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Profiling of lung microbiota 
discloses differences in 
adenocarcinoma and squamous cell 
carcinoma
Sílvia Gomes1,2, Bruno Cavadas1,2, Joana Catarina Ferreira1,2, Patrícia Isabel Marques1,2, 
Catarina Monteiro1,2, Maria Sucena3, Catarina Sousa3, Luís Vaz Rodrigues4, Gilberto Teixeira5, 
Paula Pinto6,7, Tiago Tavares de Abreu6, Cristina Bárbara6,7, Júlio Semedo6, Leonor Mota6, 
Ana Sofia Carvalho   8, Rune Matthiesen   8, Luísa Pereira1,2,9 & Susana Seixas   1,2

The lung is a complex ecosystem of host cells and microbes often disrupted in pathological conditions. 
Although bacteria have been hypothesized as agents of carcinogenesis, little is known about microbiota 
profile of the most prevalent cancer subtypes: adenocarcinoma (ADC) and squamous cell carcinoma 
(SCC). To characterize lung cancer (LC) microbiota a first a screening was performed through a pooled 
sequencing approach of 16S ribosomal RNA gene (V3-V6) using a total of 103 bronchoalveaolar lavage 
fluid samples. Then, identified taxa were used to inspect 1009 cases from The Cancer Genome Atlas and 
to annotate tumor unmapped RNAseq reads. Microbial diversity was analyzed per cancer subtype, 
history of cigarette smoking and airflow obstruction, among other clinical data. We show that LC 
microbiota is enriched in Proteobacteria and more diverse in SCC than ADC, particularly in males and 
heavier smokers. High frequencies of Proteobacteria were found to discriminate a major cluster, further 
subdivided into well-defined communities’ associated with either ADC or SCC. Here, a SCC subcluster 
differing from other cases by a worse survival was correlated with several Enterobacteriaceae. Overall, 
this study provides first evidence for a correlation between lung microbiota and cancer subtype and for 
its influence on patient life expectancy.

Lung Cancer (LC) is the most common and lethal cancer worldwide with a reported incidence of 11.6%, a mor-
tality rate of 18.4% and according to recent estimates - 2.1 million new cases1. From a histological point of view, 
non-small cell lung cancer (NSCLC) is the most prevalent type, which can be further subdivided into two major 
subtypes: adenocarcinoma (ADC) and squamous cell carcinoma (SCC). To date, diverse environmental factors 
besides cigarette smoking, like biomass burning, indoor and outdoor pollutants, are suggested to play a role in 
LC pathogenesis, as well as in chronic obstructive pulmonary disease (COPD)2. This later illness, characterized 
as the persistence of airflow limitation in result of bronchitis and/or emphysema, is also recognized as a critical 
comorbidity in LC, always associated to a worse prognosis3. Moreover, a mechanistic link between COPD and 
LC has been proposed partially due to the findings of chronic inflammation and its repeated cycles of injury and 
repair, which in COPD are known to promote tumorigenesis and malignant transformation4.

Notably and similarly to the model established for Helicobacter pylori in gastric cancer, Mycobacterium 
tuberculosis has been hypothesized as a LC agent, once it induces inflammatory markers and causes significant 

1Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal. 2Institute of Molecular 
Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal. 3Pneumology Department, 
Centro Hospitalar de São João (CHSJ), Porto, Portugal. 4Department of Pneumology, Unidade Local de Saúde da 
Guarda (USLG), Guarda, Portugal. 5Department of Pneumology; Centro Hospitalar do Baixo Vouga (CHBV), Aveiro, 
Portugal. 6Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar 
Lisboa Norte (CHLN), Lisbon, Portugal. 7Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de 
Lisboa, Lisbon, Portugal. 8Computational and Experimental Biology Group, CEDOC, Faculdade de Ciências Médicas, 
Universidade Nova de Lisboa, Lisboa, Portugal. 9Faculdade de Medicina da Universidade do Porto, Porto, Portugal. 
Correspondence and requests for materials should be addressed to S.S. (email: sseixas@ipatimup.pt)

Received: 4 March 2019

Accepted: 19 August 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-49195-w
http://orcid.org/0000-0003-0657-1907
http://orcid.org/0000-0002-6353-2616
http://orcid.org/0000-0002-7035-7422
mailto:sseixas@ipatimup.pt


2Scientific Reports |         (2019) 9:12838  | https://doi.org/10.1038/s41598-019-49195-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

alterations in lung tissues5,6. However, this association to tuberculosis is hard to disentangle because of its 
co-occurrence with other risk factors such as smoking, emphysema and bronchitis5.

