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Prevalent and sex-biased breathing patterns modify
functional connectivity MRI in young adults
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Rebecca M. Jones2 & Jonathan D. Power 1,2✉

Resting state functional connectivity magnetic resonance imaging (fMRI) is a tool for

investigating human brain organization. Here we identify, visually and algorithmically, two

prevalent influences on fMRI signals during 440 h of resting state scans in 440 healthy young

adults, both caused by deviations from normal breathing which we term deep breaths and

bursts. The two respiratory patterns have distinct influences on fMRI signals and signal

covariance, distinct timescales, distinct cardiovascular correlates, and distinct tendencies to

manifest by sex. Deep breaths are not sex-biased. Bursts, which are serial taperings of

respiratory depth typically spanning minutes at a time, are more common in males. Bursts

share features of chemoreflex-driven clinical breathing patterns that also occur primarily in

males, with notable neurological, psychiatric, medical, and lifespan associations. These

results identify common breathing patterns in healthy young adults with distinct influences

on functional connectivity and an ability to differentially influence resting state fMRI studies.
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Functional magnetic resonance imaging (fMRI) scanning of
subjects at rest has become a major neuroimaging paradigm,
termed functional connectivity or resting state MRI1. In

these scans, subjects lie quietly, often staring at a crosshair, for
5–15 min or more, performing no particular instructed task while
fMRI data are acquired. Correlations in task-free fMRI signals are
thought to reflect the functional relatedness of the tissues pro-
ducing those signals, and the spatial topography of signal corre-
lations has been leveraged to yield new and increasingly refined
macro-scale maps of the human brain2–4. These scans have the
potential to deliver diagnostic and prognostic information, and
large studies are now underway that use resting-state fMRI scans
as cornerstones of the datasets, e.g., the ABCD study scanning
10,000 children for biomarkers of developmental trajectories5.

Breathing modifies the concentration of carbon dioxide in
arterial blood, which is a potent modulator of cerebral blood
flow, and thus the fMRI signal6,7. When subjects breathe deeply
or quickly (i.e., hyperpnea) they exhale more CO2, arterial pCO2

drops, cerebral blood flow decreases, and fMRI signals decrease;
conversely, if breathing is shallow or slow (or stopped) (i.e.,
hypopnea or apnea), less CO2 is released, arterial pCO2 rises,
cerebral blood flow increases, and fMRI signals increase. In
this manner, breathing patterns can influence resting-state
fMRI scans.

Breathing occurs in multiple forms. The basic respiratory
rhythm is a cyclic rhythm termed eupnea, which moves a tidal
volume of air into and out of the lungs in each breath. But a
variety of deviations from eupnea exist, from the sighs exhibited
by all humans that reinflate collapsed portions of the lung, to
yawns of boredom or sleepiness, to more marked forms of dis-
ordered breathing, including cluster breathing, ataxic breathing,
or periodic breathing (e.g., Hunter–Cheyne–Stokes), forms of
respiration often associated with heart disease or neurological
injury6. Beyond having different generative neural mechanisms8,
different kinds of breathing may have distinct biophysical cor-
relates and consequences for neuroimaging.

Little is known about the breathing characteristics of healthy
young adults lying at rest in an MRI scanner, the kind of subject
that forms the backbone of the functional connectivity literature,
despite the potential for breathing to systematically influence
fMRI signals. To address this issue, we jointly examined
respiration and fMRI signals in a large, publicly available data set
of healthy young adults with large amounts of scan time per
subject, the Young Adult release of the Human Connectome
Project (HCP). In this report, we describe effects seen in 440 h of
scanning in 440 subjects (ages 22–36, mean 28.6, 228 males, 212
females). Such quantities of data stand in contrast to the prior
fMRI literature on respiration, which usually involved small
numbers of relatively short recordings9–12.

The sheer size of the Young Adult HCP data set provides an
unprecedented window into the respiratory behavior of humans
quietly resting in scanners. In these subjects, beyond eupnea, we
find two prevalent patterns in respiration with distinct correlates
in fMRI signals and distinct influences on functional connectivity.
One pattern represents isolated deep breaths and is not sex-
biased. The other, termed bursts, is sex-biased, and we link this
pattern to sex-biased breathing patterns in the respiratory lit-
erature. Patterns were congruently recognized by human raters
and an algorithmic scoring system. Collectively, these results
demonstrate a prevalent and sex-biased form of breathing in
healthy young adults with substantial influence on functional
connectivity measures that resemble a form of breathing tradi-
tionally studied in older, medically ill patients. The clinical lit-
erature suggests that these breathing patterns will be influenced
by sex hormones, by age, cardiovascular, neurological, and psy-
chiatric illness, among other factors.

Results
Two distinct breathing patterns in subjects at rest. We begin by
presenting individual instances of respiratory patterns, then
group descriptions, then demographic differences in pattern
prevalence, and then the spatiotemporal effects of the breathing
patterns and their distinct consequences for fMRI signal covar-
iance. We focus initially on visual presentations, for these were
how we first recognized the patterns.

To detect influences of respiration on resting-state fMRI
signals, we created and viewed plots of 1760 scans representing
440 h of scanning in 440 young adults. In addition to eupnea, we
came to recognize two common patterns of respiration. One
pattern was known to us, which we term a single deep breath, a
lone breath considerably larger than the surrounding breaths. The
other pattern was unfamiliar to us, and is undescribed in the
neuroimaging literature to our knowledge; we call it a burst
pattern.

The two patterns are illustrated in Fig. 1. The fMRI scans are
flattened into grayscale heat maps, with all in-brain voxels
defining the Y axis and time on the X axis. Signals from gray
matter voxels are above the bright green lines, and from white
matter and ventricles below. The respiratory belt trace is shown in
blue, and several deep breaths are marked by orange arrows in an
otherwise eupneic scan in Fig. 1a. Three respiratory measures
derived from the respiratory trace often used to model respiratory
effects in the fMRI literature, are also shown (ENV, RV, and RVT,
respectively, gauging the envelope of the belt trace, windowed
variance in the trace, and the rate of air movement), often
displaying abnormalities at these deep breaths. In the fMRI
signals, throughout the gray matter, there are brief signal
increases (vertical white bands) just after the deep breath is
taken, followed by prominent signal decreases (vertical black
bands). Figure 1b illustrates a burst respiratory pattern: a serial,
rhythmic set of tapers in breathing depth (this example has apnea
between bursts), with rhythmic correlates in fMRI signals. Fuller
versions of these images, including fMRI signals before and after
denoising, are shown in Supplementary Figs. 1 and 2, illustrating
that signal effects are present both before and after FIX-ICA
denoising and that the patterns are also linked to head motion
and image quality measures. These scans were chosen for their
stark examples of the breathing patterns, but there are many
forms of deep breaths and bursts, illustrated in Fig. 1c, d and later
figures. In something as straightforward as a single deep breath
(e.g., Fig. 1c), a variety of waveforms are possible, including floor
and ceiling effects and slippage of the respiratory belt at peak
inspiration; readers wishing to gain skill in recognizing patterns
are encouraged to consult Supplementary Note 1 and to view all
1760 gray plots in Supplementary Movie 1 (1.4 GB, download at
https://osf.io/u35f8/).

