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Alzheimer’s disease is characterized pathologically by extracellular senile plaques, intracellular neurofibrillary tangles, and
granulovacuolar degeneration. It has been debated whether these hallmark lesions are markers or mediators of disease progression,
and numerous paradigms have been proposed to explain the appearance of each lesion individually. However, the unfaltering
predictability of these lesions suggests a single pathological nidus central to disease onset and progression. One of the earliest
pathologies observed in Alzheimer’s disease is endocytic dysfunction. Here we review the recent literature of endocytic dysfunction
with particular focus on disrupted lysosomal fusion and propose it as a unifying hypothesis for the three most-studied lesions of
Alzheimer’s disease.

1. Introduction

Alzheimer’s disease (AD) is defined by the appearance of
pathological hallmarks within specific areas of the brain,
including amyloid plaques, composed of extracellular amy-
loid beta (Aβ) peptide [1] and neurofibrillary tangles (NFTs),
composed of intracellular aggregates of the microtubule-
associated protein tau [2]. Definitive diagnosis of AD is made
at autopsy on the basis of these defining lesions, which have
a well-documented but incompletely understood connection
to disease. Although it has been debated whether these
lesions are mediators of disease, they have clear correlation to
disease progression and are useful as clues to understanding
the pathological processes accompanying neurodegenera-
tion. Additional hallmarks of AD include granulovacuo-
lar degeneration (GVD), characterized morphologically as
intracellular double membrane-bound organelles harbor-
ing a dense core and extracellular tau detectable in the
cerebrospinal fluid (CSF) [3, 4]. Although the molecular
mechanisms for individual pathological lesions have been
proposed [5–7], a unifying hypothesis that rationalizes the
appearance of all hallmarks of disease has been elusive. Here
we review recent studies involving the intracellular vesicular
pathways and their connection to the hallmark lesions of

AD. We propose that vesicle trafficking dysfunction, and
more specifically a failure in lysosomal fusion, may be the
nidus of both defining lesions of AD as well as of GVD and
extracellular tau, thus providing a unifying hypothesis for
disease pathology.

2. Vesicle Trafficking Dysfunction

Intracellular vesicle trafficking pathways form an intercon-
nected, dynamic system for transfer of cellular constituents
within the cell and between intracellular and extracellular
compartments [8] (Figure 1). Cell surface proteins can enter
the system through endocytosis. For example, the epidermal
growth factor receptor is endocytosed and incorporated
into early endosomes after binding its ligand and becoming
ubiquitylated [9, 10]. Endocytosed material can then be
budded off into recycling endosomes for exocytic release or
incorporated into intralumenal vesicles of the multivesicular
body (MVB) by the sequential activity of the endosomal
sorting complexes required for transport (ESCRTs) [11–13].
Intralumenal vesicles and their contents may also be released
as exosomes by fusion of the outer membrane of the MVB
with the plasma membrane [14, 15]. The endocytic pathway
merges with the macroautophagic (hereafter referred to as
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Figure 1: Intracellular vesicular trafficking pathways. Endocytosed surface proteins, such as APP, are delivered to the endosomal system by
internalization. Internalized membrane proteins can be sorted into intralumenal vesicles of the MVB by sequential activity of ESCRTs 0, I,
II, and III or delivered to the extracellular environment by the recycling endosome. Mature MVBs fuse with either the autophagosome of the
autophagic pathway to form the amphisome or directly with the lysosome, which donates degradative hydrolases, creating the autolysosome
where complete degradation of the sequestered material occurs. Alternatively, the multivesicular body can fuse with the plasma membrane,
resulting in the exosomal secretion of the intralumenal vesicles and their internalized cargo.

simply autophagic) pathway at either the early endosome or
MVB stage [16]. In the autophagic pathway, target proteins
are polyubiquitylated, fostering the binding of p62, the
autophagic protein microtubule-associated protein 1 light
chain 3 (LC3) [17], and the assembly of the autophagic mem-
brane around the ubiquitylated cargo to form the autophago-
some [18]. The autophagosome can then fuse with the
lysosome directly or with the MVB to form the amphisome,
a slightly acidic hybrid organelle. The amphisome also can
fuse with the lysosome to form the autolysosome, a caustic

organelle that degrades the enclosed proteins and organelles
[19, 20].

