally-occurring
bombesin-related peptide belonging to ranatensin subfamily was characterised in H. latouchii skin
secretion. In the in vitro pharmacological investigation, it displayed moderate myoactivity on rat bladder
and uterus. The precursor of ranatensin-HLa was compared with that of ranatensin-HL previously
discovered from H. latouchii; as a result, the signal peptides and N-terminal spacer peptides were highly
conserved, but remarkable mature peptide modification was observed, which provided the evidence
that the diversity of bioactive substances within a single species might be ascribed to selective pressure
and might eventually lead to the frogs’ optimisation of adaptation.

5. Materials and Methods

5.1. Specimen Biodata and Skin Secretion Acquisition

Adults of the broad-folded Frog, Hylarana latouchii were captured in Fujian Province of the
People’s Republic of China. Frogs were stimulated by mild electricity on the dorsal skin surface to
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discharge the defensive skin secretion which was subsequently rinsed off with distilled deionised water
to be collected. The detailed methods were previously described [43]. The collected skin secretion was
then lyophilised and kept at −20 ◦C prior to usage. The procedure of secretion acquisition had been
overseen by the Institutional Animal Care and Use Committee (IACUC) of Queen’s University Belfast,
and approved on 1 March 2011. It was carried out under the UK animal (Scientific Procedures) Act
1986, Project licence PPL 2694, which was issued by the Department of Health, Social Services and
Public Safety, Northern Ireland.

5.2. Chromatographic Fractionation of H. latouchii Skin Secretion with Reverse Phase HPLC

A sample made from dissolving 5 mg of lyophilised H. latouchii skin secretion in 1 mL of
trifluoroacetic acid (TFA)/water (0.05/99.95, v/v) was subjected to reverse phase HPLC chromatography.
It was clarified and loaded onto a Jupiter C-5 semi preparative column (300 Å, 5 µm, 25 cm × 1 cm,
Phenomenex, Macclesfield, Cheshire, UK) which was installed in a Cecil Adept CE4200 HPLC system
(Amersham Biosciences, Buckinghamshire, UK) equipped with a Powerstream HPLC software for
chromatographic fractionation. Chromatography was performed by eluting from 0.05/99.95 (v/v)
TFA/water to 0.05/19.95/80.00 (v/v/v) TFA/water/acetonitrile over 240 min at a flow rate of 1 mL/min.
The effluent fractions were detected at λ214 nm, and were collected automatically and continuously
every minute. One hundred microliter of each collected fraction was transferred to be freeze-dried and
stored at −20 ◦C for the subsequent screening of myoactivity employing smooth muscle bioassays.

5.3. Myoactivity Screening of Chromatographic Fractions

According to the institutional animal experimentation ethics and UK animal research guidelines,
the method of carbon dioxide asphyxiation in combination of cervical dislocation was employed
to realize euthanasia of female Wister rats with weights of 250-300 g for the in vitro smooth muscle
pharmacological assays. Upon removal of the intact urinary bladder, uterine horns, ileum and proximal
rat tail artery from each rat by dissection, they were kept in ice-cold Kreb’s solution (118 mM NaCl,
4.7 mM KCl, 25 mM NaHCO3, 1.15 mM NaH2PO4, 2.5 mM CaCl2, 1.1 mM MgCl2 and 5.6 mM glucose)
spiritedly pneumatic with 95% O2 and 5% CO2 immediately. Then, the dissected tissue strips were
carefully mounted on a transducer and immersed in organ baths filled with flowing (2 mL/min) Kreb’s
solution constantly bubbled with mixed 95% O2 and 5% CO2 at 37 ◦C. Prior to the application of sample
solutions, the tissue preparations were allowed to be equilibrated under the normal physiological
tension of 1.0 g (for bladder) and 0.5 g (for bladder, uterus, artery and ileum) for 1 h. Then, HPLC
fractions dissolved in 22 µl of Kreb’s solution were added sequentially to the organ baths to examine
the myotropic activity of each fraction.