To help convey the variety of respiratory waveforms denoting
single deep breaths, five instances are shown in Fig. 2a (fuller
images are shown in Supplementary Fig. 3, see also dozens of
scans with deep breaths marked in Supplementary Movie 2).
These isolated, deep breaths are often accompanied by subse-
quent breathing pauses of variable duration (often just a few
seconds but sometimes lasting 10 or 20 s; brief central apneas are
known sequelae of deep breaths13). In each of these instances,
after an initial delay, a black band in the gray plot reflects a pan-
brain decrease in fMRI signals lasting until ~30 s after the breath,
consistent with a cerebral blood flow decrease after a transient
increase in ventilation.

To help convey the variety of respiratory waveforms denoting
bursts, five instances are shown in Fig. 2b (fuller images are in
Supplementary Fig. 4, see also dozens of scans with bursts marked
in Supplementary Movie 3). In this pattern, a burst of deep
breaths occurs which tapers into shallow breaths, often serially
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followed by additional bursts. These burst respiratory patterns
differ from single deep breath patterns in several respects. First,
whereas single deep breaths often occur in isolation, series of
bursts often span several minutes at a time, with individual bursts
often lasting ~30–50 s. Second, the burst patterns are usually quite
evident in ENV, RV, and RVT traces, which all tend to
concordantly display large wavelike modulations (in contrast,
note the lack of concordance in some deep breaths of Fig. 2).
Third, the typical fMRI signal response is an initial signal increase
followed by a prolonged decrease (see orange lines marking brief
white then longer black bands), with durations approximately
matching those of the respiratory burst with an added lag of
signal decrease. The subject at the bottom is shown for the
entirety of a scan, illustrating how eupnea evolves into a burst
pattern, with the emergence of fMRI signal correlates.

Each subject had four 14.4-min long scans, and it was plain
that, within a subject, one scan could display normal tidal
breathing, but a different scan could contain markedly different
breathing, with accompanying differences in fMRI signals (see
two examples in Supplementary Fig. 5). It was also plain that,

within scans, different breathing patterns could dominate at
different times (see two examples in Supplementary Fig. 6).
Because deep breaths and bursts were both prevalent, and
organized, we focused on these respiratory events (though other
forms of more disorganized breathing exist, see an example in
Supplementary Fig. 5, upper right).

Properties of respiratory patterns. To more formally char-
acterize deep breaths and bursts, the onsets of 35 bursts, 35 deep
breaths, and 35 non-respiratory head motions were visually
identified (Supplementary Data 1 lists onsets; Supplementary
Fig. 7 illustrates 6 onsets of each kind in gray plots, see Supple-
mentary Movies 2–4 for all onsets marked in gray plots). The
non-respiratory motion onsets were identified to address the
possibility that the fMRI signal changes during deep breaths or
bursts related to head motion from breathing. A random onset in
a random scan of the motion subjects was also set as a control
condition. Relevant signals were extracted from 30 s prior to 60 s
after onsets, illustrated in Fig. 3a, with statistical contrast to
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random onsets shown as a thin gray-red heatmap under the main
heat maps (coloring only t-tests of p < 0.001). The basis of burst
and deep breath identification is evident in the respiratory belt
heat maps. Plots in Fig. 3b show mean values across certain
events. Bursts show marked, congruent signatures in ENV, RV,
and RVT (Fig. 3b). Deep breaths also have marked signatures, but
they differ across measures, with RVT having no mean positive
deflection (explained in ref. 14). Global fMRI signals differ across
patterns, with deep breaths on average displaying a brief, steep
signal increase then a marked signal trough with nadir near 15 s
after onset, and resolution 30 s after onset. Bursts have slower
trajectories on average, peaking later and higher, and exhibiting
prolonged troughs with nadir over 20 s after onset, with a reso-
lution around 40 s after onset. Individual event durations are
naturally modulated by the depth of breathing, the presence and
duration of apnea after deep breaths, and the duration of a burst
taper. We selected a non-respiratory-motion group as a control
because deep breaths display considerable motion at the onset of
the breath, evident in the head motion and DVARS heat maps.
However, neither the motion-displaying group nor the random
group showed any global fMRI signal fluctuations, effectively
ruling out motion as a cause of the patterned global signals. That

motion did not produce global changes is consistent with the fact
that multi-echo studies show that global fMRI signals are over-
whelmingly T2* signals (compatible with respiration), not S0
artifacts caused by head motion15. Heart rate is routinely elevated
for several seconds after deep breaths, whereas no average effect is
noted for bursts. Because deep breaths very reliably elevate heart
rates, we were surprised that deepened breathing in bursts did not
produce much modulation; review of individual scans indicates
that some subjects reliably display cardiac modulation by bursts,
but others display no modulation (Supplementary Fig. 8). Other
non-HCP resting-state fMRI datasets also exhibit bursts, and, in
those datasets, as in the HCP data, there is not a reliable link
between bursts and heart rate modulation (see Supplementary
Note 2 and Supplementary Fig. 9).

Group contrasts reveal a sex bias in burst patterns. To better
understand why the respiratory patterns occur, we sought
subject-level factors that scaled with these two respiratory pat-
terns. The HCP data set has hundreds of behavioral, demo-
graphic, physiologic, and imaging measures for each subject. To
mine such information, we needed either groups to contrast
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displaying different breathing patterns, or numeric indices of
patterns (e.g., for regression). We pursued both paths simulta-
neously but prioritized the group contrast approach because we
could carefully select and thus confidently characterize breathing
patterns in the groups.

For exploratory purposes, we defined three groups with clearly
different breathing patterns: subjects with unambiguous, marked
bursts in most or all scans and few or no single deep breaths (the
burst group), subjects with unambiguous, marked single deep
breaths in most or all scans but few or no bursts (the deep breath
group), and subjects whose scans displayed neither bursts nor
single deep breaths (the clean group). Subjects were selected
based on respiratory belt traces and signal heat maps alone,
without knowledge of other properties of the subject. This
procedure identified three groups of 21 subjects, all unrelated.
Subject identity is restricted due to associations with psychiatric
instrument scores and substance use in the groups (described
below); investigators with HCP Restricted Access will find a
Subject Key associated with this paper identifying the groups. Full
details of the statistical contrasts of these groups are reported in
Supplementary Note 3, Supplementary Fig. 10, and Supplemen-
tary Data 2. Instructions to access Subject Keys are in the
“Methods” section.

The three groups were associated with far more HCP variables
than expected by chance, including alcohol use (bursts), cigarette
use (deep breaths), and strikingly included dozens of structural
imaging variables that differed uniformly by group, distinguishing

the burst group (thinner cortex) from other groups (smaller
brains) (Supplementary Fig. 10). These findings were all
subsumed, and nearly all explainable, by the following fact: males
were 6/21 of the clean group, 5/21 of the deep breath group, and
14/21 of the burst group. The groups were formed without
knowledge of the sex of participants, and it is very unlikely (joint
probability p= 3.3e−5) that such unbalanced sex compositions
would emerge three times in random group formation.