In this area of knowledge, the impact of lung microbiota, or the bacteria communities inhabiting the lung, has 
been more extensively studied in COPD than in LC. This is likely to result from COPD patients often suffering 
from acute exacerbations, which are considered to be of infectious nature and caused by bacteria and/or virus7.

Until now, studies aiming to characterize COPD and LC microbiota used different biological specimens, 
including sputum, bronchoalveaolar lavage fluid (BALF) and lung tissue. And, whereas in COPD, samples were 
collected during distinct phases of the disease (stable or exacerbation); in LC, those were gathered in some 
instances from both tumor and non-tumor regions. Moreover, although previous works were mainly based in 
the screening of 16S ribosomal RNA (16S rRNA) gene, their experimental approaches concerning sample size, 
hypervariable regions covered and sequencing technologies employed are quite diverse and consequently, their 
findings are not always consensual8–20.

Nonetheless, most studies seem to agree in the common core microbiota of both healthy and diseased sub-
jects dominated by Firmicutes, Bacteriodetes, Proteobacteria and Actinobacteria phyla, and by Streptococcus, 
Haemophilus, Veilonella, Pseudomonas and Prevotella genera8–23. Interestingly, in COPD, microbiota tends to 
be relatively stable over time and affected during exacerbations, when it shifts toward Proteobacteria manly due 
to a Moraxella increase and a Streptococcus reduction8,22. Conversely, in LC, a Firmicutes switch was suggested 
in result of augmented Streptococcus, Granulicatella, Veillonella and Megasphaera prevalence14,16,21,24. Critical 
changes in microbiota composition were suggested to occur along with airway disease progression12,17,18,22. 
However, the use of certain bacterial taxa as potential biomarkers for improved patient stratification or even as 
treatable traits, is far from being a reality.

Here, we explore an association of lung microbiota with cancer, while addressing also the impact of COPD 
co-morbidity. Briefly, we performed a microbiota profiling in a small set of Portuguese samples, used later to 
guide the characterization of bacterial communities in an extended cohort of ADC and SCC cases from The 
Cancer Genome Atlas (TCGA) Research Network25. This allowed us to detect significant differences in microbiota 
diversity of cancer subtypes, as well as to identify among SCC a well-defined community (Enterobacteriaceae) 
connected to a worse patient survival mainly due to non-cancer complications. Furthermore, we identified 
Achromobacter as a gram-negative bacterium linked with both SCC and COPD.

Materials and Methods
Sample collection.  BALF was collected from subjects undergoing bronchoscopy for evaluation of lung dis-
ease at three hospitals in Portugal: Centro Hospitalar São João (CHSJ), in Porto; Centro Hospitalar Baixo Vouga 
(CHBV), in Aveiro; and Hospital Pulido Valente - Centro Hospitalar Lisboa Norte (CHLN), in Lisbon. Informed 
consent was obtained for all participants and sample collection for Human Research was approved by hospital 
ethical committees: Comissão de Ética para a Saúde (CES) – CHSJ, Comissão de Ética – CHBV and Comissão de 
Ética para a Saúde (CES) – CHLN. The study was conducted in accordance with ethical guidelines and regula-
tions for Human research and with Helsinki Declaration. Sample collection was targeted toward affected lung 
segments and done by bronchoscope wedging into subsegmental lung regions. In this study, we used only bron-
choscope working channel washes, which were done twice with a minimum volume of 15 mL (0.9% saline solu-
tion). Samples were then stratified in LC (N = 49) or controls (N = 54) based in positive or negative cytology 
results (Supplementary Table 1). However, in a follow-up analysis carried out up to 2 years after BALF collection, 
two cases were found to be false positives and another four initially classified as negative, over time progressed to 
LC26. The pooled sample strategy prevented the reallocation of these cases to controls and vice-versa.

Lung microbiota 16S rRNA screening.  DNA extraction from BALF (200 µL) was performed using 
DNA Mini kit (Qiagen) according to manufacture instructions for capturing bacterial DNA in body fluids. 
Two 16S rRNA fragments spanning hypervariable regions V3-V4 and V4-V6 were amplified using universal 
primers (Supplementary Table 2). Pooled samples containing PCR products (~200 ng/sample) were generated 
for LC (N = 49) and controls (N = 54) and processed as previously described27. Briefly, two libraries were con-
structed according to Ion Xpress™ Plus Fragment Library Kit protocol (Life Technologies) and ran in an Ion 
PGM™ System - 316™ chip (Life Technologies). The tools USEARCH, UCHIME, QIIME and Greengenes were 
used in the analysis of operational taxonomic units (≥97% nucleotide sequence identity cut-off) as previously 
described27.

