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Endostatin inhibits bradykinin-induced cardiac contraction
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ABSTRACT.	 Endogenous fragments of extracellular matrix are known to possess various biological effects. Levels of endostatin, a fragment 
of collagen type XVIII, increase in certain cardiac diseases, such as cardiac hypertrophy and myocardial infarction. However, the influence 
of endostatin on cardiac contraction has not been clarified. In the present study, we investigated the effects of endostatin on bradykinin-
induced atrial contraction. Isometric contractile force of mouse isolated left atria induced by electrical current pulse was measured. Voltage-
dependent calcium current of guinea pig ventricular myocytes was measured by a whole-cell patch-clamp technique. Endostatin (100–1,000 
ng/ml) alone treatment had no influence on left atrial contraction. On the other hand, pretreatment with endostatin (300 ng/ml) significantly 
inhibited bradykinin (1 µM)-induced contraction and voltage-dependent calcium current. These data suggest that endostatin may decrease 
bradykinin-induced cardiac contraction perhaps through the inhibition of voltage-dependent calcium channel.
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Angiotensin converting enzyme (ACE) inhibitors are 
widely used for the treatment of hypertension and heart fail-
ure. Because ACE catalyzes the degradation of bradykinin, 
prolonged ACE inhibitor treatment increases bradykinin 
level [17]. Bradykinin binds to two kinds of receptors, B1 
receptor (R) and B2R. In pathological conditions, B1R ex-
pression is up-regulated, that is related to the inflammatory 
responses or pain-producing effects [1, 8, 9]. On the other 
hand, B2R is widely distributed in the systemic organs, one 
of the main functions of which is to mediate vasodilation 
[9]. Because a B2R inhibitor exacerbated left ventricular 
hypertrophy in rats with aortic banding [11] and in dogs with 
transmyocardial direct current shock [12], it is believed that 
bradykinin has cardioprotective action through the B2R [1].

Endostatin, a non-collagenous fragment of collagen type 
XVIII [5, 13, 23], has various biological effects, such as anti-
angiogenic and anti-carcinogenic effects [2–4, 10, 20, 24]. 
It has been reported that levels of endostatin increased in 
animal models of cardiac hypertrophy and post-myocardial 
infarction [6, 7]. While the roles of endostatin on cardiac 
diseases still remain unclear, we have recently reported that 
endostatin stimulated proliferation and migration of cardiac 
fibroblasts [15]. Therefore, it is suggested that endostatin 
might have various biological functions in heart tissues. 
However, the influence of endostatin on cardiac contraction 
has not been clarified.

It was recently reported that regulation of Ca2+ homeostasis 
through B2R plays an important role in the cardiac contraction 
[18]. Specifically, bradykinin was shown to mediate the open-
ing of Ca2+ channels through B2R in guinea pig cardiomyo-
cytes [19]. Therefore, it is also suggested that bradykinin plays 
a role in physiological myocardial contraction. While end-
ostatin was shown to inhibit bradykinin-induced nitric oxide 
(NO) production in vascular endothelial cells [25], the effect 
of endostatin on bradykinin-induced myocardial contraction 
has not been determined. In the present study, we examined 
the effects of endostatin on basal and bradykinin-induced left 
atrial contraction and explored underlying mechanisms.

MATERIALS AND METHODS

Reagents: Recombinant mice endostatin, bradykinin 
and propranolol (Sigma Aldrich, St. Louis, MO, U.S.A.); 
Hoe140 (Peptide Institute, Osaka, Japan); and Nicardipine 
(Yamanouchi Pharmaceutical Co., Tokyo, Japan).

Animals: All animal experiments were conducted in ac-
cordance with the Guide for Care and Use of laboratory 
animals as adopted by Kitasato University. Male ddY mice 
(Japan SLC, Hamamatsu, Japan) and guinea pigs (Japan 
SLC) were used in this study.

Measurement of isometric contraction: Isometric contrac-
tion was measured as described previously [14]. Briefly, left 
atria of mice (32–55 g body weight) were isolated under 
pentobarbital anesthesia (50 mg/kg i.p.). Left atrium was 
placed horizontally in a 10-ml tissue bath filled with Krebs-
Henseleit solution: 119 mM NaCl, 4.8 mM KCl, 24.9 mM 
NaHCO3, 1.2 mM KH2PO4, 1.2 mM MgSO4, 2.5 mM CaCl2 
and 10 mM glucose. The solution was gassed with 95% O2, 
5% CO2 and maintained at 35.5°C. The atrium was driven by 
rectangular current pulses via a pair of platinum electrodes 
(field stimulation, 1 Hz, 5 msec and 1.5 times threshold 
voltage) connected to an electronic stimulator (ELEC-
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TONIC STIMULATOR; Nihon Kohden, Tokyo, Japan) and 
equilibrated at least for 70 min. Isometric contraction was 
recorded with a force-displacement transducer (TB-651T; 
Nihon Kohden) and monitored with a computer-supported 
data acquisition system (PowerLab; Bioresearch Center, 
Nagoya, Japan).