The dynamic nature of this system is difficult to capture
in fixed postmortem tissue; however, there are several lines
of evidence suggesting that changes in pathway flux are
among the earliest pathologies observed in AD, preceding
clinical symptoms of AD, intracellular NFT formation, and
extracellular amyloid deposition [21, 22]. First, expression
profiling during the progression of AD has revealed signif-
icant upregulation of effector genes of the early endosome
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(including rab4 and rab5), the late endosome (rab7), and the
exocytic pathway (rab27) [23–25]. These expression changes
are consistent with morphological phenotypes observed in
AD. For example, overexpression of rab5 causes enlarged
endosomes, one of the earliest pathological alterations
observed in AD [26]. Rab7 upregulation is found in vul-
nerable hippocampal basal forebrain regions but not in
relatively spared striatum and cerebellum in mild cognitive
impairment and AD [24, 27]. Second, the accumulation of
Aβ and tau protein and the appearance of GVD bodies
correlates with changes in trafficking pathways. These data
are summarized below.

2.1. Aβ Accumulation. Full-length amyloid precursor protein
(APP) is a transmembrane protein with an incompletely
understood function. Aβ, the secreted peptide that aggre-
gates to form senile plaques, is cleaved from APP by
sequential activities of β- and γ-secretase enzymes [28]. β-
secretase activity is catalyzed by multiple enzymes including
BACE1, which contributes strongly to Aβ peptide pro-
duction, BACE2, which is a BACE1 structural homolog,
and lysosomal enzyme cathepsin B [29, 30]. Following β-
cleavage, γ-secretase-mediated cleavage takes place within
the transmembrane domain, yielding primarily 40 (Aβ40) or
42 (Aβ42) amino acid peptides [28]. Aβ40 is continuously
and abundantly produced in both healthy and AD-affected
brain, whereas Aβ42 is produced at lower levels in healthy
individuals but is increased by familial AD (fAD-) causing
mutations [31]. In general, CSF Aβ42, but not Aβ40, can
serve as a surrogate biomarker for Aβ deposition in the brain
[4, 32].

Observations in both human tissue and cell culture
implicate the endocytic pathway in Aβ production [22,
33–37]. AD-related endocytic dysfunction coincides with
the detection of Aβ within endosomal compartments and
autophagic vacuoles that collect within dystrophic neurites
with the initial rise in soluble Aβ peptides [35, 36, 38].
The presence of Aβ in early endosomes also is consistent
with the colocalization of APP and BACE1 within the same
early endocytic compartments [39–42] and the degradation
of BACE within the endosomal-lysosomal system [43]. One
study suggests that internalized Aβ can aggregate within the
cell and disrupt the vesicular membrane, thus contributing to
its pathologic effect [44]. Intracellular trafficking of proteins
involves a series of cytosolic factors, some of which are
implicated in the regulation of APP trafficking and Aβ gener-
ation. For example, rab6, a protein implicated in membrane
budding and clathrin, which mediates the internalization of
APP from the cell surface, affect APP processing [45, 46].
Altogether, these data support a relationship between endo-
cytic pathway dysfunction and the amyloidogenic processing
of APP.