TCGA dataset.  Raw RNAseq reads from tumors and clinical data files corresponding to 515 ADC and 501 
SCC cases from TCGA, were downloaded from Genomic Data Commons (GDC) Data Portal (https://gdc.cancer.
gov/). To perform a quantitative analysis of lung microbiota we used reads not aligning with human reference 
sequence (unmapped reads) as input for QmihR28. This pipeline combines Trimmomatic, Bowtie2, and RSEM for 
a probabilistic inference of bacterial taxa abundances28. To instruct bacterial sequence surveys, we first defined 
a microbiota reference panel based in previous evidence of lung colonization in healthy and diseased patients. 
Exactly, we considered a total of 567 bacterial taxa according to the data available in: 1) the Human Microbiome 
Project (HMP) – airways; 2) specialized literature; and 3) our own 16S rRNA study; for which whole genome 
sequences could be collected from https://www.ncbi.nlm.nih.gov/genome/microbes/. Upon quality control, rela-
tive abundances of 112 genera were obtained for 509 ADC and 500 SCC cases. These samples were then stratified 
according to several variables including ancestry (European or African), gender, age at diagnosis (≤65 or >65), 
anatomic positioning (Upper or Lower lung), localization in lung parenchyma (Peripheral and Central Lung) and 
pathological tumor stage (Stages I, II and III + IV). In addition, post-bronchodilator forced expiratory volume in 
1 second (FEV1) and forced vital capacity (FVC) ratio were used to determine the presence (FEV1/FVC < 0.70) 
or absence of airflow obstruction3. Smoking history in pack per years (PPY) was considered using a first 20 PPY 
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subdivision (data not shown). Given that most cases largely surpassed this value, a naïve 45 PPY split was used 
instead based on its proximity to average values (all cases 48; ADC 42 and SCC 53 PPY). Several patient follow-up 
variables were also considered in this study to evaluate clinical significance of collected data. These included vital 
(dead or alive) and cancer (tumor free or with tumor) status, days to death and primary therapy outcome.

Statistical analysis.  Statistical analysis of microbiota diversity was performed in R studio (https://www.
rstudio.com/; version 1.1.383) using phyloseq29. Alpha diversity was evaluated through inverse Simpson and 
Shannon indexes. Beta diversity, which integrates phylogenetic relationships of bacteria was calculated by 
weighted UniFrac. Distances matrixes were used in Principal coordinates analysis (PCoA) and in hierarchical 
clustering (complete linkage) of TCGA samples. The linear discriminant analysis (LDA) effect size (LEfSe) algo-
rithm30 was used to detect taxa with differential abundances between TCGA cases. Survival analyses and log 
rank tests for pairwise comparisons of different case sets were carried out through the Cohort Comparison tool 
available at GDC Data Portal.

Results
Characterization of lung bacterial communities.  In our pooled sequencing approach (16S rRNA V3–
V6) of cases and controls using BALF samples (Supplementary Table 1), we were able to identify a total of 11 
phyla and 54 genera with relative frequencies above 0.1% (Supplementary Tables 3, 4). The prevailing phyla in 
our dataset were Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes (Fig. 1a), as it could be expected 
from previous studies8–22. Some variation in phyla proportions were observed between pools for Proteobacteria, 
(38.7% in cases vs 49.2% in controls; Z-score P = 0.284) and Actinobacteria (16.5% in cases vs 8.0% in controls; 
Z-score P = 0.187). Among genera, Haemophilus (Proteobacteria); Streptococcus and Veillonella, (Firmicutes); 
Corynebacterium and Actinomyces (Actinobacteria) and Prevotella (Bacteroidetes) were the most common in the 
two pools. Again, our screening agreed with former reports of lung microbiota8–22, disclosing only non-signifi-
cant changes between pools in relative abundances of Haemophilus (29.5% in cases vs 37.5% in controls; Z-score 
P = 0. 390) and Corynebacterium (8.2% in cases vs 1.3% in controls; Z-score P = 0.095). Overall, bacterial com-
munities were both fairly diverse as indicated by Shannon index at genus level (2.69 in cases vs 2.53 in controls). 