Whole cell patch clamp method: Isolation of ventricular 
myocytes was performed as described previously [16]. Brief-
ly, the heart of adult guinea pigs (220–470 g body weight) 
was isolated under sodium pentobarbital anesthesia (70 mg/
kg, i.p) and perfused by a modified Langendorff apparatus. 
The perfused heart was digested with 0.02% collagenase, 
and ventricular myocytes were isolated. Electrophysiologi-
cal recording of membrane currents was performed by a 
whole cell patch clamp technique as described previously 
[16]. The external solution contained the following compo-
sitions: 143  mM NaCl, 5.4 mM KCl, 0.33 mM NaH2PO4 
2H2O, 0.5  mM MgCl2 6H2O, 5.5 mM glucose, 5 mM 
HEPES and 1.8 mM CaCl2 adjusted to pH 7.4 with NaOH. 
The temperature of external solution was kept constant at 
36°C. Glass patch pipettes were filled with a pipette solution. 
The pipette solution contained the following compositions: 
110 mM KOH, 110 mM l-Aspartate, 20 mM KCl, 1 mM 
MgCl2 6H2O, 5  mM ATP-K2, 5 mM phosphocreatine K2, 
10 mM EGTA, 5  mM HEPES-KOH and 1.42 mM CaCl2 
adjusted to pH 7.4 with KOH. The resistance of the patch pi-
pette filled with the pipette solution was 2–3 MΩ. The elec-
trode was connected to a patch clamp amplifier (CEZ-2400; 
Nihon Kohden), and commanded pulses were generated by 
pCLAMP software (Axon Instrument, Inc., Foster city, CA, 
U.S.A.). Membrane current was elicited by 300 msec and 8 
steps depolarizing pulses of each +10 mV from a holding 
potential −40 mV. The sampling rate was set to 1 msec. The 
current density (pA/pF) was calculated by normalizing cur-
rent amplitude by cellular membrane capacitance.

Statistical Analysis: All data were expressed as mean ± 
S.E.M. Statistical analysis was performed by using Student’s 
t-test (Figs. 2 and 3; between 2 groups) or one-way analysis 
of variance followed by Dunnett’s (Fig. 1) or Bonferroni’s 
post hoc test (Fig. 4) (between more than 3 groups). Values 
of P<0.05 were considered as statistically significant.

RESULTS

Endostatin alone treatment had no influence on left atrial 
contraction: We first investigated the effects of endostatin 
alone treatment on left atrial contraction. Endostatin (100–
1,000 ng/ml, 10 min) had no effect on basal atrial contraction 
(n=7) (Fig. 1).

Endostatin inhibited bradykinin-induced left atrial con-
traction: We next investigated the effect of endostatin on 
bradykinin-induced contraction. Bradykinin (1 µM) tran-
siently increased left atrial contraction (Fig. 2A and 2B). 
We confirmed that Hoe140, a B2R inhibitor (n=5–6, data not 
shown), or nicardipine, a L-type calcium channel blocker 
(n=5, data not shown), suppressed the bradykinin-induced 
contraction. In contrast, propranolol, a β adrenergic recep-
tor inhibitor, did not suppress the bradykinin-induced con-

traction (n=6–8, data not shown). Endostatin (300 ng/ml) 
pretreatment significantly inhibited the bradykinin-induced 
contraction (Fig. 2A and 2B, P<0.05, n=6–7).

Endostatin alone treatment had no influence on voltage-
dependent calcium current: We next investigated the ef-
fects of endostatin alone treatment on voltage-dependent 
calcium current. Whole-cell patch clamp analysis showed 
that endostatin alone treatment had no effect on the voltage-
dependent calcium current (Fig. 3, n=8).

Endostatin inhibited bradykinin-induced voltage-de-
pendent calcium current: Bradykinin has been reported to 
increase L-type calcium current in guinea pig cardiomyo-
cytes [19]. We next investigated the effect of endostatin on 
bradykinin-induced increase of voltage-dependent calcium 
current. It was confirmed that bradykinin (1 µM) signifi-
cantly increased voltage-dependent calcium current (Fig. 
4, P<0.01). Pretreatment with endostatin (300 ng/ml) sig-
nificantly inhibited the increased voltage-dependent calcium 
current induced by bradykinin (Fig. 4, P<0.01 at 0 mV, 0.05 
at −10 and −20 mV, n=6–11).

DISCUSSION

In the present study, we found that endostatin inhibited 
bradykinin-induced left atrial contraction. The inhibitory 

Fig. 1.	 Endostatin has no influence on basal left atrial contraction. 
(A) Actual traces for the developed tension in response to vehicle 
(citric-phosphate buffer) or endostatin in mouse left atrium. End-
ostatin (100–1,000 ng/ml) or vehicle was treated (arrows) for 10 
min. (B) Time course for the developed tension in response to end-
ostatin or vehicle in the mouse left atrium. The developed tension 
before endostatin-treatment was set as 100% (n=7).
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Fig. 2.	 Endostatin inhibits bradykinin-induced left atrial contraction. (A) Actual traces for the developed tension 
in response to bradykinin in the mouse left atrium. Endostatin (300 ng/ml) or vehicle was pre-treated for 30 
min before bradykinin (1 µM) treatment (arrows). (B) Time course for the developed tension in response to 
endostatin in the mouse left atrium. The developed tension before bradykinin-treatment was set as 100%. The 
changes of the developed tension (1–10 min) were shown (n=6–7). * P<0.05, vs. vehicle-treated control.

