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ABSTRACT
Background  The field of cancer immunology is rapidly 
moving towards innovative therapeutic strategies, resulting 
in the need for robust and predictive preclinical platforms 
reflecting the immunological response to cancer. Well 
characterized preclinical models are essential for the 
development of predictive biomarkers in the oncology as 
well as the immune-oncology space. In the current study, 
gold standard preclinical models are being refined and 
combined with novel image analysis tools to meet those 
requirements.
Methods  A panel of 14 non-small cell lung cancer 
patient-derived xenograft models (NSCLC PDX) was 
propagated in humanized NOD/Shi-scid/IL-2Rnull mice. 
The models were comprehensively characterized for 
relevant phenotypic and molecular features, including flow 
cytometry, immunohistochemistry, histology, whole exome 
sequencing and cytokine secretion.
Results  Models reflecting hot (>5% tumor-infiltrating 
lymphocytes/TILs) as opposed to cold tumors (<5% 
TILs) significantly differed regarding their cytokine 
profiles, molecular genetic aberrations, stroma content, 
and programmed cell death ligand-1 status. Treatment 
experiments including anti cytotoxic T-lymphocyte-
associated protein 4, anti-programmed cell death 1 or 
the combination thereof across all 14 models in the 
single mouse trial format showed distinctive tumor 
growth response and spatial immune cell patterns as 
monitored by computerized analysis of digitized whole-
slide images. Image analysis provided for the first time 
qualitative evaluation of the extent to which PDX models 
retain the histological features from their original human 
donors.
Conclusions  Deep phenotyping of PDX models in a 
humanized setting by combinations of computational 
pathology, immunohistochemistry, flow cytometry and 
proteomics enables the exhaustive analysis of innovative 
preclinical models and paves the way towards the 
development of translational biomarkers for immuno-
oncology drugs.

BACKGROUND
The complexity of treatment options for 
non-small-cell lung cancer (NSCLC) and the 
need for predictive biomarkers has dramati-
cally increased since the advent of immuno-
therapy. Biomarkers for compounds targeting 
specific genetic aberrations differ signifi-
cantly from biomarkers for immunomod-
ulating drugs, as the latter are continuous, 
time-dependent and context-dependent 
and need to consider multiple factors.1 2 
Currently, biomarker research is lagging the 
mechanistic understanding of novel drugs 
modulating the immune component of the 
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tumor. A major need is a translational approach inte-
grating well-characterized preclinical platforms with clin-
ically relevant biomarker strategies, thereby enabling a 
seamless transition into early clinical research.

Cancer research relies strongly on animal models, often 
based on human tumor cells transplanted into immune-
compromised mice.3 The current gold-standard for 
preclinical mouse models of cancer are patient-derived 
xenografts (PDX).4–6 Since the foundation of interna-
tional initiatives taking care of the systematic character-
ization of PDX covering the breadth and depth of the 
different cancer types, the predictive value of this model 
platform has tremendously increased.7 The availability 
of large, well-characterized PDX collections has enabled 
in vivo screening formats that allow the investigation of 
numerous compounds in a tumor panel reflecting patient 
heterogeneity: The single mouse trial format (SMT) is 
defined by a group size of n=1 per treatment arm and 
model. This study paradigm supports the identification 
of responsive subpopulations, thus enabling the discovery 
of predictive biomarkers urgently needed in the immuno-
oncology landscape.8

Nevertheless, PDX models can only partially reflect the 
tumor in-situ, since human tumor cells interact with a 
murine microenvironment. This gap is likely to contribute 
to the high attrition rate of cancer drugs in early clinical 
development, often not meeting their primary endpoints 
while preclinical data has been encouraging.9–11

In 2002 the NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) 
mouse and their relatives have been made available to 
the scientific community.12 These novel mouse strains, 
harboring an unprecedented degree of immune suppres-
sion, enabled the development of so-called humanized 
mice. Although, the recapitulation of the human immune 
system is still incomplete, their capability to predict anti-
tumoral activity of immune-modulating compounds has 
been proven at least for T cell-based therapy.13–16

In this study, we aimed to combine three well-accepted 
preclinical assets: PDX, SMT format and humanized 
NSG (huNSG) to develop a preclinical research plat-
form expanding the screening for innovative immune-
oncology drug candidates by tools for the concomitant 
development of biomarkers that support stratification in 
early clinical trials.

MATERIAL AND METHODS
PDX characterization in humanized mice
NSCLC PDX models were implanted subcutaneously 
in 4–6 week-old female NSG or huNSG (Charles River, 
France) under isoflurane anesthesia. Tumor growth was 
determined by a two-dimensional measurement with 
calipers twice a week. Analyses of the PDX models were 
performed when tumor size reached 400–500 mm³: 
tumors were sampled for subsequent analysis by flow 
cytometry, histology, and cytokine determination. Hema-
topoietic organs such as peripheral blood (PB), bone 
marrow (BM) and spleen were analyzed by flow cytometry.

Patient with NSCLC samples
A series comprizing 52 formalin-fixed paraffin embedded 
(FFPE) samples of completely anonymized archival 
surplus material (Institute for Pathology, Hanover Medical 
School) representing the full spectrum of common histo-
logical variation in diagnostic NSCLC evaluation was 
processed immunohistochemically as described below for 
comparison with the PDX-derived samples.

Treatment experiments in vivo
Implantation was performed as described above. Animals 
bearing 80–100 mm³ tumors, were distributed into exper-
imental groups following the principle of the single 
mouse trial.8 The day of randomization and treatment 
start was designated as day 0. Both compounds and the 
combination were applied intraperitoneally. Details are 
listed in online supplemental table 1. Tumor volume and 
body weight were determined twice weekly.