Figure 1.  Characterization of lung cancer (LC) microbiota. (a) Relative abundance at the phylum and genus 
levels for Portuguese cases and controls. This data corresponds to the DNA pooling of 16S rRNA amplicons 
(V3-V6) of 49 and 54 individual samples, respectively. (b) Relative abundance of genera identified among tumor 
sections of 1009 lung cancer cases from The Cancer Genome Atlas (TCGA). ADC: adenocarcinoma (N = 509). 
SCC: Squamous cell carcinoma (N = 500).
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However, for the inverse Simpson, LC cases were found to be considerably more diverse than controls (7.98 vs 
5.74, respectively).

In the TCGA series (tumor RNAseq) several discrepancies to former estimated proportions were observed. 
With an overall frequency of 59.4%, Proteobacteria surpassed by far the remaining phyla Actinobacteria, 
Firmicutes, and Bacteroidetes (23.4%, 12.0% and 4.4% respectively; Supplementary Table 5). Conversely, top gen-
era comprised Pseudomonas, Acinetobacter, Sphingomonas, Methylobacterium and Enterobacter (Proteobacteria); 
Propionibacterium, Corynebacterium, and Micrococcus (Actinobacteria); and Streptococcus and Staphylococcus 
(Firmicutes); all with average prevalence above 3%. Taxa previously identified as abundant in 16S rRNA 
pooled sequencing were confirmed to be present in TCGA but at variable frequencies, ranging from 3.7% for 
Corynebacterium to 0.3% for Haemophilus (Fig. 1b; Supplementary Table 6). Concerning microbiota diversity, 
TCGA cases showed similar values to our BALF samples for Shannon index (2.86 ± 0.43) and higher statistics for 
inverse Simpson (11.54 ± 5.06).

Differentiation of ADC and SCC subtypes.  The availability of clinical parameters for TCGA cases 
allowed an in-depth analysis of possible factors affecting lung microbiota. Aside from some variability in genera 
abundance per cancer subtype (Fig. 1b), we found that SCC tends to show higher diversity than ADC as indicated 
by inverse Simpson (Fig. 2a). This difference seems to be correlated with European ancestry, male gender, heavy 
smoking (PPY >45) and older ages at the time of diagnosis (>65 years) (Fig. 2b). Yet, we could not detect any 
effect on microbiota diversity when considering tumor localization, upper or lower lung and central or peripheral 
parenchyma (Fig. 2b).

Figure 2.  Alpha diversity of lung microbiota from lung cancer (LC) cases of The Cancer Genome Atlas (TCGA). 
(a) Inverse Simpson and Shannon indexes for LC cases grouped by histological subtype. (b) Inverse Simpson 
index of LC subtypes grouped according to different clinical variables available at TCGA database (ancestry, 
gender, age at diagnosis, smoking history, lung region and lung parenchyma). Welch’s t-test was used to access 
statistical significance of pairwise comparisons (*P-value < 0.05; **P-value < 0.01, ***P-value < 0.001). ADC: 
adenocarcinoma. SCC: Squamous cell carcinoma.
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We also used TCGA dataset to test the hypothesis of a loss of microbiota diversity along with disease progres-
sion. Nevertheless, no differences were observed across pairwise comparisons of cancer stages (I, II and III + IV) 
or COPD presence and absence. Stratification by cancer subtype did not alter the results (Supplementary Fig. 1).

To evaluate the similarity of microbiota profiles weighted UniFrac distances were calculated. As plot-
ted in PCoA (Fig. 3), LC communities are quite variable across samples and overlap between ADC and SCC. 
Nonetheless, some individual profiles appear to cluster and to be correlated with either ADC (upper right quad-
rant) or SCC (lower right quadrant). No other variable was found to aggregate groups of cases (results not shown).

Then, to gain a better insight into LC microbiota profiles we performed a hierarchical clustering of TCGA 
samples, followed by a graphic display of their lung communities at two taxonomic ranks - phylum and genus 
(Fig. 4a–d). In the phylum analysis some heterogeneity among cases could be already witnessed, as indicated 
by upper tree clusters and subclusters. Higher abundances of Proteobacteria were connected with a first cluster 
(p_C1) and a second one (p_C2) could be divided into three major subclusters. Basically, these diverged in the 
relative proportions of common phyla: p_C2s1 was dominated by Actinobacteria; p_C2s2 had balanced frequen-
cies of Proteobacteria, Actinobacteria, Firmicutes and Bacteriodetes and p_C2s3 was Firmicutes enriched.