Rare disease-causing mutations have been discovered
within the APP gene that result in increased Aβ production,
Aβ42 : Aβ40 ratio, or Aβ aggregation rate [47]. More com-
mon, although still rare, are autosomal dominant mutations
within the PSEN1 gene encoding presenilin 1(PS1), a trans-
membrane protein that acts as the catalytic subunit of the
γ-secretase complex [48, 49]. This complex is located in the

endoplasmic reticulum, transgolgi network, and endocytic
compartments [50, 51]. The precise mechanism through
which PS1 mutations drive AD is unclear, but they can
cause aberrant processing of APP leading to increased
Aβ42 : Aβ40 ratio [52, 53]. Further studies have revealed
that familial AD-linked PS1 mutations significantly reduce
budding from the endoplasmic reticulum and golgi, thereby
decreasing delivery of APP to the cell surface [54]. This
suggests that familial AD-linked PS1 variants increase Aβ
production by decreasing intracellular transport of APP,
thus prolonging the availability of APP for cleavage by β-
and γ-secretases within the golgi. PS1 may regulate protein
trafficking through its interaction with several cytosolic
factors involved in the regulation of vesicular transport,
such as rab11, rab6, and rab regulators [55–57]. Other
data have ascribed the pathogenic effects of PS1 mutations
to its role in facilitating maturation and targeting of a
subunit of the vacuolar ATPase to the lysosome, which is
essential for lysosomal acidification, protease activation, and
degradation of lysosomal substrates [58]. This supports the
impaired lysosomal fusion hypothesis, in that Bafilomycin
A, a vacuolar ATPase inhibitor, is known to impair fusion
of the lysosome with other membrane-bound vesicles [59].
However, recently the role of PS1 in the maturation of the
vacuolar ATPase has been challenged, instead attributing
lysosomal dysfunction in PS1-mutant cells to changes in
gene expression associated with lysosome biogenesis [60]
or alteration in lysosomal calcium storage and release
[61]. Calcium storage and release have been proposed to
regulate vesicular fusion [62], and in fact, is dependent on
protonmotive force [63]. Therefore differentiating between
these potential mechanisms may be challenging. In the future
it will be important to determine the actual role of PS1 in
the adult brain in order to parse these differences. Because
Aβ is both generated and degraded via the endocytic and
autophagic pathways [38], impaired lysosomal clearance
could mediate PS1-dependent increases in Aβ concentration.

The identification of genetic mutations that cause early-
onset AD has lead to a greater understanding of the molecu-
lar mechanisms of disease; however, these mutations account
for only a small fraction of cases. Rather, the majority of cases
are sporadic with multiple susceptibility genes contributing
incremental risk of developing disease [64, 65]. The role of
each in AD pathogenesis will require further investigation;
however, several of these susceptibility genes have known
functions within or adjacent to the endocytic pathway. The
strongest risk locus identified thus far is the gene that
encodes apolipoprotein E (APOE), a protein component
of lipoprotein particles that bind to cell surface receptors
with function in lipid transport, Aβ trafficking, synaptic
function, immune regulation, and intracellular signaling
[66, 67]. A second risk-conferring gene is SORL1, a receptor
that participates in trafficking vesicles from the cell surface
to the Golgi-endoplasmic reticulum [68]. Other new risk
genes, including BIN1 [69] and PICALM [64], are involved
in clathrin-mediated endocytosis. Clusterin, also known as
apolipoprotein J, has also been identified to increase risk of
AD [64, 65] and is hypothesized to act as an extracellular
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chaperone that influences Aβ-aggregation and receptor-
mediated Aβ clearance by endocytosis [70, 71]. Although
each of these genes confers only incremental risk, together
they highlight the intracellular vesicle trafficking in the mo-
lecular pathogenesis of sporadic AD.