Ratings of gray plots reveal a sex bias in burst patterns. In
parallel with the group analyses, authors J.D.P. and C.J.L. inde-
pendently rated 1596 scans (subjects 1–399) after training toge-
ther on subjects 400–440, making binary decisions on the
presence of deep breaths and bursts in each scan. Ratings were
made purely in terms of gray plots without knowledge of any
demographics, including sex. The group results above were dis-
covered after 100 subjects had been rated (with good-to-excellent
inter-rater reliability, Cohen’s kappas were 0.79 for bursts and
0.73 for deep breaths). Significant sex differences in bursts but not
deep breaths were present within these first 100 subjects for both
raters, were again separately present in the next 299 subjects rated
for both raters, and were also present when subjects in the above-
defined groups were excluded and/or when only one subject per
family contributed. For simplicity, we report ratings of the entire
399-subject cohort.

Identical rater decisions were made in 87% of scans on bursts
and in 89% of scans on deep breaths, yielding Cohen’s kappa
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values of 0.73 and 0.78 overall. Due to the number of ambiguous
decisions that must be made in subtle instances of patterns, or
amidst disorganized and chaotic breathing styles, we prioritized
the totals over four scans in each subject, referred to as pattern
scores. These scores correlated at r= 0.86 (p < 1e−20) for bursts
and 0.90 (p < 1e−20) for deep breaths between raters, illustrated
in Fig. 4a. These numbers indicate that human raters reliably
recognize the breathing patterns; interested readers may use the
Supplementary pattern training module to learn the patterns
(download at https://osf.io/u35f8/).

Deep breaths occurred in about 85% of subjects, and it was
common for subjects to display deep breaths in most or all scans
(Fig. 4b). Bursts, on the other hand, were absent in about 30% of
subjects, and it was relatively uncommon for subjects to display
bursts in all scans. In both sets of ratings, chi-squared tests for sex
differences were significant for bursts (p= 3.4e−8 and 8.8e−7)
but not for deep breaths (Fig. 4c), effects unchanged when

excluding the groups mentioned above. Overall, bursts were
identified in 45% of male scans and 35% of female scans, whereas
deep breaths were identified in 54% of male scans and 52% of
female scans. Scores of each pattern were uncorrelated across all
subjects, for each rater, and within each sex (r < 0.1 for all). Thus,
the breathing patterns appear to occur independently across
subjects. The pattern scores within the 3 previously contrasted
groups accord with the desired group breathing properties
(Fig. 4d).

Automated detection. To begin to move beyond rater decisions,
which are tedious and time-consuming, we devised an algorithm
to index breathing patterns based on joint information in
respiratory traces and global fMRI signals. The algorithm creates
probabilities of respiratory patterns from the respiratory belt
traces and multiplies these probabilities with the match of global
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Fig. 4 Rater scorings and algorithmic indices detect sex effects and global functional connectivity influences. a Plots of total scans (of 4) with bursts
and deep breaths for both raters, with score correlations and Cohen’s kappas inset, for N= 399 subjects (all panels display results from N= 399 subjects
except d and e, which concern the three 21-subject groups). b Histograms of scores across subjects for both patterns, showing raters by color. c Bar graph
of percent scans of each sex displaying patterns. Chi-squared tests of bursts yield p= 3.4e−8 and 8.8e−7 for J.D.P. and C.J.L. (denoted by ***), effects
unchanged by excluding members of the three groups. No significant differences are seen by sex in deep breath scores. d Bar plots showing mean values
with std error bars of the ratings in a clean, burst, and deep breath groups (each with N= 21 unrelated subjects). B and D denote burst and deep breath.
Desired respiratory properties are found in each group. e Algorithm indices of the three 21-subject groups, corroborating rater scores and confirming
desired breathing patterns (compare with d directly above). Box plots show median and 25th and 75th percentiles as boxes, whiskers encompass 99% of
normally distributed data, outliers are individually marked (all box plots in later panels follow this format). f Algorithm indices of breathing patterns by sex,
with significant differences by two-sample t-test in bursts but not deep breaths (compare with c directly above). g Box plots of algorithm indices for each
pattern as a function of mean rater score, demonstrating significant Pearson correlations of humans and algorithm ratings. h Box plots of gFC as a function
of mean pattern scores, showing much stronger effects of bursts on gFC, quantified by Pearson correlation. i Betas of multiple linear regression of pattern
scores in gFC (gFC= b0+ b1*burst_score + b2*deep_breath_score), performed in each sex separately, showing much stronger effects of bursts. Bars
show mean values, error bars show 95% confidence intervals; fits do not differ by sex (both n.s. by two-sample two-sided t-test, uncorrected for multiple
comparisons). j Box plots of gFC and head size (intracranial volume, ICV) by sex, both significantly different by sex by two-sample two-sided t-test (p=
9.1e−9 and <1e−20, respectively). k Color chart of significance of main effects of multiple ANCOVA models. Sex effects become insignificant when both
head size and respiratory variables are modeled. Source data are provided as a source data file, though group identity is redacted.
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fMRI time series to templates of deep breaths and bursts, thus
requiring simultaneous evidence from both sources (respiratory
trace and global fMRI signal) to begin indexing patterns. This
approach performs well in many situations, but haphazard, dis-
organized breathing can cause high indices on either pattern, thus
causing us to algorithmically discount scans with markedly
variable respiratory rates. This algorithm recaptures the sig-
nificant differences in group breathing styles (Fig. 4e) and the
significant sex difference in bursts but not deep breaths (Fig. 4f).
Indices significantly correlate with rater scores on both patterns
(Fig. 4g). These results collectively give good confidence in ratings
and group formations and demonstrate a proof-of-principle
algorithmic approach to this issue. A fuller description of the
algorithm, with illustrations in single scans, is in Supplementary
Note 4.

Influence of respiratory patterns on global covariance.
Respiratory events, by influencing cerebral blood flow, add
broadly shared variance to all voxel signals, seen repeatedly in this
paper as the white and black vertical bands in gray plots. To index
such global effects on functional connectivity, in each subject, the
median correlation of all gray matter voxel signals in each of the
four scans was calculated in the minimally preprocessed data, and
the mean of these values over all scans was computed (termed
global functional connectivity, gFC).

Robust increases of gFC are seen with increasing rater scores,
and the scaling is stronger for bursts (r= 0.53, p < 1e−20) than
for deep breaths (r= 0.18, p= 4e−4) (Fig. 4h). Similarly,
algorithm indices scale with gFC, more for bursts (r= 0.59, p <
1e−20) than for deep breaths (r= 0.29, p= 7e−9). The higher
values for the indices relative to scores may reflect their ability to
scale with prevalence within-run (rather than binary rater
decisions), or the fact that the indices incorporate template fits
to global fMRI signals. Multiple linear regression of scores and
indices yielded betas twice as high for bursts as for deep breaths
and additionally demonstrated that fits to gFC for each pattern
did not differ by sex (Fig. 4i shows betas (slopes) for score fits to
gFC by sex).