The analysis at the genus level depicted a larger complexity of lung microbiota, where cases often clustered into 
small groups showing long terminal branches. Notably, inside p_C1 two clusters contrasted with the remaining 
tree by their shorter terminal branches (p_C1/g_C1 and p_C1/g_C2; Fig. 4a). Whereas p_C1/g_C1 could be char-
acterized by a community composed by prevalent genera such as Sphingomonas, Brevundimonas, Acinetobacter 
and Methylobacterium; p_C1/g_C2 could be defined by Enterobacter, Morganella, Kluyvera and Capnocytophaga. 
Interestingly, p_C1/g_C1 contained only ADC cases (N = 32), all of them located in the upper right quadrant 
of PCoA plot (Supplementary Fig. 2). In contrast, p_C1/g_C2 included essentially SCC cases (89 in 94), this 
turn corresponding to the plot lower right quadrant (Supplementary Fig. 2). In the p_C2s2 a single cluster 
emerged as less heterogeneous (p_C2s2/g_C1), in this instance, this could be correlated with high frequencies of 
Propionibacterium and mostly linked to ADC cases (32 in 42).

In the LEfSE analysis of ADC and SCC cases a total of 37 genera were detected to display contrasting cor-
relations between LC subtypes (Fig. 5a). Precisely, for ADC the genera with higher LDA scores (>3.5) and 
extreme P-values (P < 5 × 10−8) were Acinetobacter, Propionibacterium, Phenylobacterium, Brevundimonas and 
Staphylococcus. On the other hand, for SCC the genera fitting such requirements were Enterobacter, Serratia, 
Kluyvera, Morganella, Achromobacter, Capnocytophaga and Klebsiella (Supplementary Table 7). Interestingly, 
most of these bacteria could be correlated with previously identified clusters - p_C1/g_C1, p_C1/g_C2 and p_
C2s2/g_C1. A similar approach was used to address a possible contribution of bacteria into COPD, as a common 
co-morbidity to both ADC and SCC (Fig. 5b). Among the 12 taxa identified Achromobacter was the one most 
strongly correlated with airflow obstruction (LDA scores >3.5 and P-values ≤0.010; Supplementary Table 7).

Bacterial communities as prognostic biomarkers.  To investigate if our findings could have clinical 
potential, especially in a better stratification of LC cases, we compared the survival curves of previously identi-
fied clusters. In a first step, no significant differences were detected between p_C1 (Proteobacteria dominated) 
and p_C2s2 (intermediate abundances of common phyla), not even when separated by ADC and SCC. Yet, in the 
global comparison, and among SCC cases p_C1 cluster appears to be associated with a slower decay of survival 
rates (P = 0.076 and P = 0.089, respectively; Fig. 6). Several analyses were performed also in ADC, for p_C1/g_C1 
(Acinetobacter/Brevundimonas community), p_C2s2/g_C1 (Propionibacterium community) and other cases, but 
all failed to reach compelling results possibly due to their low sample sizes. On the other hand, among SCC 
the p_C1/g_C2 cluster (Enterobacter community) was found to departure from the remaining p_C1 cases with 
a worse survival (P = 0.011), closer to the one observed in p_C2s2 cluster. Still, the strongest divergence in SCC 
survival rates was observed for non-p_C1/g_C2 (Proteobacteria dominated without Enterobacter community) 
and p_C2s2 (P = 0.006; Fig. 6). Interestingly, p_C1/g_C2 was the cluster associated with the highest mortality rate 
during follow-up (approximately 5000 days’ maximum for SCC and 7500 days for ADC), and the one correlated 
with an increased number of deaths in tumor free patients (Table 1). Conversely, non-p_C1/g_C2 was shown 

Figure 3.  Beta diversity of lung microbiota from lung cancer (LC) cases of The Cancer Genome Atlas (TCGA). 
The Principal Coordinates Analysis (PCoA) plot was generated using weighted UniFrac distances. ADC: 
adenocarcinoma. SCC: Squamous cell carcinoma.
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Figure 4.  Bacterial communities of lung cancer (LC) cases from The Cancer Genome Atlas (TCGA). (a) 
Hierarchical clustering of LC cases built using weighted UniFrac distances and complete linkage method. Major 
clusters identified are indicated in the tree. (b) Schematic representation of LC subtype and gender variables 
available for all samples. (c) Phyla relative abundance per each sample. (d) Genera relative abundance per each 
sample. Less frequent taxa are grouped in a single category and labeled as “Others”. ADC: adenocarcinoma. 
SCC: Squamous cell carcinoma.