Evaluation of antitumoral activity
The relative volume of an individual tumor on day X was 
calculated by dividing the absolute volume mm3 of the 
respective tumor on day X by the absolute volume of the 
same tumor on the day of randomization (=day 0). Tumor 
inhibition on a particular day (test/control (T/C)) was 
calculated from the relative volume of a test group and 
the relative volume of a control group.

Human PD-L1 and human CD45 immunohistochemistry
After antigen retrieval, 5 µM thick FFPE tissue sections 
were incubated with anti-human programmed cell death 
ligand 1 (PD-L1) Antibody (1:200, Cat #13,684S, Cell 
Signaling, USA) or anti-human CD45 Antibody (1:300, 
Cat# AB40763, Abcam, UK) for 60 min at 37°C, followed 
by 3,3′-Diaminobenzidin (DAB) staining and hematox-
ylin counterstaining. Slides were scanned at 0.253 µm/
pixel resolution (40×) with an Aperio AT2 scanner (Leica 
Microsystems, Wetzlar, Germany).

Image analysis
Digitalized images of the immunohistochemistry (IHC) 
slides were evaluated to determine the percentage of 
PD-L1-positive areas using the OSANO software.17 A 
computerized analysis for digitized whole-slide images 
of the samples was used to quantify the PD-L1 and CD45 
expression using color classification and morphological 
image processing techniques. The tissue classification was 
performed as described before on digitalized images of 
the H&E slides.18

Flow cytometry
BM, spleen, tumor or PB cells (5×105 to 1×106) from tumor 
bearing animals were harvested and incubated with the 
primary antibody or isotype control and the mean fluo-
rescence intensity was analyzed by flow cytometry (FC). 
Staining was performed in the presence of CD16/CD32 
Abs to block non-specific staining. Antibody information 
are listed in online supplemental table 2. Samples were 
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analyzed on an Attune Acoustic Focusing Cytometer NXT 
(Applied Biosystems) which recorded 50,000 events.

Bead-based bioplex assay
Tumor tissue was analyzed according to manufacturer’s 
instructions. For human cytokine detection the Bio-
Plex Pro Human Chemokine Panel (# 171AK99MR2, 
Bio-Rad, USA) was used and for the detection of mouse 
cytokines the Bio-Plex Pro Mouse Cytokine 23-plex Assay 
(#M60009RDPD, Bio-Rad) was utilized. All analyses were 
performed on the Bio-Plex 200 system (#171000201, 
Bio-Rad)

Statistical analysis
Student’s t-test, two-tailed and Mann-Whitney followed 
by Tukey’s multiple comparisons test were used to calcu-
late the reported p values. For the comparison of the FC 
data, the statistical significance was determined using the 
Holm-Sidak method, with alpha=0.05. For the comparison 
of the cytokine data the ratio paired t-test was applied. 
Each row was analyzed individually, without assuming a 
consistent SD. The scheme in the figure for describing 
the p value was the following: ****p<0.0001, ***p=0.0001 
to 0.001; **p=0 0.001 to 0.01; *p=0.01 to 0.05; ns : p≥0.05. 
Descriptive analyses were assessed whenever appropriate 
and were obtained using GraphPrism software (www.​
graphpad.com).

EMT score
The epithelial-mesenchymal transition (EMT) score was 
built on a gene set published by Taube et al.19 It describes 
a gene signature based on changes depending on EMT-
related genes like Snail, Twist, or E-cadherin. Based on 
the RNA expression levels of the respective genes the 14 
NSCLC PDX models received a specific EMT score which 
was calculated following Rudisch et al20 by performing 
gene-wise scaling of expression values and afterwards 
obtaining the average of the genes in the EMT signature.21

Three-dimensional stack production
The FFPE samples were cut into 3 µm thick slides. Five 
slides were cut consecutively, leaving an interval of 80 
µm the next five slides were cut. This was repeated 
throughout the block. The first slide of each section was 
stained with H&E and the second slide was stained for 
huCD45 following the protocol described above.

RESULTS
The NSCLC PDX models retain the histological features of the 
donor patient tumor
The panel of NSCLC PDX models was based on 14 primary 
tumors covering the most common subtypes. The basic 
characteristics of the PDX and the essential donor patient 
information are listed in online supplemental tables 3 and 
4. The PDX models maintained their typical histopatho-
logic appearance during serial passage (n=4) in immune 
compromised mice, visually displaying identical features 
(figure 1A). We confirmed this observation by objective 

tissue class quantification on representative H&E whole 
slide scans from donor patients and the respective PDX. 
The proportions of the main tissue classes tumor, stroma 
and necrosis is conserved during model establishment 
and proved to be persistent in individual tumor models 
(figure 1B).

The immune cell infiltration pattern is an immanent feature of 
the model and can be used to classify the NSCLC PDX models 
into hot and cold tumors
We evaluated the influence of the tumor implantation on 
the engraftment of human immune cells and vice versa the 
influence of the human immune cells on tumor growth. 
The FC analyses of PB, BM and spleen of the tumor 
bearing versus non-tumor bearing mice revealed no major 
differences between both groups (online supplemental 
figure 1A). Inversely, the presence of human immune 
cells did not alter the growth characteristic of the NSCLC 
PDX models. This is exemplarily shown in online supple-
mental figure 1B, where lung cancer xenograft Freiburg, 
adenocarcinoma (LXFA) 983 mean tumor volume over 
time is plotted in NSG, Naval Medical Research Institute 
(NMRI) nu/nu and huNSG.