5.4. Structural Characterization of Peptide Possessing Bioactivity

The molecular weight of the HPLC fraction which displayed myoactivity was primarily analysed
using MALDI-TOF mass spectrometry (Voyager DE, PerSeptive Biosystems, Foster City, CA, USA).
Then, the predominant peptide in the bioactive fraction was further fragmented in an LCQ-Fleet
electrospray ion-trap mass spectrometer (Thermo Fisher Scientific, San Francisco, CA, USA) for
MS/MS sequencing to determine the primary structure.

5.5. Molecular Cloning of the cDNA Encoding the Peptide Biosynthetic Precursor of Ranatensin-HLa

Based on primary structure analysis result, a degenerate sense primer (S: 5′-CARAAYGGNGAYM
GNGCNCC-3′) complementary to pGlu-N-G-D-R-A-P- was designed. One milliliter of cell lysis/mRNA
protection buffer provided by manufacturer (Dynal Biotec, Wirral, UK) was used to dissolve a total of
5 mg of lyophilised H. latouchii skin secretion, which was followed by polyadenylated mRNA isolation
with magnetic oligo-dT beads (Dynal Biotech, Merseyside, UK). The isolated mRNA was then reverse
transcribed to synthesise cDNA that was applied to run 3′-rapid amplification of cDNA ends (RACE)
procedure with the designed degenerate primer in conjunction with a Nested Universal Primer (NUP)
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provided by kit (SMART-RACE kit, Clontech, Palo Alto, CA, USA) to get the 3′-end of biosynthetic
precursor of myoactive peptide. The resultant PCR products were ligated into a pGEM-T easy vector
(Promega Corporation, Southampton, UK) and sequenced using an ABI 3100 automated sequencer
(Applied Biosystems, Foster City, CA, USA). The sequence information was used to further design
a specific antisense primer (AS: 5′-GCATCTGGCTGGGTGTCAGAGCATA-3′) complementary to the
3′-end of the DNA sequence. Subsequently, this primer along with the NUP primer were used to conduct
5′-RACE PCR whose products were purified, cloned and sequenced as described above.

5.6. Fmoc Chemistry Solid-Phase Peptide Synthesis of Ranatensin-HLa

On the strength of results obtained from primary structure analysis and molecular cloning,
the explicit sequence of the bioactive peptide could be established. It was followed by automatic
synthesis using PS3 solid-phase peptide synthesiser (Protein Technologies, Tucson, AZ, USA) with
the methodology of Fmoc chemistry. Reverse phase HPLC was employed for the purification of the
synthetic products, and MALDI-TOF MS and MS/MS fragmentation sequencing were used for the
confirmation of the purity and structural authenticity of the peptide.

5.7. The Effects of Synthetic Peptide on Rat Smooth Muscles Tension

Purified peptide was prepared in Kreb’s solution and diffused to the 2-mL organ baths with bladder
and uterus tissue strips equilibrated under normal physiological tension to get final concentrations
ranging from 10−2 to 104 nM to produce dose-response curves. Between each dose, the smooth muscle
preparations were subjected to periods of 10-min wash and 10-min equilibration. Tension changes of
bladder tissue strips were magnified and recorded by pressure transducers hooked up to a PowerLab
System (AD Instruments Pty Ltd., Oxford, UK), and the frequency changes of the spontaneous contraction
of uterus were recorded by counting the contractile peaks. Peptide was investigated for the myoactivity
using at least five muscle strips in each concentration.

5.8. Statistical Analysis

Data were analysed by GraphPad Prism 5 software (San Diego, CA, USA) to establish the EC50 values
for the peptides and to generate dose-response curves featured by changes in tension (for bladder) or
changes in contractive frequency (for uterus) against peptide concentrations using a “best-fit” algorithm.
Data points represented mean values± SEM from Student’s t-test.
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