Though bursts and deep breaths produce the same effects in
gFC in each sex, because bursts are more common in males, gFC
may be increased in males relative to females. As Fig. 4j shows,
males do have higher gFC. However, males also have larger heads
with brains closer to scanner receive coils, meaning signal-to-
noise ratios may differ by sex as well, providing an additional
potential explanation for gFC differences. We therefore modeled
gFC via ANCOVA as a function of sex, head size, and respiratory
variables, and only eliminated sex differences when both head size
and respiration were accounted for (Fig. 4k). Though motion
does not cause global signals (which should largely drive gFC), as
a precaution we also added motion covariates (FDoriginal, FDfiltered,
and FDfiltered,4-TR, following16) and the data quality covariate
DVARS to models 1–4; these additions did not eliminate
significant gFC sex differences in any model and often failed to
significantly fit as main effects when respiratory variables were
present.

Spatiotemporal effects of bursts and deep breaths in fMRI. We
next asked whether there were non-global profiles of the
breathing patterns in functional connectivity and whether such
profiles differed by pattern. We first focused on covariance during
the breathing patterns. Using the sets of 35 events from Fig. 3, we
extracted the time series spanning −10 to +40 s about the onsets
and computed mean correlation matrices in a commonly used
parcellation scheme17, illustrated in Fig. 5a. Permutation tests
among patterns yielded significant differences of each pattern

from random onsets (only cells significant at p < 0.05 by 10,000
permutation tests are colored; nearly all cells are significant), and
from each other, shown in Fig. 5b for several versions of signal
processing. Mean signals within the resting state networks are
plotted in Fig. 5c, illustrating the basis of the correlation matrices.
Several spatially specific effects are present. For the present pur-
poses, two points are emphasized. First, in all forms of signal
processing, significant spatially specific effects exist. Second, in
the minimally preprocessed data (and in FIX-ICA-denoised data),
which best represents the original respiratory effects, there is a
striking elevation of correlations in a primary sensory and motor
distribution encompassing visual, auditory, motor, and somato-
sensory cortex (dotted ovals in Fig. 5b). Signals in these networks
peak high and early (dotted ovals in Fig. 5c), and have deep and
early troughs, relative to other networks. For completeness, time
series are also shown on a brain surface in Fig. 5d (and in Sup-
plementary Movie 5), comprehensively illustrating both global
and focal effects in each pattern.

Covariance associated with bursts and deep breaths. Whereas
Fig. 5 focused on effects during breathing patterns, Fig. 6 focuses
on correlation structures of entire scans associated with (but not
necessarily caused by) the breathing patterns. Effects in minimally
preprocessed data are the focus, but some major data processing
strategies are also shown. As in Fig. 5, all matrices only color
effects significant at p < 0.05 by 10,000 permutation tests (gray is
used for insignificant cells).

First, we examined the correlation structures of the three
groups (Fig. 6a). The burst group had correlations broadly
elevated above both the clean and deep breath groups, with
especially high elevations in the sensorimotor distribution (dotted
yellow circles). The deep breath group had broadly higher
correlations compared to the clean group, notably avoiding the
sensorimotor distribution (dotted blue circles), despite bursts
having no role in these scans or contrasts. Comparing the groups
to randomly formed groups drawn from all unrelated subjects
recapitulated these findings; these latter analyses can be viewed as
contrasts of relatively pure breathing patterns with typical
breathing (i.e., randomly selected baseline mixtures of the
breathing patterns).

Second, we examined within-subject differences between scans
with neither respiratory pattern and scans with either bursts
(Fig. 6b, top row) or deep breaths (bottom row). Within-subject
burst effects are widespread elevations with sensorimotor
emphasis (dotted yellow circles) and are present in minimally
preprocessed and FIX-ICA-denoised data, and also in data that
undergoes motion regression and censoring (third column).
When global signals are removed, significant effects persist but in
an altered distribution, reflecting the fact that a lagged signal
structure exists in bursts that is not captured in the mean signal.
This respiratory effect becomes more pronounced when motion
regression and censoring are performed along with global signal
regression, underscoring that these patterns are not motion-
caused signals. Within-subject deep breath effects, on the other
hand, are widespread elevations without global signal regression,
which are largely eliminated with global signal regression,
reflecting the fact that the major modulation is tightly time-
locked and similar in all networks. There is a hint of the
sensorimotor non-elevation seen in the group contrasts in certain
processing strategies (dotted blue circles).

Third, we examined betas of multiple linear regressions across
subjects, separately in each sex (males in the top row of Fig. 6c,
females in the bottom row, only unrelated, non-group subjects
used). Very similar spatial beta structures were seen in males
and females (compare top and bottom rows). Again, bursts
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associated with global elevations that were especially pronounced
in sensorimotor distributions (dotted yellow circles), and deep
breaths associated with milder widespread elevations that con-
spicuously avoided sensorimotor distributions (dotted blue circles).
Nuisance effects of DVARS and head motion are congruent by sex
and distinct from those of respiratory patterns in all processing
strategies (best illustrated in Supplementary Fig. 11).

For convenience, matrices from Figs. 5 and 6 are arranged by
respiratory pattern pattern in Supplementary Fig. 12, along with
related effects in instructed breathing paradigms.

Potential influences of sleep or arousal. Here, we attempt to
document relationships of the respiratory patterns to arousal or
sleep, factors that are well-known to modify breathing. Our ability
to address these questions is limited in HCP data, which includes
no hard measure of arousal or sleep, but several expected asso-
ciations of breathing and sleep can be (indirectly) tested. It should
first be stated that studies in young adults, whether by poly-
somnography or by survey, do not find sex differences in delay to
sleep in the age range of the HCP subjects (though sex differences

in delay to sleep do emerge later in life, after menopause)18,19.
Large studies of excessive daytime sleepiness also routinely find no
sex effect20,21. And studies of sleep onset during fMRI in young
adults do not report sex effects22. There is thus little a priori reason
to expect for a sex difference in tiredness or sleep onset to be the
cause of sex-biased breathing effects in young adults.

One prediction is that deep breaths should associate with sleep.
In the respiratory literature, deep breaths are associated with
many factors including tiredness and sleep13. No hard measure of
sleep exists in HCP data, but a list of sleepy subjects was kept by
scanner technicians, which includes 37% of all HCP subjects. Of
our three groups, 71% of the deep breath group was on that list
(p= 0.0014), compared to 38% of the clean group (n.s.), and 41%
of the burst group (n.s.), giving face plausibility to the validity
of the list and indicating that subjects exhibiting many deep
breaths are likely enriched for people yawning. Relatedly, we
examined gray plots of individual scans in which subjects were
documented as definitely sleeping (outside the groups) and we
could discern no visual signature of sleep, certainly not by
respiratory pattern.
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Fig. 5 Spatiotemporal properties of bursts and deep breaths. a Color legend of network locations and colors from ref. 17, with text labeling of the networks
of particular interest for this paper (full legend in Supplementary Fig. 11). b Correlation matrices are derived from spans of −10 to 40 s about the event
onsets shown in Fig. 3 in minimally preprocessed data (red dotted lines in c), and show mean differences of 35 bursts and 35 deep breaths compared to 35
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Another testable proposition is that sex-biased bursts are merely
snores or obstructive sleep apnea. Obstructive sleep apnea is strongly
potentiated by obesity23, and there was no correlation between burst
scores and body mass index (BMI) in either sex (male r= 0.07, p=
0.32; females r=−0.03, p= 0.66), nor did males and females
significantly differ in BMI, which was in the mid-20s for both sexes.
Collectively, these results support central, not obstructive, causes of
bursts (though some instances could be obstructive).