The 14 PDX models were implanted subcutaneously 
into huNSG (one tumor per model per mouse) and the 
human immune cells in tumor, BM, spleen and PB were 
quantified by FC (figure 2A, online supplemental figure 
2A). By applying the threshold of 5% tumor-infiltrating 
lymphocytes (TILs) we defined two groups, hot and cold 
tumors, which show a highly significant difference in 
TIL percentage (p<0.00012). Comparing the immune 
cell infiltration in different organ systems between those 
two groups, only the CD4 +fraction in the spleen showed 
significant differences (p<0.04). The CD4+/CD8  +ratio 
in tumor tissue tended to be higher in mice bearing cold 
tumors (not significant (n.s.)). Notably, in BM and spleen 
the CD4+/CD8  +ratio was significantly lower in cold 
tumors (online supplemental figure 2B, p<0.04). Of note, 
the engraftment of human immune cells in PB prior to 
tumor implantation was similar in the individual huNSG 
mice receiving cold or hot tumors (online supplemental 
figure 2C). The FC analysis of one sample per model was 
representative for the model per se as shown in indepen-
dent experiments for LXFA 983, LXFA 1674 and lung 
cancer xenograft Freiburg, large cell (LXFL) 526 (online 
supplemental figure 2D).

The hot and cold tumors display a specific human cytokine 
pattern
The hot and cold tumors displayed distinct cytokine 
profiles. Four human cytokines were greater than twofold 
higher expressed in cold tumors, whereas 17 human 
cytokines showed a greater than twofold higher expres-
sion in hot tumors, nine of them displaying a statistically 
significant difference. Only three murine cytokines were 
upregulated more than twofold in the hot tumors and 
none in the cold tumors (all n.s., figure 2B). Among the 
upregulated human cytokines in the hot tumors, were 

www.graphpad.com
www.graphpad.com
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412


4 Oswald E, et al. J Immunother Cancer 2022;10:e004412. doi:10.1136/jitc-2021-004412

Open access�

Figure 1  (A) Histological features of the selected non-small cell lung cancer PDX and corresponding patient tissue. H&E 
stains were prepared from formalin-fixed paraffine embedded samples of donor patient tissue as well as the fourth passage 
in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice of PDX derived thereof. Whole slides were scanned and 10 × magnification jpegs 
extracted of the scans (scale bar included). (B) A tissue classification algorithm was used to estimate the percentage of tissue 
classes within one scanned H&E stained slide. For each donor patient (pt) and for each PDX one H&E stained whole slide image 
was analyzed. The results are plotted as percentage of analyzed area. CA carcinoma; LXFA, lung cancer xenograft Freiburg, 
adenocarcinoma; LXFE, lung cancer xenograft Freiburg, epithelial; LXFL, lung cancer xenograft Freiburg, large cell; PDX, 
patient-derived xenograft.
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Figure 2  (A) Flow cytometry analysis of human immune cells in tumor of humanized NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ 
mice when tumor volume has reached 400–500 mm³. A total of 14 animals bearing 14 different models was analyzed. The 
individual data points are plotted as box plots with minimum and maximum as whiskers and median depicted as the line in 
the box. The percentage of CD45 +cells in the tumor tissue was used as classification criterion into cold (<5%) and hot (>5%) 
tumors, respectively. Following this criterion seven models were assigned to the group of cold tumors and the remaining seven 
to the group of hot tumors. (B) The levels of 38 human and 23 mouse cytokines in the tumor tissue of hot and cold tumors 
was determined for all 14 models. The absolute value of pg protein/mg tissue is plotted per cytokine and tumor model. The 
cytokines with a greater than twofold higher mean expression in hot tumors compared with cold tumors are highlighted in 
bold letters, the cytokines with a greater than twofold higher mean expression in cold tumors compared with hot tumors are 
underlined. The stars indicate statistical difference between the cold and the hot tumor group for a specific cytokine (Mann-
Whitney test). (C) The influence of the presence of human immune cells in the murine host was determined by calculating the 
fold change of 38 human and 23 mouse cytokines in the humanized versus the non-humanized setting per model and plotted 
as heatmap. The stars indicate statistical difference between the non-humanized and the humanized tumor group for a specific 
cytokine (Mann-Whitney test). G-CSF, granulocyte colony stimulating factor; GM-CSF, granulocyte-macrophage colony-
stimulating factor; IFN, interferon; IL, interleukin; LXFA, lung cancer xenograft Freiburg, adenocarcinoma; LXFE, lung cancer 
xenograft Freiburg, epithelial; LXFL, lung cancer xenograft Freiburg, large cell; TNF, tumor necrosis factor.
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interleukin (IL)-16 and CXCL-13 which are known to 
be chemotactic for activated T cells. In addition, neutro-
phil attracting cytokines CX3CL-1 and CXCL-6 were 
enhanced alongside with pro-inflammatory cytokines 
interleukin (IL)-2, IL-6 and granulocyte-macrophage 
colony-stimulating factor (GM-CSF) (online supple-
mental figure 3). The enhanced mean expression levels 
in the cold tumors were accompanied by a wide distribu-
tion and therefore their biological implications remained 
to be elucidated. The three upregulated mouse cytokines 
IL-1a, Eotaxin and MIP-1a do have a pro-inflammatory 
impact, indicating that the murine part of the tumor 
microenvironment participates in the recruitment of the 
human immune cells (online supplemental figure 3). The 
influence of the presence of the human immune cells in 
the murine host was determined by calculating the fold 
change between the non-humanized and the humanized 
setting per model (figure 2C) for the human as well as 
the murine cytokine panel. Several mouse cytokines were 
exclusively expressed in the presence of human immune 
cells: Mo IL-2, Mo IL-5, Mo IL-10, Mo IL-17, Mo G-CSF, 
Mo GM-CSF. In addition, another group of murine 
cytokines was highly upregulated in most of the tumor 
models: Mo IL-6, Mo IL-9, Mo-IL-12, Mo IL-13, Mo inter-
feron (IFN)-γ, Mo keratinocyte derived cytokine (KC), 
Mo monocyte chemattract chemokine (MCP-1). Most of 
those cytokines have a pro-inflammatory effect. Explicitly, 
IL-17 is described to enhance fibroblast proliferation and 
its secretion of pro-inflammatory cytokines. Neverthe-
less, the enhanced secretion of IL-10 and IL-13 indicates 
a counter-regulation towards immune cell homeostasis. 
Along those lines, a downregulation of Mo IL-1a and b, 
Mo IL-3, Mo IL-4 and Mo tumor necrosis factor (TNF)-α 
was observed. The effectiveness of this regulation mech-
anism can be seen inter alia in the similar growth charac-
teristics of the individual tumor models in the presence 
of absence of human immune cells using the example 
of LXFA 983 (online supplemental figure 1B). Twenty-
four of the 38 human cytokines were either specifically or 
statistically significant higher expressed in the presence 
of human immune cells. Remarkably pro-inflammatory 
and partly antitumoral proteins as CXCL-13, IFN-γ, CCL8 
and CXCL9 are highly upregulated in the presence of 
human immune cells. No differences could be observed 
between the hot and cold tumors regarding the mouse 
cytokine regulation as a function of human immune cell 
presence.