2.2. Tau

2.2.1. Extracellular Tau. The appearance of tau and phos-
pho-tau (p-tau) in CSF has been assumed to result from
the passive release of tau from dying neurons [4]. However,
recently it was shown that tau may be actively secreted into
the extracellular compartment, where it is positioned to
participate in the transmission of neurofibrillary pathology
[72, 73]. Exosome-mediated release is considered a common,
yet unconventional, mechanism responsible for the secretion
of other aggregation-prone proteins including α-synuclein
[74], prion protein [75], Aβ [76], and tau [77]. Secreted
tau associates with both typical exosomal proteins, such as
Alix and with proteins involved in tau misprocessing and
AD pathogenesis, such as Aβ, presenilins, and fyn kinase
[77]. Furthermore, exosomal tau is phosphorylated at Thr-
181, accordant with CSF data [77]. Somewhat surprisingly,
the greatest amount of exosomal tau was found in early AD,
with the greatest being in Braak stage 3, progressively less so
in later stages of AD when neuronal death is rampant and
absent from non-AD controls diagnosed with nontauopathic
dementias [77]. Because there is relatively little neurofibril-
lary degeneration at this early stage [78], the elevation of p-
tau in AD CSF is not due to passive, nonspecific tau release
consequent to neuronal death. Rather, these data highlight
the vesicle trafficking pathway involved in tau processing and
secretion.

A lysosomal fusion defect may account for the disease-
related detection of tau in the CSF. The p-tau that accu-
mulates where dendritic microtubules are being lost in
dendrites is largely vesicle associated, and some of these
vesicles are amphisome like, harboring both endocytic (fyn)
and autophagic (LC3) markers [79]. Fyn activation during
signal transduction typically causes the oligomerization and
endocytosis of downstream elements [80] and targets at
least some oligomerized targets of fyn phosphorylation to
exosomes [81, 82]. Although in normal autophagy, LC3 is
rarely exocytosed [83], the inability of the autophagic vesicle
to fuse with the lysosome may alternatively shuttle vesicles
towards the exosomal pathway (Figure 1). This exosomal
secretion of tau corroborates the recent suggestion that
interneuronal transfer of tau may be an important aspect of
pathogenesis and account for the stereotypic neurofibrillary
lesion progression [84–88]. Furthermore, this is consistent
with recent evidence gathered from the lysosomal storage
disorder, Niemann-Pick type C disease, in which exosomal
release of cholesterol may serve as a cellular mechanism
to partially bypass the traffic block that results in its toxic
accumulation within the lysosome [89]. Altogether, although
tau lacks the usual features of secreted proteins, such as an
N-terminal hydrophobic “leader” sequence and lipidation
sites, data suggests that tau is secreted, though it may be

low in healthy neurons such as when the lysosomal system
is functioning normally [73].

2.2.2. Intracellular Tau. Failure of the lysosome to efficiently
fuse with membrane-bound organelles and degrade encap-
tured proteins of the endocytic and autophagic pathways may
also affect the intracellular concentrations of tau. Consistent
with lysosome-mediated effects on tau levels, soluble tau
is a substrate for lysosomal proteases such as cathepsin
D in vitro and in cultured cells [90, 91], and inhibition
of lysosome function with chloroquine can increase bulk
tau levels [92]. Moreover, tau immunoreactivity associates
with lysosomal protease cathepsin B in AD brain [93] and
neuronal lysosomes in sections of both AD and control brain
[94]. Because tau concentration modulates tau aggregation
at both nucleation and extension steps [95, 96], it is a direct
modulator of neurofibrillary lesion formation.

Tau can be delivered to lysosomes through multiple
pathways. First among these is autophagy, which can mediate
turnover of tau phosphorylated on KXGS motifs in the
microtubule repeat region [97, 98]. Evidence suggests that p-
tau is less susceptible to proteasomal degradation mediated
by hsp90 [99]. Therefore, under these conditions, failure of
lysosome degradation could lead to elevated p-tau levels.
Second, tau contains two sequence motifs for chaperone-
mediated autophagy [99], a pathway that relies on hsc70 to
target substrates directly to the lysosome. In a cellular model
of tauopathy, the chaperone-mediated autophagy machinery
and associated recognition motifs on tau protein enable the
generation of tau fragments by lysosomal proteases [99].
These fragments have a higher propensity to form β-sheet
aggregates that, once nucleated, can seed the aggregation of
full length tau [100]. Because these fragments are generated
via chaperone-mediated autophagy, they can be produced
even if lysosomal fusion stalls so long as lysosomal proteases
remain functional. Overall, the failure of the lysosomal
pathway to efficiently clear intracellular tau may foster its
pathological aggregation not only by increasing cytosolic
concentrations but by generating aggregation-nucleating
fragments as well.