Another testable proposition is that the breathing patterns
become more likely as scans progress, perhaps reflecting an
influence of arousal (if not necessarily sleep). Our visual
impressions from examining all scans were that deep breaths
seemed to occur at any point of a scan, including the very
beginning, and were not notably concentrated at the end, whereas
bursts seemed to be uncommon at the beginning of scans and to
emerge later in scans. More formally, in both males and females,
algorithm indices for both patterns rose as scans progressed, and
t-tests of indices in minutes 1–4 compared to 11–14 of scans were
significant for both patterns in both sexes (both p’s < 1e−16 for
bursts, both p’s < 0.02 for deep breaths). These statistical effects
accord with our visual impressions.

Collectively, these observations indicate that deep breaths are
associated with sleepiness, that bursts are probably central rather
than obstructive phenomena, and that sex biases in sleep onset or
tiredness are unlikely to be causes for sex differences in bursts.
They also indicate that bursts become more likely as scans
progress in both sexes.

Discussion
In this paper, we described two respiratory patterns that differ-
entially bias functional connectivity, both commonly seen in
young adults lying in MRI scanners. This work represents our
first major effort toward developing an event-related framework
for understanding effects in spontaneous fMRI time series, fol-
lowing argumentation in ref. 24. Distinct respiratory effects can
occur within-scan, between scans in subjects, and across subjects
and populations. This discussion links respiratory patterns to
effects in the neuroimaging literature and lays out a potential
mechanistic basis of bursts that could explain why bursts occur
more in males. It concludes by noting settings in which differ-
ential expression of respiratory patterns may be anticipated. A
Supplementary Discussion elaborates on concepts described only
briefly in the main text, especially regarding mechanisms and
clinical associations of periodic breathing.

Both deep breaths and bursts had brain-wide effects on fMRI
signals, causing increased global functional connectivity, and the
effects were most marked for bursts. The increased prevalence of
bursts in males contributed to higher average fMRI signal correla-
tions compared to females. These differences were eliminated once
both brain volume and respiratory patterns were accounted for. To
clarify, we are not broadly asserting that all functional connectivity
sex differences are due to respiration or even necessarily that the
specific differences we removed were due to respiration (a third
shared variable could be at work); we are asserting that respiration is
capable of causing sex differences in functional connectivity.
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The respiratory patterns had distinct spatiotemporal effects,
with bursts strongly elevating correlations among sensorimotor
brain regions, whereas deep breaths had their weakest effects in
such regions. Signal modulations were fairly time-locked across
the brain in deep breaths, but bursts unfolded with multi-second
lags between different parts of the brain. These distinctions,
joined with distinct cardiac effects, indicate that distinct cardio-
pulmonary and neurophysiological events are occurring during
the patterns. An important topic of future work will be to dis-
entangle pCO2-related cerebral blood flow effects during each
respiratory pattern from the blood flow consequences of the
neural activity that triggers and tracks and guides each pattern.

It is noteworthy that the sensorimotor pattern has emerged
in numerous areas of fMRI research, including studies
localizing global fMRI signals at rest25,26, and studies of arousal
and sleep27–30. The extent to which bursts (or deep breaths)
define what is measured as the global fMRI signal is presently
unknown. Given the lively debates over retaining or discarding
global fMRI signals, it will be important to understand how
various denoising or data processing strategies impact one or
both of these respiratory patterns. Similarly, it will be of interest
to examine these phenomena in the context of caffeine admin-
istration, vigilance tasks, lag structure, or quasiperiodic patterns
(e.g., refs. 31–34). As detailed below, there are reasons to suspect
that psychiatric symptoms will also scale with these patterns;
indeed, our clean group without bursts or deep breaths reported a
colloquially “clean” lifestyle, with unusually little substance use or
psychiatric symptomatology (Supplementary Note 3).

By our estimate, in young adults, deep breaths occurred in
about half of all scans, and in well over three-quarters of subjects,
numbers that are unsurprising from a respiratory perspective.
Adult humans inhale deeply several times an hour to counter
mild changes in blood gas tensions and to reinflate collapsed
alveoli, and such physiologic sighs are especially common in the
supine position used for scanning13. In addition, yawns are likely
to occur in some subjects.

The burst pattern occurred in over one-third of scans and in
two-thirds of subjects, with a tendency to occur in males. The lack
of correlation between BMI and burst prevalence in either sex
suggests a central rather than obstructive origin of the pattern,
though some instances might be obstructive. A centrally oriented
explanation is that the patterns arise via sex-biased respiratory
control parameters that are unmasked as subjects relax in the
scanner. Our leading hypothesis is that the pattern emerges via
parameters governing the chemoreflex, which could explain both
the waveforms and the sex bias of bursts, as detailed below.

The generation of waxing and waning patterns of breathing
occurs via interactions among the mechanisms controlling
breathing (this discussion is simplified, see the Supplementary
Discussion and ref. 35 for detail); when such patterns attain cyclic
stability they are called periodic breathing (Fig. 7 shows periodic
breathing in several situations in which it is routinely seen).
Breathing rhythms are generated in the medulla and are under
three kinds of control: volition, a waking neural drive during
wakefulness and rapid eye movement (REM) sleep, and a che-
moreflex loop that centrally senses pH and thereby pCO2

8. The
chemoreflex is central to this discussion. Every person has pre-
ferred set points for arterial pCO2, called the resting pCO2, and
fluctuations about resting pCO2 engage a negative feedback loop:
at high arterial pCO2, the chemoreflex stimulates breathing in
order to reduce pCO2, but below a certain value of pCO2—the
apneic threshold—the chemoreflex ceases to stimulate breathing.
Cyclic waxing and waning of respiration generally occur in the
following manner: (excessive) ventilation pushes pCO2 below
the apneic threshold, causing chemoreflex respiratory drive to
fade or cease, after which pCO2 rises and pO2 falls, eventually

triggering the resumption of (excessive) ventilation and the start
of the next cycle.