Hot and cold tumors are characterized by different molecular 
features
Comparing the different molecular characteristics in the 
hot versus the cold tumors, we found comparable tumor 
mutational burden in both groups: 16.54 alterations/MB 
in hot versus 16.74 alterations/MB in cold tumors. The 
EMT score was twofold higher in hot tumors (14.65±0.72, 
cold vs 31.89±0.52, hot, n.s.). Regarding the mutational 
landscape of the NSCLC PDX models the hot tumors 
displayed a higher frequency of mutations in the ERB2, 

KRAS and MET genes, whereas the cold tumors had a 
higher frequency of MYCL, PTEN, RB1 and TSC2 muta-
tions. Investigating the RNA expression levels of the same 
gene set confirmed more than twofold differences in 
mean expression levels for four genes: EGFR (p<0.005) 
and ROS1 (n.s.), whereas MYCL (p<0.04), and MYCN 
(n.s.) showed higher expression levels in cold tumors 
(online supplemental figure 4).

The PD-L1 protein expression on the tumor cells is associated 
with the density of infiltrating human immune cells
To examine the PD-L1 expression at tissue level in the 
14 NSCLC PDX models, IHC was performed on tumor 
tissue grown in NSG and huNSG, respectively (figure 3A). 
The influence of the presence of human immune cells 
was determined by calculating the fold change of the 
DAB +area in the humanized versus the non-humanized 
setting per model. A more than threefold increase of 
the PD-L1 expression was specifically detected in hot 
tumors. In contrast, most of the cold tumors downreg-
ulated PD-L1 in the presence of human immune cells 
(figure 3B). The hot tumors expressed significantly more 
PD-L1 than the cold tumors measured by DAB  +area 
(figure 3C; p<0.0071).

Cold tumors display a higher tumor/stroma ratio than hot 
tumors
We determined the distribution of the three major tissue 
classes, tumor, stroma, and necrosis, in our NSCLC PDX 
panel. First, we investigated the variability of the distribu-
tion of tissue classes throughout one block. We analyzed 
five blocks of different untreated NSCLC PDX models 
following the scheme depicted in online supplemental 
figure 5A and plotted the tissue composition across the 
different slides (online supplemental figure 5B). As a 
measure for heterogeneity throughout the block, we 
compared the mean tumor/necrosis ratio and the mean 
tumor/stroma ratio of one slide with the mean of the full 
stack (online supplemental table 6). The percentage of 
tumor and stroma within one slide was stable across the 
block and specific for a certain tumor model. In contrast, 
the percentage of necrosis varied across the block for 
some of the models, namely LXFL 1674 and lung cancer 
xenograft Freiburg, epithelial (LXFE) 2324. Conversely, 
the increase of necrosis was associated with a corre-
sponding decrease of tumor tissue. We concluded that 
tissue sections for this type of analyses should preferably 
be prepared from the central portions of the tumor, as 
these regions were the ones with the least variance among 
the different models.