Endocytic abnormalities may be involved in non-AD
tauopathies, independent from Aβ deposition. Tau is redis-
tributed to microtubule-poor regions of the cell when
it is present in excess of available microtubule-binding
capacity, which can result from overexpression, mutation,
or posttranslational modifications (PTMs) that limit tau-
microtubule binding [79, 101]. Since tau has been shown
to modulate the activity of microtubule-associated motor
proteins that mediate dendritic transport [102, 103], it is
possible that toxicity resulting from tau accumulation at
localized dendritic loci may have relevance to pathogenesis of
non-AD tauopathies. Moreover, this toxic, vesicle-associated
tau accumulates selectively in microtubule-poor segments
containing organized microtubule bundles, suggesting that
its accumulation is both the cause and consequence of
localized microtubule destabilization [79]. Furthermore,
neuropathological examination of Niemann-Pick-type C
disease has revealed tau-laden NFTs without accompanying
amyloid pathology [104]. Although the pathogenesis of the
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NFTs in Niemann-Pick-type C disease is not clear, the
presence of dystrophic axonal swellings suggest cytoskeletal
abnormalities [104]. This indicates that under certain con-
ditions, lysosomal dysfunction alone can ultimately lead to
NFT formation in the absence of Aβ deposits.

2.2.3. Mechanisms of Tau Regulation. The mechanisms reg-
ulating tau secretion through the intracellular vesicular
trafficking pathways are unknown but may involve those
also responsible for modulating pathological and normal
tau biology, including alternative splicing and PTMs. Tau
protein is encoded by a single gene comprising 16 exons
[105, 106]. Exons 2, 3, and 10 undergo alternative splicing;
however, exon 3 is expressed only in the presence of exon
2, thus yielding 6 isoforms. Depending on the presence or
absence of the protein sequence encoded by exon 10 (e10),
tau isoforms are called 4R (with e10) or 3R (without e10),
referring to the number of imperfect microtubule-binding
repeats. Similarly, tau isoforms are called 0N (without N-
terminal inserts), 1N (with one N-terminal insert, encoded
by exon 2), or 2N (with two N-terminal inserts, encoded by
exons 2 and 3). E10 has received relatively more attention
than either N-terminal inserts (e2 and e3) due to its role in
microtubule binding and self-aggregation. However, recent
evidence suggests that while extracellular secretion of tau
requires the presence of an unknown element in the N-
terminal domain [73], e2 specifically inhibits this secretion
[72]. This agrees with known functions of the N-terminus of
tau to mediate association with the plasma membrane and
perimembranous structures [107].

In conjunction with the inclusion or exclusion of e10,
the affinity of tau for microtubules is regulated by its phos-
phorylation at sites in and around the microtubule-binding
repeat region, with certain sites having more acute affects
on the protein than others [108–110]. Exosomal fractions
of conditioned media of human neuroblastoma cells are
enriched in p-tau species associated with neurodegeneration
[77]. Quantitative analysis has identified four epitopes within
the proline-rich domain of tau that are most strongly
enriched in secreted tau compared with intracellular tau
[77]. These epitopes include AT270, AT8, AT100, and AT180,
which correspond to phosphorylation at Thr-181, Ser-198
and Ser-202, Ser-210 and Thr-212, and Thr-231, respectively.
Significantly, epitope AT270 (corresponding to phospho-
rylated Thr-181) is the epitope most highly enriched in
secreted tau and is also an established biomarker for CSF-
based diagnostics for early-stage AD [77, 111]. The potential
role of phosphorylation as a regulator of tau secretion is
corroborated by CSF biomarker data gathered from patients
with acute brain injury, which at the cellular level involves
axonal injury [112]. Importantly, total tau, but not p-tau,
increases following acute brain injury [4], suggesting that
while total tau may be released as a result of cellular damage
and death, PTMs may actively regulate tau secretion.