Key to initiating and propagating such cycles is the CO2 reserve
– the difference between resting pCO2 and the apneic threshold –
which exhibits sex differences due to gonadal hormones. Women
have the same resting pCO2 levels as men, but lower apneic
thresholds, and thus larger CO2 reserves36. Sex hormones influ-
ence these parameters: administration of testosterone to women
raises the apneic threshold without altering resting pCO2, thus
reducing CO2 reserve37. Smaller CO2 reserves mean a smaller
ventilatory perturbation is needed to trigger apnea and cycles of
waning and waxing breathing, and thus larger CO2 reserves make
apneic events less likely, leading to the expectation that women
should be less likely to initiate and perpetuate periodic breathing
than males. In a recent study, when healthy adults were taken to
high altitude (Mount Everest), forcing a lowered resting pCO2

(due to hyperventilation), women displayed far less central apnea,
and periodic breathing specifically, than men38. These manip-
ulations (testosterone, hypoxia) highlight the role of sex hor-
mones in shaping chemoreflex responses, which is the basis of a
well-established tendency for females to display less apnea than
males. Waxing and waning cycles of breathing are usually studied
during sleep and measured via the apnea/hypopnea index (AHI),
indexing the number of events per hour, and numerous large
respiratory studies detect robust sex differences in AHI scores,
with women displaying fewer episodes than men39–42. Further
evidence of the role of sex hormones in apnea is that AHI sex
biases are reduced after menopause, that hypogonadal males have
lower AHI than weight-matched peers43, and that women with
testosterone-producing tumors have higher AHI than weight-
matched peers44.

In short, the sex biases of the burst pattern could potentially
arise via sex-hormone dependent properties of the chemoreflex
loop that potentiate sex differences in apnea and hypopnea. Such
disordered breathing is—by far—most commonly studied in
older, clinical populations and during NREM sleep, when the
chemoreflex properties are maximally exposed (although recent
studies have begun to document such breathing in the
daytime45,46). Though lessening of the wakefulness drive would
help to reveal instabilities in the chemoreflex loop, the extent to
which sleep or reduced arousal is contributing to bursts in the
HCP data is unclear, and new datasets with concurrent mon-
itoring of respiration and arousal will be needed to properly
address the issue. The issue is important because brief arousals
can result from hypoxia after apnea, and can perpetuate new
cycles of central apnea by transiently (excessively) increasing
ventilation. The variety of forms that periodic breathing can take,
and their relation to multiple parameters of the chemoreflex loop
and resemblances to bursts, are discussed at greater length in the
Supplementary Discussion.

The influence of breathing on fMRI signals is marked, and our
results suggest situations where breathing biases may be expected.
The Supplementary Discussion reviews literature suggesting the
following associations. Yawns will be more prevalent in tired
subjects, and in subjects on medications causing sedation. To the
extent that bursts share the respiratory mechanisms that drive
increased AHI in the respiratory literature, one would anticipate
increases in bursts (1) over the lifespan in both sexes (especially
after age 60), (2) in males relative to females at all ages (a bias
lessening after menopause, probably with onset around
menarche), (3) in subjects on opioids and other respiratory
suppressants, (4) in subjects with brain injuries (e.g., strokes), and
(5) in subjects with medical conditions like heart failure. Large
psychiatric studies have reported longitudinal dose-response
associations of AHI with depressive symptoms47, and commu-
nity samples routinely obtain cross-sectional associations of
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depression and AHI39. Fluctuations in gonadal hormones over
pregnancy, over menstrual cycles, or by sex-hormone therapies
are also likely to influence burst prevalence. Medications influ-
encing cholinergic, noradrenergic, and serotonergic inputs to
wakefulness respiratory drive may influence the emergence of
bursts, and may have a role in the association of depression and
AHI scores. Given the relative ease of using the respiratory belts
provided with many scanners, it would be prudent to collect such
physiology records during fMRI scans (see ref. 14 for discussion of
implementations).

Methods
Data and subject selection. The 900-subject public release of the Human Con-
nectome Project (HCP) Young Adult data was obtained. Subjects were young
adults drawn from the geographic region about St. Louis, Missouri, and were
identified via a Missouri state registry of siblings sets that include twins. Subjects
were healthy in a broad sense: study criteria excluded sibships containing siblings
with diabetes, hypertension, or neurological or psychiatric disorders. The HCP-YA
protocol was approved by The Washington University in St. Louis Institutional
Review Board, WUSTL DHHS Federalwide Assurance #FWA00002284 BJH DHHS
Federalwide Assurance #FWA00002281 SLCH DHHS Federalwide Assurance
#FWA00002282, and the study was conducted in accord with the Declaration of
Helsinki. Subjects provided written consent to participate and were compensated
monetarily for participation. Each subject underwent four 14.4-min fMRI scans
(two scans on two days each) while staring quietly at a crosshair at an altitude of
~450 feet above sea level. During scanning, physiology data was acquired via the
Siemens Physiology Monitoring Unit (PMU), which is standard equipment that
accompanies the scanner for purposes of cardiac and physiological gating. The
signals acquired were 400 Hz recordings of an abdominal belt and a finger pulse
oximetry waveform. The Siemens respiratory record is obtained via a pressure hose

connected to a respiratory cushion placed under an elastic belt strapped around the
subject’s abdomen, and output is in arbitrary units. All resting-state fMRI scans
were obtained, including minimally preprocessed and FIX-ICA-denoised images,
along with their accompanying head position and physiology files.

Of the HCP 900-subject release, based on visual assessment of the physiology
traces, 440 subjects had four 14.4-min resting-state fMRI scans with complete
accompanying physiological data in which we believed we could reliably identify
peaks in all cardiac and respiratory traces (all physiological data and decisions
about quality can be seen in the Supplementary material of ref. 48). Only these
440 subjects were analyzed further. Characteristics of the subjects were: age 28.6 ±
3.8 (range 22–36), 228 males and 212 females; BMI 26.5 ± 5.0 (range 16.5–43.9).

For the 440 subjects believed to have high-quality physiology data, the following
files were obtained: four resting-state fMRI scans transformed to atlas space (in
each subject’s/MNINonLinear/Results folder): [RUN]= REST1_LR, REST1_RL,
REST2_LR, REST2_RL (this order is runs 1–4 in the text). rfMRI_[RUN].nii.gz and
rfMRI_[RUN]_hp2000_clean.nii.gz scans were obtained, representing minimally
preprocessed and FIX-ICA-denoised data. For each of these scans, the [RUN]
_Physio_log.txt and Movement_Regressors_dt.txt files were also obtained.
Structural scans transformed to atlas space were also obtained (in each subject’s
/MNINonLinear/folder): the T1w.nii.gz and the aparc+aseg.nii.gz files,
representing the anatomical T1-weighted scan and its FreeSurfer segmentation.