Figure 5.  Microbial differentiation of The Cancer Genome Atlas (TCGA) cases according to disease status 
and linear discriminant analysis (LDA) effect size (LEfSe) algorithm. (a) lung cancer subtype. (b) COPD co-
morbidity presence or absence. ADC: adenocarcinoma (N = 509). SCC: Squamous cell carcinoma (N = 500). 
W/o COPD: cases without COPD (N = 164); W/COPD: cases with COPD (N = 110).
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to display a reduced mortality even when the disease progressed negatively after primary therapy and a period 
of complete remission (Table 1). The small size of p_C1/g_C1 and p_C2s2/g_C1 clusters prevented in ADC an 
accurate evaluation of the impact of these well-defined communities in patient outcome (Table 1).

Discussion
In this study, we performed a characterization of LC microbiota using two distinct datasets and methodologi-
cal approaches: a pooled sequencing of 16S rRNA in BALF samples from Portuguese cases and controls; and a 
surveying of bacterial RNAseq reads made available through TCGA, for which tumor sections of hundreds of 
patients were collected. The main advantage of the first approach was to provide a preliminary and raw overview 
of lung microbiota at very low cost. However, this pooled approach has several limitations starting by its inabil-
ity to address inter-individual variability and to accurately pinpoint bacterial communities to each individual. 
Another weakness is related to sample heterogeneity, which contains several cases lacking a complete histological 
classification and controls that include manly subjects with other pathologies. At last, surveying 16S rRNA can 
be considered also a shortcoming, once it is expected to introduce some ascertainment bias in taxa identifica-
tion. This caveat is attributed, on one hand, to the differential annealing affinities of universal primers used in 
16S rRNA amplification, and on the other, to the distinct resolving power of covered hypervariable regions27,31. 
Conversely, in the second approach, we could benefit from a larger cohort of ADC and SCC cases, for which 
detected RNAseq reads are more likely to represent an accurate composition of lung microbiota. The unique 
disadvantage of this strategy is that in order to maximize efficiency in mapping bacterial reads, we provided a 
database of reference genomes28. This was built using taxa identified in our 16S rRNA survey, combined with 
HMP data and published elsewhere8–22.

Overall, Proteobacteria emerged as the predominant LC phylum, a trend captured also in a large sample 
of cancer patients for which non-malignant tissue sections were collected17. Until now, increased frequencies 
of Proteobacteria were mostly correlated with asthma, COPD exacerbations and advanced COPD stages8,9,32,33. 
However, given current findings a Proteobacteria enrichment could also be a feature of cancerous lungs. In-depth 
surveys uncovered distinctive scores of Proteobacteria defining two major clusters: a first one truly dominated by 
Proteobacteria (p_C1); and another one displaying intermediate frequencies of Proteobacteria, Actinobacteria, 
Firmicutes and Bacteroidetes (p_C2s2). Altogether, these results are suggestive of substructure in lung microbiota 
that as far as we could investigate is not correlated with cancer subtype, or any other evaluated clinical variable.

Also, in a global perspective, Pseudomonas, Streptococcus, Staphylococus, Veillonella and Moraxella were iden-
tified among the top rank bacteria of cancer cases fitting the so-called lung core microbiome8–22. Nevertheless, 
individual distributions showed a different scenario, in which cases are generally quite divergent in their micro-
bial composition. The exceptions to this rule are three specific communities displaying remarkable links to 
LC subtypes: Brevundimonas/Acinetobacter (p_C1/g_C1) for ADC; Enterobacter (p_C1/g_C2) for SCC, and 
Propionibacterium (p_C2/g_C1) for ADC.

Most impressively, p_C1/g_C2 cluster could be related with an overall poor survival if comparing SCC cases 
within p_C1 group. Furthermore, p_C1/g_C2 was characterized by several Enterobacteriaceae (Enterobacter, 
Morganella, Serratia, Klebesiela and Kluyvera), a taxon with recognized pathogenic potential causing airway 

Figure 6.  Survival plots of The Cancer Genome Atlas (TCGA) cases organized according to different microbial 
clusters identified and lung cancer subtypes. ADC: adenocarcinoma. SCC: Squamous cell carcinoma.
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infections in COPD34, colonizing bronchi of LC patients35 and underlying nosocomial infections with resistance 
to antimicrobial molecules36. This cluster comprised also Achromobacter, another multidrug resistant microbe 
previously found in airway infections of cystic fibrosis patients and among subjects with solid malignancies37.