As many as 30 different phosphorylation sites have been
identified on tau [113], and although phosphorylation is the
most comprehensively studied of the tau PTMs, filamentous
tau is known to be extensively modified by several PTMs,

including lysine-directed ubiquitylation [114]. We and oth-
ers have identified at least three sites of ubiquitylation on
tau [115–117]. Although most well known for its role in
proteasomal degradation of proteins, ubiquitin is also the
best known signal for endocytic sorting [118]. As a general
rule, targeting to the proteasome requires attachment of a
chain of at least four ubiquitins [119], whereas targeting to
the endocytic pathway requires only a single ubiquitin or a
short chain of two or three ubiquitins [118]. These ubiquitins
are recognized by the ESCRT machinery, which sort the
ubiquitylated cargo and direct it towards its destined pathway
[12, 13]. In addition to the influence that PTMs exert on tau
function individually, it is thought that various modifications
may cooperate and compete in a coordinated fashion. For
example, recently two modifications have been identified
that are also lysine directed: acetylation [120, 121] and
methylation [117]. Because these modifications both directly
compete with ubiquitin for lysine site occupancy, there is
potential for acetylation and methylation to directly affect
the rate of turnover of tau protein and its motility through
the endocytic pathway. Furthermore, in other biochemical
pathways, such as histone-regulated processes, there is
precedent for PTMs, including acetylation and methylation,
to indirectly affect neighboring site modification, such as
phosphorylation [122], though the potential for this type of
modification crosstalk to be occurring in tau protein and its
effect on tau metabolism has yet to be examined.

2.3. GVD Bodies. Evidence of dysfunctional endocytic/
autophagic pathway in AD extends to GVD. GVD body load
increases with disease severity and episodic memory decline
[3, 123, 124]. GVD body ultrastructure has been extensively
studied, revealing an electron-dense core with coarse or
vesicular morphology surrounded by a double-layered mem-
brane [125]. Because of the two-layered membrane, it has
long been hypothesized that these lesions are of autophagic
origin [125]. Recent work by us and others has implicated
the endocytic pathway in the formation of GVD bodies due
to strong immunoreactivity of CHMP2B, a component of
ESCRT-III, in the GVD body core [126, 127]. This work also
suggests a failure of the MVB to fuse with the lysosome [126],
which could account for an accumulation of autophagic
intermediates [128] and an increased size and density of the
MVB [10]. We hypothesize that consequently, flux is routed
to the autophagic pathway, which results in the accumulation
of abnormally large amphisome-like intermediates owing to
the same lysosomal fusion defect combined with mTOR-
mediated suppression of phagophore formation [129–131].
The genetic increase in rab7 in AD [23, 25] is somewhat
inconsistent with this hypothetical lysosomal fusion failure,
though it is possible that this upregulation is acting in an
ineffective compensatory manner. However, it is interesting
that late endosome marker rab24, but not secretory protein
rab27, is upregulated in CA1 pyramidal neurons [23, 25]
considering that GVD most greatly affects the CA1 region of
the hippocampus [3]. This may reflect alternative responses
to the disease process with one cell type opting for increased
secretion and another for increased degradation to remove
the toxic protein.
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3. Conclusions

We propose that lysosome fusion dysfunction is a candidate
nidus for the major pathological hallmarks of AD including
both defining lesions of AD, GVD bodies, as well as the
presence of tau in the CSF. Although the origin of fusion
dysfunction is not yet fully understood, it most likely results
from the convergence of multiple factors, like the disease it
manifests. The involvement of lysosomal dysfunction as an
underlying and unifying hypothesis for AD pathology may
change the overall view of AD pathogenesis. It provides novel
insights into disease-associated mechanisms of protein mis-
processing and potentially new modes of disease progression.
There is also potential clinical importance of tau secretion
biomarkers for CSF-based diagnostics and for the direction
of future disease-modifying therapeutics.
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