Image and parameter processing. The aparc+aseg.nii.gz file for each subject
underwent a set of serial erosions within white matter and ventricle segments,
exactly as in ref. 25. Masks of cortical gray matter, the cerebellum, and subcortical
nuclei were extracted, as were serially eroded layers of superficial, deep, and deepest
(with respect to distance from the gray matter) masks of the white matter and
ventricles. These masks, together, include all in-brain voxels of these tissue types
and are used to extract certain signals and to order signals for gray plots49. For the
purpose of making useful gray plots, because of the considerable thermal noise in
HCP scans, a within-mask 6 mm FWHM Gaussian kernel was applied to the data
using the above masks (illustrated for HCP data in ref. 49). This blurring does not
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HCP233326 

Examples of HCP breathing

HCP133827 

HCP175035 

HCP223929 

HCP114924 

HCP865363 

HCP303624 

HCP311320 

HCP176239 

High Altitude (healthy person)

Burgess et al., 2013; cerebral blood flow (MCA velocity)
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Nopmaneejumruslers et al., 2005; lung volume

(patient without heart failure)

(patient with heart failure)
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Wang et al., 2005; chest belt
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La Rovere et al., 2018; lung volume

Tinoco et al., 2017; myogram

Newborn (healthy person)

Hodgman et al., 1990; chest belt

Fig. 7 Comparison of periodic breathing waveforms and bursts. At left, single-subject waveforms of periodic breathing in opioid use, stroke, heart failure,
at high altitude, and in newborns. These are all conditions and situations in which periodic breathing is commonly encountered. At right, illustrations of
bursts in 11 HCP subjects. All plots are on the same time scale, and the green lines measure 1 min. Note the long cycle times seen in patients with heart
failure (in the Stroke and Heart failure sections), reflecting, in part, an exaggerated delay in central detection of changes in arterial gas tensions (see
Supplementary Discussion for more detail). The stroke example illustrates shows the added effect of delayed circulatory time in heart failure. Images at left
modified from46,54–58 with permission. Images from ref. 55 adapted with the permission of the American Thoracic Society. Copyright © 2020 American
Thoracic Society. All rights reserved. The American Journal of Respiratory and Critical Care Medicine is an official journal of the American Thoracic Society.
Readers are encouraged to read the entire article for the correct context at https://europepmc.org/article/med/15665317. The authors, editors, and The
American Thoracic Society are not responsible for errors or omissions in adaptations.
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mix tissue compartments, due to the use of masks, beyond partial volume effects
present in the voxels themselves.

Respiratory belt and pulse oximeter traces (sampled at 400Hz) first underwent
visual inspection in their entirety to determine if the quality was sufficient for reliable
peak detection since traces are often partially or fully corrupted. Only subjects with
traces deemed likely to successfully undergo peak detection in all runs were analyzed48.
After selection, for respiratory traces, an outlier replacement filter was used to
eliminate spurious spike artifacts (Matlab command: filloutliers
(resp_trace,‘linear’,‘movmedian’,100)) and the traces were then gently blurred to aid
peak detection (Matlab command: smoothdata(resp_trace,‘sgolay’,400)) (a 1-s window
for a 400Hz signal). These treated respiratory traces are the ones shown in Figures.

Following prior literature, several respiratory measures were derived from the
treated respiratory belt trace. First, the envelope of the trace over a 10-s window (at
400 Hz) was calculated after ref. 15 (Matlab command: envelope
(zscore_resp_trace,4000,‘rms’)). Second, the RV measure, defined as the standard
deviation of the treated respiratory trace within a 6-s window, was calculated
following12 (Matlab command: movstd(zscore_resp_trace,
2400,‘endpoints’,‘shrink’)). Finally, an RVT measure, defined for all peaks as
((peak-prior trough)/(time between peaks)), was calculated. Peak detection on the
trace yielded peaks (and troughs, using the inverted trace) for calculations (Matlab
command: (findpeaks
(zscore_resp_trace,‘minpeakdistance’,800,‘minpeakprominence’,.5))). The
minimum peak distance presumes breaths occur more than 2 s apart. If a peak did
not have a preceding trough prior to the previous peak, no value was scored at that
peak. All traces and derived measures were visually checked to ensure that outliers
and abnormalities would not drive results. These three measures were termed ENV,
RV, and RVT in figures. The RVT calculated is the “core” computation studied in
ref. 14, which behaves like the full computation of ref. 10.

Pulse oximeter traces underwent z-scoring then peak detection (Matlab command:
findpeaks(zscore_pulseox,‘minpeakdistance’,180,‘minpeakprominence’,.5)). Heart rate
was calculated from the interval between peaks. The minimum peak distance
presumes heart rates are under 133 beats per minute. Peak amplitude was calculated
from the height of the peak relative to the previous trough. Cardiac traces are prone to
transient disruptions when fingers move, and it is laborious to check and correct
cardiac measures due to the large numbers of peaks and troughs. A limited number of
cardiac records are therefore used in this report, but those select traces and their
derived measures were visually checked to ensure accuracy.

The data quality measure DVARS was calculated after refs. 50,51 as the root
mean squared value in the brain at each timepoint of all voxel time series
differentiated in time by backward differences. DVARS by convention is 0 at the
first timepoint.

Head position was taken from the Movement_Regressors_dt.txt files. In gray
plots, these position parameters are displayed after subtracting the first timepoint
value from the time series (so that all traces start at zero). Head motion was
represented by Framewise Displacement (FD) measures, following ref. 51, wherein
all position measures were differentiated in time by backward differences,
rotational measures were converted to arc displacement at 5 cm radius, and the
sum of the absolute value of these measures was calculated. To suppress tidal
respiratory motion, head position traces were filtered with a stopband of 0.2–0.5 Hz
following ref. 16. FD is typically calculated by backward differences to the preceding
timepoint (here 720 ms prior), but historically FD measures using sampling rates of
2–4 s were common; for comparison to such measures, FD was also calculated by
backward differences over four timepoints (4 * 720 ms= 2.88 s effective sampling
rate) where indicated, exactly as in ref. 52. Thus, where indicated, head motion
measures of FDoriginal, FDfiltered, and FDfiltered,4-TR are examined.

Gray plot formation. Gray plots were created of each scan, exactly as shown in
Figs. 1 and 2, and exactly following procedures outlined in refs. 14,16. Examination
of these 4 * 440= 1,760 gray plots led to the recognition of the burst pattern
described throughout the paper, as well as the single deep breaths also
characterized.

The 35 bursts, 35 deep breaths, and 35 non-respiratory motions shown in Fig. 3
were chosen by visual inspection of respiratory and motion records, with visually
marked onsets shown in Supplementary Movies 2–4 and onsets listed in
Supplementary Data 1. Random onsets were defined in the motion subjects using
randomly selected runs and onsets. Properties of scans in the 90 s surrounding the
onsets are shown in heat maps. Thin gray bars with red heat maps show the
significance of unpaired two-sample t-tests at each timepoint compared to the
random onset group. Heart rate was derived from peak-to-peak intervals in pulse
oximetry data and was visually verified. Plots show the mean properties of the 35
onsets, and shade plots show mean and standard deviation.

Group formation. Author JDP examined all 440 subjects, noting subjects with
many scans with only deep breaths, many scans with only bursts, or many scans
with only normal tidal breathing patterns. These lists were then screened for any
siblings, and siblings were discarded in a manner yielding the largest equally-sized
remaining groups, resulting in three groups of 21 subjects, all unrelated. Statistical
contrasts of the group demographic and other properties are described in the
Supplementary Materials. Because of associations reported to medical and psy-
chiatric variables, the identities of these groups are restricted to registered HCP

users who have been granted Restricted Access, via a Subject Key. To access the
Keys: (1) Sign in to https://db.humanconnectome.org; (2) Navigate to and open the
WU-Minn HCP data set by clicking the “Open Dataset” tab; (3) Click the “Subject
Keys” tab; (4) There are three subject keys listed under “Published Subject Keys for
This Dataset” associated with this manuscript. Click on a subject key to obtain a
description and access the data.