Moreover, as gram-negative bacteria, Enterobacteriaceae and Achromobacter synthetize lipopolysaccharides 
capable of stimulating host inflammatory responses. In this respect, Enterobacteriaceae overgrowth has been 
described as a key event of gut dysbiosis in obesity, Crohn’s disease and colorectal cancer37,38. In asthma and 
cystic fibrosis there is also a growing body of evidence for a negative effect of Enterobacteriaceae39,40. Therefore, 
a contribution of p_C1/g_C2 community to an enhanced pro-inflammatory cancer microenvironment seems 
like a plausible hypothesis, once it is reported to foster tumorigenesis and promote lung cells malignant transfor-
mation4,41. This rational is supported by reports for a worse LC prognosis when patient bronchi are colonized by 
Enterobacteriaceae35.

Nonetheless, p_C1/g_C2 cluster was also linked with an increased mortality in absence of any tumor, which 
suggests an increased risk of this group to other non-cancer complications. Indeed, several studies already 
reported diverse pulmonary infections, septicemia and enhanced death rates after cancer resection and chemo-
therapy in LC subjects carrying potential pathogenic microorganisms in their airways35,42,43. Although we were 
unable to rigorously address the impact of p_C1/g_C2 community in the health status of a group of individuals 
probably debilitated by advanced age, co-morbidities (e.g. COPD, cardiovascular disease, diabetes, etc.) and inclu-
sively cancer treatment, our findings advocate for a differentiated medical intervention in these patients, namely 
in the selection of antimicrobial therapies.

Still, the overall survival of p_C1/g_C2 does not differ from p_C2s2 cluster, which advances Actinobacteria, 
Firmicutes and/or Bacteriodetes as additional risk factors in SCC possibly through similar mechanisms of cancer 
progression. On the contrary, non-p_C1/g_C2 group appears to somehow tolerate new tumor events, which leads 

Cancer subtype Follow-up variables Bacterial communities P-values

Adenocarcinoma (ADC)

1: p_C1_g_C1 2: p_C1_wo_g_C1 3: p_C2s2/g_C1 4: p_C2s2_wo_g_C1

Mortality

Total Deaths 0.289
(11/38)

0.333
(36/108)

0.355
(11/31)

0.379
(108/285)

1 vs 2: P = 0.6896; 1 vs 3: 
P = 0.6106; 1 vs 4: P = 0.3709; 
2 vs 3: P = 0.8321; 2 vs 4: 
P = 0.4147; 3 vs 4: P = 0.8476.

Days to death

Mean ± SD 725.7 ± 927.0 1072.7 ± 744.8 947.5 ± 779.5 699.4 ± 652.3

Median 434 880 737 553.5

Tumor free

Number of Deaths 0.056
(1/18)

0.133
(6/45)d

0
(0/15)

0.095
(13/137)

1 vs 2: P = 0.6621; 1 vs 3: P = 1; 
1 vs 4: P = 1; 2 vs 3: P = 0.3214; 
2 vs 4: P = 0.0338; 3 vs 4: 
P = 0.3655.

With tumor

Number of Deaths 0.500
(4/8)

0.563
(18/32)

0.625
(5/8)

0.674
(58/86)

1 vs 2: P = 1; 1 vs 3: P = 1; 1 vs 4: 
P = 0.4377; 2 vs 3: P = 1; 2 vs 4: 
P = 0.2848; 3 vs 4: P = 1.

Primary therapy outcome

Complete remission 0.828
(24/29)

0.646
(51/79)

0.958
(23/24)

0.784
(171/218)

1 vs 2: P = 0.0983; 1 vs 3: 
P = 0.2044; 1 vs 4:
P = 0.8086; 2 vs 3: P = 0.0018; 
2 vs 4: P = 0.0227; 3 vs 4: 
P = 0.0555.