After the systematic evaluation of the robustness of our 
workflow, we examined one whole slide image (WSI) per 
setting from the middle of the individual block in the 
subsequent analyses. The comparison of the tissue compo-
sition in all 14 models revealed that the tumor tissue 
was the most prominent tissue class. The cold tumors 
depicted less stroma as the hot tumors, which led to a 
statically significant difference between the tissue class 
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Figure 3  The PD-L1 expression was determined by IHC in 14 different NSCLC PDX in the presence or absence of human 
immune cells. (A) Whole slide scans were prepared, and representative 10× magnification jpegs were extracted of the scans 
(scale bar included). Quantification of the PD-L1 expression determined by IHC in a panel of 14 NSCLC PDX models, seven 
cold and seven hot tumor models. The DAB +area was determined using the OSANO software by analyzing one whole slide per 
tumor model in the presence and absence of human immune cells (total of 28 slides) (B) The influence of the presence of human 
immune cells in the murine host was determined by calculating the fold change of the DAB +area in the humanized versus the 
non-humanized setting per model and plotted as heatmap. (C) The comparison of the PD-L1 expression depicted as relative 
DAB +area (=percentage of analyzed area) on cold versus hot tumors. The individual data points are plotted as box plots with 
minimum and maximum as whiskers and median depicted as the line in the box. (D) Using whole slide images of H&E stained 
slides, the percentage of the tissue classes tumor, stroma and necrosis were measured by a tissue classification algorithm in 14 
NSCLC PDX models propagated in humanized NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ, seven cold and seven hot tumor models. 
The results are plotted as percentage of analyzed area. For each model one whole slide scan was analyzed (n=7 for cold and 
hot tumors, respectively). The individual data points are plotted as box plots with minimum and maximum as whiskers and 
median depicted as the line in the box. (E) Using whole slide images of H&E stained slides, the percentage of the tissue classes 
tumor, stroma and necrosis were measured by a tissue classification algorithm in 52 patient with NSCLC samples, 34 cold 
and 18 hot tumor models. The results are plotted as percentage of analyzed area. For each model one whole slide scan was 
analyzed (n=34 for cold and n=18 for hot tumors, respectively). The individual data points are plotted as box plots with minimum 
and maximum as whiskers and median depicted as the line in the box. DAB, 3,3′-Diaminobenzidin; IHC, immunohistochemistry; 
LXFA, lung cancer xenograft Freiburg, adenocarcinoma; LXFE, lung cancer xenograft Freiburg, epithelial; LXFL, lung cancer 
xenograft Freiburg, large cell; NSCLC, non-small cell lung cancer; PD-L1, programmed cell death ligand 1; PDX, patient-derived 
xenograft.
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tumor versus stroma specifically in the cold tumor group 
(figure  3D, p<0.001). Of note, the difference between 
the stroma content in the cold versus the hot tumors was 
statistically not significant.

A corresponding analysis was performed on clinical 
samples from 52 patients with NSCLC. The subgrouping 
into cold and hot tumors was built on an image analysis-
based quantification of CD45 +cells. Consistent with the 
FC analysis of the samples derived from PDX models, 
the difference between TILs in hot and cold tumors was 
statistically significant (online supplemental figure 5C, 
p<0.0001). Moreover, the tissue composition in the clin-
ical samples was very similar to the composition observed 
in the PDX panel. Along those lines, the difference 
between the tissue classes tumor and stroma was more 
prominent in the cold tumors compared with the hot 
tumors (figure 3E, p<0.0001 and p<0.0025).

Cold tumors are slightly more susceptible to checkpoint 
inhibitor treatment as hot tumors
Both checkpoint inhibitors delayed tumor growth 
in monotherapy and combined therapy within the 
14 models at varying degrees (figure  4A). Across all 
models, the combination treatment was the most effec-
tive therapy, followed by anti-cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) treatment alone (p<0.012 
and p<0.035, respectively). This holds true when exam-
ining specifically the cold tumors (p<0.024 and p<0.045, 
respectively). On the contrary, within the group of hot 
tumors the relative tumor volumes in the different treat-
ment arms did not differ significantly. These results were 
supported by the examination of the T/C values on the 
last experiment day: In all treatment arms, three cold but 
only two hot tumors could be defined as responders (T/C 
value <50% partial remission, figure 4B).

The treatment with checkpoint inhibitors increased the TIL 
rate predominantly in cold tumors
Under treatment with checkpoint inhibitors the immune 
cell population was upregulated mostly in the cold 
tumors whereas the hot tumors showed a less pronounced 
increase in immune cell infiltration. Therefore, the 
difference in CD45  +percentage, defining the hot and 
cold tumors in the untreated animals, was reduced to a 
degree that only in the anti-CTLA-4 treated group this 
value depicted a statically significant difference (p<0.041, 
figure 5A). Of note, in the most efficacious combination 
treatment arm, the percentage of CD45+/CD8 +cells was 
significantly higher in the hot tumors (p<0.029, multiple 
t-tests). To better understand the influence of the treat-
ment on the immune cell infiltration, we plotted the fold 
changes between the untreated and the respective treat-
ment arm for the different immune cell types in cold and 
hot tumors (figure 5B). It became obvious, that although 
the differences in absolute values were not apparent, 
specifically the cold tumors displayed a marked relative 
increase of immune cell infiltrates under treatment. 
Explicitly, the activated CD4  +and CD8+cells as well as 

the CD4/CD8 ratio was increased >100-fold in the cold 
tumors. In parallel, anti-programmed cell death 1 (PD-1) 
treatment reduced the rate of CD45 +cells to 56% and of 
the activated CD8 +cells to 59% of the untreated control. 
The examination of the hematopoietic organs revealed 
no obvious differences of human immune cell infiltrates 
in all settings (online supplemental figure 6A,B).