“Lynch_etal_2020_NatureCommunications_BurstGroup”
“Lynch_etal_2020_NatureCommunications_DeepBreathGroup”
“Lynch_etal_2020_NatureCommunications_CleanGroup”
Note: Only HCP users with restricted data access will be able to use subject

keys. If you receive an error message (e.g., “Restricted Data Access Required!”) you
must request restricted data access.

Ratings of breathing patterns in scans. Two authors (J.D.P. and C.J.L.) jointly
examined the scans of subjects 400–440 to discuss breathing patterns, then inde-
pendently rated scans 1–399 with binary decisions in each scan about the presence
(1) or absence (0) of deep breaths and bursts in each scan. Cohen’s kappas were
calculated for the ratings, shown in Fig. 4, yielding high inter-rater reliability. The
likelihood of obtaining sex differences in each breathing pattern was determined by
Chi-squared tests in each rater, and both raters obtained sex effects of bursts but
not of deep breaths. The sum over the four scans in each subject of each type of
breathing pattern was called the pattern score.

Algorithmic indexing of breathing patterns. The automated algorithm is
described in detail in the Supplementary Materials. In brief, priors were derived from
respiratory belt traces indicating, separately, the likelihood of deep breaths and bursts,
and these priors were multiplied into the fits of fMRI templates of each breathing
pattern to global fMRI signals. The total values over each scan for each breathing
pattern were obtained and averaged in each subject. Both indices were downweighed
by the variation in breathing rate of a scan, to dampen outliers due to haphazard
breathing. Indices were correlated to rater pattern scores and were compared in each
breathing pattern by sex using unpaired two-sample t-tests in Fig. 4.

Functional connectivity measures. We first describe global functional con-
nectivity (gFC) analyses. The pairwise correlations of all voxels within a subject’s
gray matter mask were computed in each fMRI scan, and the median value in each
scan was taken, followed by Fisher-Z transformation. These values represent the
central tendency of gray matter functional connectivity, which is what one would
expect for respiratory phenomena to most directly influence, since cerebral blood
flow changes have brain-wide consequences for fMRI signals. These values were
averaged over a subject’s scans for the purposes of cross-subject correlations, linear
regressions, and ANOVA/ANCOVA in Fig. 4. gFC and rater scores were compared
by correlation. Differences by sex were compared by unpaired two-sample t-test.
gFC was fit to pattern scores separately in males and females using the formula gFC
= b0+ b1*burst_score + b2*deep_breath_score, yielding similar fits in each sex.
In Fig. 4k, ANOVA (model 1) and ANCOVA (models 2–6) was used to model gFC
as a function of sex alone or sex plus other variables, and main effects of the
explanatory variables are color-coded in Fig. 4k. Model 1 is an ANOVA with only
sex, Model 2 adds head size in ANCOVA, and the other models are ANCOVAs
with the indicated terms present, always significantly fit, with the exception of the
sex variable, which becomes insignificant in the final two models (green cells).
DVARS and the three versions of head motion were added to models 1–4 but failed
to negate the sex effect in any model, and often failed to even fit as main effects
when respiratory variables were present.

Here we describe network analyses. The 333-parcel scheme of Gordon et al.53

was used to sample images, and the cluster assignments of that paper define the
resting-state networks in this paper, illustrated in Fig. 5a (see Supplementary
Fig. 11 for a full list of networks). Correlation computations were performed via
Fisher-Z transforms but were converted to Pearson r values for figures and
reporting. For all matrices in Figs. 5 and 6, and Supplementary Figs. 11 and 12,
only cells significant at p < 0.05 are colored (always determined by 10,000
permutation tests specific to the matrix; gray cells are insignificant).

Minimally preprocessed (MP) and FIX-ICA-denoised time series were sampled,
and additionally several signal processing steps were applied to generate a few
additional commonly used kinds of signals: MP with the mean gray matter signal
removed (MP+GSR, global signal regression), MP data with six motion regressors
and their derivatives regressed out and censoring timepoints with z-scored DVARS
(from minimally preprocessed data) values >2 (MP+mot+cens), or both of those
steps applied to MP data along with GSR (MP+GSR+mot+cens). These
maneuvers simply give readers a broad sense of when, where, and how severely
certain effects manifest in different signal processing regimes.

In Fig. 5, using the sets of 35 onsets defined for Fig. 3, parcel time series from−10
to +40 s about the onset were used to generate correlation matrices for each kind of
onset (burst, deep breath, motion, random), and the mean values for breathing
patterns are shown, masked by significance in permutation tests with the random
matrices. Contrasts of breathing patterns are shown in several data processing
strategies (permutations between pattern matrices). Mean parcel time series are
shown in Fig. 5c, with red dotted lines denoting the span used for correlations. Mean
values of grayordinates are shown in MP data in Fig. 5d and Supplementary Movie 5.
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In Fig. 6, correlations from entire scans are used. Figure 6a illustrates the
subtraction of mean matrices of the groups, screened by permutation tests between
groups. The bottom row of Fig. 6a shows the values of the observed group matrices
among random groups drawn from all subjects. Figure 6b illustrates the within-
subject differences between scans with and without certain breathing patterns. The
top row shows scans with bursts and not deep breaths (B+D−) compared to scans
without either pattern (B−D−), the bottom row a comparable contrast for deep
breaths. Only scans in which raters had completely agreed on the presence or
absence of patterns were used, and all unrelated qualifying subjects possessing the
needed scan subtypes were used in each kind of contrast, with 50–70 subjects in
each contrast. Mean differences are shown in several data processing strategies,
masked by permutation tests with randomly swapped scan subtype labels. Figure 6c
illustrates betas in multiple linear regression of breathing pattern scores with head
size and nuisance variables, all scaled identically and performed separately in each
sex, with all regressors standardized prior to running the model, and masked by
significance among betas from randomly permuted subjects. Betas for bursts are
shown for several processing strategies. Full fits to all variables are shown in
Supplementary Fig. 11 for several processing strategies.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
HCP data are publicly available at www.humanconnectome.org. Source data are available
at https://osf.io/u35f8/ (https://doi.org/10.17605/OSF.IO/U35F8). That link also contains
all Supplementary movies (~2 GB). Certain HCP data are restricted to protect subject
privacy, such as genetic, medical, and neuropsychiatric information. The three 21-subject
groups of this paper demonstrate associations to such variables, and their identities are
only available by Subject Key within HCP Restricted Access accounts and are otherwise
obscured in the publicly available data. Source data are provided with this paper.

Code availability
Matlab-based gray plot modules to train users on breathing patterns, Matlab code
implementing the automated indexing of patterns presented in this paper, and Matlab
code recreating certain figures including inputs and sample output is available at https://
osf.io/u35f8/ (https://doi.org/10.17605/OSF.IO/U35F8). Certain elements of our original
code are redacted to protect the privacy of the above-mentioned groups.
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