Fig. 3.	 Endostatin has no influence on voltage-dependent calcium current. Effect of endostatin (300 ng/ml, 5 min) 
alone treatment on voltage-dependent calcium current was measured by a whole-cell patch clamp technique 
in the guinea pig ventricular myocytes. Representative calcium current recording at 0 mV (A, control: upper 
left, endostatin: lower left) and Current-Voltage relations for the peak of calcium currents (B) were shown. The 
current density (pA/pF) was calculated by normalizing current amplitude by cellular membrane capacitance. 
Results were expressed as mean ± S.E.M (n=8).
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mechanism of endostatin might be through the inhibition 
of voltage-dependent calcium channel. To the best of our 
knowledge, this study is the first report determining the in-
fluence of endostatin on cardiac contraction.

Endostatin is a non-collagenous fragment cleaved from 
collagen type XVIII [5, 13, 23] and has anti-angiogenic and 
anti-carcinogenic effects [2–4, 10, 20, 24]. Recently, we 
have reported that endostatin exerts other roles on cardiac 
fibroblasts, such as proliferative and migratory roles [15]. 
Therefore, it is proposed that endostatin may exert various 
biological effects on cardiac tissues. However, the effect of 
endostatin on cardiomyocytes, especially cardiac contrac-
tion, has not been clarified. We for the first time showed that 
endostatin alone treatment had no influence on the left atrial 
contraction. The data that endostatin alone treatment had no 
influence on voltage-dependent calcium current support it. A 
report by Zhang et al. that endostatin had no effect on L-type 
calcium current in glioblastoma [26] also supports our data.

Bradykinin is known to increase cardiac contraction via 
the activation of L-type calcium current through binding 
to B2R in guinea pig atria [19]. In the present study, Both 
Hoe140, a B2R inhibitor, and nicardipine, a L-type calcium 
channel inhibitor, suppressed the bradykinin-induced con-
traction. Tsuda et al. reported that bradykinin stimulated nor-
adrenaline release in hypothalamus [21, 22]. In this study, 
however, propranolol, a β adrenergic receptor inhibitor, did 

not suppress the bradykinin-induced left atrial contraction. 
From these results, bradykinin may also enhance left atrial 
contraction through the increase of L-type calcium current 
via binding to B2R in mice.

In the present study, we found that endostatin significantly 
inhibited bradykinin-induced left atrial contraction. End-
ostatin also inhibited bradykinin-induced voltage-dependent 
calcium current. The limitation of this study was that the mea-
surement of contraction was performed in isolated left atria of 
mouse, while the recording of calcium current was performed 
in ventricular myocytes of guinea pig (the species different). 
However, it was previously reported that bradykinin increased 
cardiac contraction via the activation of L-type calcium 
current through binding to B2R in guinea pig isolated atria 
[19]. It is thus likely that endostatin might inhibit bradykinin-
induced contraction in guinea pig isolated cardiac muscle 
perhaps through the inhibition of L-type calcium channel. 
Further studies are needed to confirm it by using the tissues 
and cells from the same species. We previously reported that 
endostatin stimulated Akt phosphorylation through reactive 
oxygen species (ROS) production in cardiac fibroblasts [15]. 
Zhang et al. reported that endostatin inhibited bradykinin-
induced NO release via ROS production in endothelial cells 
[25]. Therefore, endostatin might inhibit bradykinin-induced 
cardiac contraction through the ROS production. Further ex-
periments are needed to clarify this point.

Fig. 4.	 Endostatin inhibits bradykinin-induced 
increase of voltage-dependent calcium current. 
Effect of endostatin (300 ng/ml, 5 min) on brady-
kinin (1 µM)-induced voltage-dependent calcium 
current was measured by a whole-cell patch clamp 
technique in the guinea pig ventricular myocytes. 
Representative calcium current recording at 0 mV 
(A, control: upper left, bradykinin: middle left, 
bradykinin + endostatin: lower left) and Current-
Voltage relations for the peak of calcium currents 
(B) were shown. The current density (pA/pF) 
was calculated by normalizing current amplitude 
by cellular membrane capacitance. Results were 
expressed as mean ± S.E.M. (n=6–11). ** P<0.01 
vs. vehicle-treated control. #, ## P<0.05, 0.01 vs. 
bradykinin.
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In conclusion, we for the first time demonstrate that end-
ostatin might inhibit bradykinin-induced cardiac contraction 
perhaps through the inhibition of voltage-dependent calcium 
channel.
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