Squamous Cell Carcinoma 
(SCC)

1: p_C1/g_C2 2: p_C1_wo_g_C2 3: p_C2s2

Mortality

Total Deaths 0.621
(54/87)

0.336
(45/134)

0.441
(97/220)

1 vs 2: P < 0.0001; 1 vs 3: 
P = 0.0053; 2 vs 3: P = 0.0575

Days to death

Mean ± SD 921.4 ± 1144.5 868.2 ± 695.179 808.5 ± 823.4

Median 494.5 645.0 506.0

Tumor free

Number of Deaths 0.421
(16/38)

0.132
(9/68)

0.181
(20/110)

1 vs 2: P = 0.0015; 1 vs 3: 
P = 0.0045; 2 vs 3: P = 0.4131

With tumor

Number of Deaths 0.941
(16/17)

0.625
(15/24)

0.829
(34/41)

1 vs 2: P = 0.0281; 1 vs 3: 
P = 0.4151; 2 vs 3 P = 0.0798

Primary therapy outcome

Complete remission 0.795
(31/39)

0.913
(84/92)

0.828
(125/151)

1 vs 2: P = 0.0795; 1 vs 3: 
P = 0.6425; 2 vs 3: P = 0.0853

Table 1.  Patient follow-up data across different bacterial communities. Significant p-values for Fisher’s exact test 
(p < 0.05) are shown in bold.

https://doi.org/10.1038/s41598-019-49195-w


9Scientific Reports |         (2019) 9:12838  | https://doi.org/10.1038/s41598-019-49195-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

to a decoupling of its survival curve from the rapid decline of p_C1/g_C2, and from the continuous decrease of 
p_C2s2.

Less remarkable findings were obtained for Brevundimonas/Acinetobacter (p_C1/g_C1) community, which 
did not diverge from other cases concerning ADC outcomes. However, if compared with SCC p_C1/g_C2 and 
p_C2s2 groups those disclosed a trend for extended survival or lifetime prognosis.

We also provide additional pieces of information for a burden of microbiota in pulmonary disease. In the 
TCGA cohort, cases showing COPD co-morbidity were linked to Achromobacter, thus highlighting a negative 
effect of this taxon in SCC and in airflow obstruction. However, COPD was not associated to any identified bac-
terial community in particular, nor to augmented prevalence of Moraxella and Haemophilus genera as frequently 
observed among these patients8,12,22. Noticeably, only 27% of cases were presented with lung function tests, and for 
those with COPD (11%) their majority was classified as mild or moderate cases (FEV > 50%; GOLD 1-2 stages). 
These features could explain the similar alpha diversity scores obtained for patients with or without COPD, once 
previous reports for a microbiota loss were centered in advanced cases22 (for opposite results19,40). More striking 
is the lack of differentiation across LC stages if taking into account former reports for a loss of diversity between 
tumor and non-tumor samples17,18. Nonetheless, there is no proof so far for a gradual decline of microbiota with 
cancer progression. In contrary, previous works uncovered higher alpha diversity values in advanced cases (IIIB 
and IV) than in earlier disease stages18. In our study, SCC cases were in average more diverse than ADC, a result 
that can be related to a heavier smoking load of these patients since cigarette and air pollutants were found to 
positively affect airway microbiota richness17,23. However, other unknown factors must play a role in LC bacterial 
colonization to explain the significant differences observed between SCC and ADC in heavy smokers. Moreover 
and consistently with a recent study carried out in mild to moderate COPD12, we also reported similar diversity 
levels across distinct lung regions (bronchial and peripheral lung), contradicting earlier findings for a microbiota 
differentiation in disparate lung anatomical regions10.

To our knowledge this work represents the largest scrutiny of LC microbiota. Shortly, we uncovered a pre-
dominance of Proteobacteria among cancerous lungs a feature shared with other airway disorders. However, 
Proteobacteria abundance is not universal and rather dictates a microbiota substructure independently of LC 
subtype, COPD co-morbidity, smoking history, age or lung region. In SCC, we found evidence for a differential 
effect of bacterial communities in patient survival, particularly when stratified into an Enterobacteriaceae cluster. 
Given that this taxon has documented complications in pulmonary illnesses, we proposed a contribution of this 
cluster to an inflammatory cancer microenvironment, as well as, for other post-operative and/or therapeutic 
non-cancer complications. Finally, we believe that the discovery of such well-defined communities may shed 
light into bacteria as promising LC biomarkers for patient stratification and as future prognostic tools or even as 
therapeutic targets.

Data Availability
The data used in this study is included in this manuscript and in supplementary material files. Additional files 
used to generate data analysis are available from the corresponding author on reasonable request.
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