Hot and cold tumors displayed an explicit cytokine pattern 
under treatment with checkpoint inhibitors
The human cytokines were regulated differently 
depending on the characteristic of the tumor and the 
treatment arm (figure  5C). In the cold tumors anti-
CTLA4 treatment induced an upregulation of CXCL13, 
which was inter alia observed in the group of hot tumors. 
Anti-PD-1 monotherapy had no influence on the human 
cytokine profile of the cold tumors. In contrast the most 
effective combination arm induced an upregulation of 
CCL17, CCL20 and CCL26 (all n.s.). In the group of 
hot tumors, the anti-CTLA-4 monotherapy induced an 
increase in CXCL13 (p<0.037) expression but as well 
elevated levels of CXCL9 (p<0.02) and MIF (n.s.). In 
contrast anti-PD-1 treatment led to a decrease of four 
cytokines: CXCL9 (p<0.04), CXCL13 (p<0.047), CCL8 
(p<0.04) and IL-16 (p<0.012). The combined checkpoint 
inhibitor (CPi) treatment led to an increase of CXCL9, 
CXCL10 and CXCL11 in the tumor tissue (all n.s.). The 
expression of murine granulocyte colony stimulation 
factor (G-CSF) was modulated in the group of hot tumors 
(figure 5D). Anti-CTLA-4 treatment induced an increase 
of G-CSF levels in the hot tumors leading to a mean fold 
change of 2.6 for the monotherapy and 3.4 in the combi-
nation arm (all n.s.). The expression pattern of the other 
murine cytokines was not markedly influenced by the 
treatment: the fold changes ranged between 0.6 and 1.9 
(online supplemental figure 7).

The expression of PD-L1 is modulated inversely in cold and 
hot tumors under treatment with checkpoint inhibitors
To determine the PD-L1 expression level, an IHC was 
performed on tumor tissue treated with anti-CTLA-4, anti-
PD-1 or the combination thereof (figure 6A). In general, CPi 
treatment induced an upregulation of PD-L1 expression in 
cold tumors, whereas in hot tumors a moderate downreg-
ulation was observed. The absolute PD-L1 expression was 
significantly higher in hot tumors as in cold tumors of the 
untreated arms (p<0.008). The modulation of the PD-L1 
expression under CPi treatment reduced the difference in 
the expression level to a non-significant level (figure  6B). 
The comparison of the fold changes in the cold versus 
the hot tumor group for the applied treatment regimen 
revealed statistically significant differences with p values of 
p<0.018 (anti-CTLA-4), p<0.014 (anti-PD-1) and p<0.008 
for the combination (figure 6C). Of note, neither the fold 
change under treatment nor the PD-L1 expression level in 
the untreated tumors was predictive for the responsiveness 
towards any of the investigated treatments (online supple-
mental figure 8).

https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
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The distribution of the three major tissue classes was altered 
under treatment with CPi’s
The treatment with CPi’ had diverging impact on the 
proportion of the three major tissue classes tumor, stroma 
and necrosis. In the cold tumors the ratio between the three 

classes was stable across all treatment arms. In the hot tumors, 
anti-CTLA-4 treatment reduced the stroma content while 
enhancing the percentage of tumor area. Furthermore, anti-
PD-1 treatment induced a reduction of necrosis, which was 
also true for the combination treatment (figure 6D).

Figure 4  The sensitivity towards checkpoint inhibitor treatment of NSCLC PDX in monotherapy and combined therapy was 
tested in 14 NSCLC PDX models in the single mouse trial format. (A) The relative tumor volume at the last experiment day, with 
the tumor volume measured on the first day of treatment set as 100%, was plotted for the different treatment arms. Each dot 
represents one animal bearing a different NSCLC PDX model. The line is indicating the median of the respective group. The 
statistics in dark gray represent the analysis of all tumors per treatment arm (hot and cold). (B) The test/control value on the 
last experiment day was plotted for each treatment arm separately for the cold and the hot tumors. Each dot represents one 
tumor. The line is indicating the median of the respective group. The dotted line marks a test/control value of 50% indicating the 
threshold for responder versus non-responder. CTLA-4, cytotoxic T-lymphocyte-associated protein 4; NSCLC, non-small cell 
lung cancer; PD-1, programmed cell death 1; PDX, patient-derived xenograft.
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Figure 5  (A) Flow cytometry analysis of human immune cells in tumor of tumor bearing humanized NOD.Cg-
PrkdcscidIl2rgtm1Wjl/SzJ mice at the last experiment day. A total of 42 animals bearing 14 different patient-derived xenograft 
models was assigned to different treatment arms and analyzed for infiltration of human immune cells. The individual data points 
are plotted as box plots with minimum and maximum as whiskers and median depicted as the line in the box. The difference 
between cold and hot tumors was significant for CD45 +in the group receiving isotype control or anti CTLA-4 treatment and 
for CD8 +cells in the combination treatment arm (p<0.00013, p<0.041 and p<0.029, multiple t-tests). (B) The fold change of 
the different immune cell populations in comparison to the respective untreated control arm was calculated per individual 
experiment and model. The mean values of the fold changes for the cold and the hot tumors were plotted as a heatmap. 
(C) Human cytokine and chemokine secretion of hot and cold tumors under treatment with different CPi’s. The fold changes 
for the cold and the hot tumors were plotted as a column bar graph with mean and SE of the mean. The fold changes >2 are 
highlighted in red, the fold changes <0.5 are highlighted in blue. Per analyte a ratio paired t-test was performed to determine 
statistical significance between the absolute values of the untreated control and the respective treatment arm. (D) Murine G-
CSF levels in hot tumors under treatment with different CPi’s. The absolute values of murine G-CSF was plotted as before–
after graph for the three different treatment arms. A ratio paired t-test was performed to determine statistical significance 
between the absolute values of the untreated control and the respective treatment arm. CPi, checkpoint inhibitor; CTLA-4, 
cytotoxic T-lymphocyte-associated protein 4; G-CSF, granulocyte colony stimulation factor; IL, interleukin; IFN, interferon; PD-1, 
programmed cell death 1; TIL, tumor-infiltrating lymphocytes; TNF, tumor necrosis factor.
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Figure 6  The PD-L1 expression was determined by IHC in 14 different NSCLC PDX in the presence of human immune cells 
and under treatment with two different checkpoint inhibitors in monotherapy and combined therapy. The DAB +area was 
determined using the OSANO software by analyzing one whole slide per tumor model and setting: humanized untreated, 
humanized anti CTLA-4 treatment, humanized anti PD-1 treatment and humanized combination treatment, a total of 56 slides. 
(A) Representative 10× magnification jpegs were extracted of the scans (scale bar included) for one cold and one hot tumor 
model in the different treatment arms. (B) The fold change of PD-L1 expression versus the respective untreated control was 
calculated per model and plotted separately for cold and hot tumors. The individual data points are plotted as box plots with 
minimum and maximum as whiskers and median depicted as the line in the box. The dotted line a y=1 depicts the inflection 
point of downregulation (<1) towards upregulation (>1) of PD-L1. (C) The absolute values for the PD-L1 expression depicted 
as relative DAB +area (=percentage of analyzed area) within the different treatment arms was plotted separately for cold and 
hot tumors. The individual data points are plotted as violin plots with individual data points. (D) Using whole slide images of 
H&E-stained slides the percentage of the tissue classes tumor, stroma and necrosis were measured by a tissue classification 
algorithm, in 14 NSCLC PDX models. The tissue classes for cold and hot tumors in the different treatment arms are plotted as 
percentage of analyzed area. For each model and each treatment arm one whole slide scan was analyzed (n=7 for cold and hot 
tumors, respectively). The individual data points are plotted as box plots with minimum and maximum as whiskers and median 
depicted as the line in the box. CTCLA-4, cytotoxic T-lymphocyte-associated protein 4; DAB, 3,3′-Diaminobenzidin; LXFA, lung 
cancer xenograft Freiburg, adenocarcinoma; PD-1, programmed cell death 1 ; PD-L1, programmed cell death ligand 1; NSCLC, 
non-small cell lung cancer; PDX, patient-derived xenograft.
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The IHC based detection of TILs using whole slide image 
analysis mirrors the FC results of the SMT testing
To complement our data set using a clinically relevant 
technology, we determined the infiltration of human 
CD45 +cells by IHC. Like the tissue class quantification, 
we investigated the heterogeneity of immune cell infil-
trate throughout one block in five representative NSCLC 
PDX models. As a measure for heterogeneity across the 
block, we plotted the mean percentage (±SD) of immune 
cells across the slides compared with the mean percentage 
(±SD) of the complete block. Despite LXFE 2324 the 
mean of the individual slide was within the range of the 
SD of the full stack (figure  7A). Again, following the 
validation step, we examined one WSI per setting in all 
subsequent analyses. The comparison of the percentage 
of DAB  +nucleic area as a measure for immune cell 
infiltrates confirmed the FC data of the 14 NSCLC PDX 
models (figure 7B). The difference in immune cell infil-
trates between cold and hot tumors was statistically signif-
icant in the untreated tissue. Specifically, under anti-PD-1 
treatment the difference between the two groups became 
less prominent. Analogous to the FC data we compared 
the fold change of human immune cell infiltrates in 
the different treatment arms in cold and in hot tumors 
(figure 7C). Although the changes were more subtle as 
compared with the FC analysis, the trend was very similar: 
the immune cell infiltrates increased primarily in the cold 
tumors under treatment with checkpoint inhibitors while 
they stayed stable or even decreased in the hot tumors.

DISCUSSION
The advent of immuno-oncology has revolutionized the 
landscape of cancer treatment.22–26 In parallel to the 
increasing number of patients benefitting from these 
new therapies, there is an increasing need for robust 
and predictive preclinical models reflecting interactions 
between tumors and their microenvironment. The identi-
fication of potential stratification markers, the evaluation 
of possible combination therapies and the identification 
of new targets needs to start in the preclinical space. 
Although syngeneic models have undeniable advantages, 
the need for an in vivo model expressing human specific 
targets in crosstalk with human immune cells is a neces-
sity.27 28 In the current study, we developed and validated 
a preclinical in vivo platform by combining PDX and 
humanized mice as two gold standards for oncology and 
immunology. Within a panel of 14 NSCLC PDX, it was 
possible to identify hot and cold tumors similar to the 
clinical setting.29 In line with data from clinical studies 
in patients with NSCLC was the observation that the T 
cell subtypes displayed a very similar distribution in both 
classes.30 Interestingly, the percentage of natural killer 
cells was similarly low in cold and hot tumors, likewise 
mimicking the clinical situation (figure 2A).31 32 Further-
more, five out of seven biomarkers were differentially 
expressed in the hot and cold tumors: cytokine levels 
(figure 2B), PD-L1 expression and tumor/stroma ratio 

(figure 3), EMT score (online supplemental figure 4) and 
vascularization (online supplemental table 4). A treat-
ment experiment in the SMT format revealed a response 
pattern very comparable to the clinic (figure 4).24 33 None 
of the investigated biomarkers was predictive towards CPi 
treatment. Nevertheless, the tumor models displayed a 
unique signature under treatment depending on their 
TIL rate (figures  5–7). Again, this reflects the clinical 
situation where a predictive biomarker has yet to be 
defined and the trend is moving towards defining exclu-
sionary biomarkers related to lack of benefit and/or risk 
of adverse effects.1 2 34 35 The integration of different 
readouts is one advantage of the preclinical setting to 
enhance the possibility to identify early on predictive 
biomarkers.

The ability of PDX panels to mirror the landscape of 
the disease is well described by us and other groups.36 37 
The possibility to quantify the observation that the histo-
logical features of the patient tissue are maintained in the 
mouse, increases the impact of this otherwise descriptive 
feature. The fact that FC as a gold standard in preclinical 
oncology and image analysis of WSIs as a read-out appli-
cable in clinical routine diagnostic setting led to the same 
conclusions, highlight the translational value of the plat-
form. The translational significance of the image analysis 
tool itself, was verified in a panel of human NSCLC samples 
from an unrelated cohort, confirming the robustness of 
the deep learning algorithm (figure  3E, online supple-
mental figure 5C). Although the relevance of TIL rate as a 
predictive marker for susceptibility towards CPi treatment 
remains to be fully elucidated,38 the fact that the former 
can be defined as a model immanent feature similar to 
the molecular make-up or the histological architecture of 
a specific PDX underpins the role of these models as a 
gold standard in an immuno-oncology setting. The treat-
ment with CPIs turned immunologically ‘cold’ into ‘hot’ 
tumors, which explains the higher treatment sensitivity 
of the former group. The increased activity of the CPi 
combination treatment is a strong indicator supporting 
this assumption.23 It remains to be elucidated if the ‘cold’ 
tumors defined in this study based on TIL density may 
be composed of a mixture of ‘cold’, ‘immune-excluded’, 
and ‘immunosuppressed/immune desert’ tumors.

The use of PDX models inevitably raises the question 
how to tackle the intratumoral heterogeneity.5 39 In our 
study, we determined the degree of heterogeneity within 
one tumor by analyzing the distribution of the three 
major tissue classes and the distribution of CD45 + cells 
throughout the complete tumor sample (figure 7, online 
supplemental figure 5B). This validation strategy enables 
the use of PDX in preclinical I-O studies and improves 
the reliability of IHC markers as a translational readout 
in preclinical studies. As most of the companion diag-
nostics for patient stratification are based on IHC, this 
implies a strategic advantage to facilitate the transition 
of innovative drugs from the preclinical to the early clin-
ical space.25 Nevertheless, those technical features must 
be re-evaluated for new targets as the robustness of the 

https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
https://dx.doi.org/10.1136/jitc-2021-004412
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Figure 7  Using whole slide images of DAB stained anti-CD45 immunohistochemistry slides the presence of CD45 +cells in 
the slide was quantified as percentage of the DAB positive nuclei area of total nuclei area. (A) For five samples from untreated 
non-small cell lung cancer patient-derived xenograft the full stack as described in M&M was analyzed and the mean percentage 
and SD of part stacks plotted versus the mean percentage and SD of the full stack. (B) The percentage of DAB-stained CD45 
positive area in relation to the full sample area for cold and hot tumors in the different treatment arms are plotted as percentage 
of analyzed area. For each model and each treatment arm one whole slide scan was analyzed (n=7 for cold and hot tumors, 
respectively). The individual data points are plotted as box plots with minimum and maximum as whiskers and median depicted 
as the line in the box. (C) The fold change of the CD45 +cell infiltration determined by percentage of DAB +area in comparison 
to the respective untreated control arm was calculated per individual experiment and model. The mean values of the fold 
changes for the cold and the hot tumors was plotted as a heatmap. CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DAB, 
3,3′-Diaminobenzidin; LXFA, lung cancer xenograft Freiburg, adenocarcinoma; LXFE, lung cancer xenograft Freiburg, epithelial; 
LXFE, lung cancer xenograft Freiburg, epithelial.
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system not only rests on the characteristics of the model 
but also on the target expression pattern.40 41

To the best of our knowledge this is the first time that 
the feasibility of the SMT was systematically evaluated 
in an immuno-oncological setting applying computa-
tional pathology tools integrated with immunological 
(cytokine) profiling.12 The advantages of this screening 
format came into effect when testing immune modu-
lating compounds to a similar extend as described before 
for traditional oncological drugs.42 Originally, designed 
as an in vivo screening platform,4 the SMT in combina-
tion with functional readouts can provide mechanistic 
insights into the mode of action and support the devel-
opment of predictive biomarkers. The fact that there was 
no direct correlation between the PD-L1 expression level 
in tumor tissue and the sensitivity towards CPi treatment 
is in line with observations from clinical groups who aim 
to develop biomarkers for patient stratification in NSCLC 
and other cancer types.2 43–45

The use of large cytokine panels for functional analyses 
proved to be very promising. The increase in CCL26 under 
the most effective combination treatment can be most 
likely linked to an increase in hypoxia as cells expressing 
this chemokine independent of hypoxia are not present 
in the huNSG model.46 This hypothesis is additionally 
supported by the fact that the percentage of necrosis is 
particularly increased in the cold tumors of the combi-
nation treatment arm. The biological implications of the 
increased CXCL13 levels under CTLA-4 treatment cannot 
be fully elucidated, as the myeloid derived suppressor 
cells compartment targeted by this chemokine is heavily 
under-represented in the huNSG model (figure 5C,D).47 
By the parallel evaluation of mouse and human cytokine 
levels it was possible to discriminate between cytokines 
derived from human tumor or immune cells and from 
the non-human tumor microenvironment. The species-
specificity of the respective platforms enabled the decon-
volution of this very complicated crosstalk.48–50 Although, 
the knowledge around cross-reactivity of human and 
mouse cytokines and their receptors is fragmented, it 
is essential to characterize the animal model in depth. 
With the systematic analysis of mouse models in different 
settings the interpretation of the results will gain transla-
tional value.51 52

Taken together, the successful development of 
biomarkers for immuno-oncology needs a deep mecha-
nistic insight and understanding of biomarker expression 
in the context of mode of action. PDX models in huNSG 
have a high potential to close this gap between preclin-
ical efficacy testing and clinical development of early 
companion diagnostics.
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