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of Biological Sciences, The University of Auckland, Auckland, New Zealand, 4 Israel Oceanographic and Limnological
Research Institute, Haifa, Israel

Sponges are among the oldest metazoans and their success is partly due to their
abundant and diverse microbial symbionts. They are one of the few animals that
have Thaumarchaeota symbionts. Here we compare genomes of 11 Thaumarchaeota
sponge symbionts, including three new genomes, to free-living ones. Like their free-
living counterparts, sponge-associated Thaumarchaeota can oxidize ammonia, fix
carbon, and produce several vitamins. Adaptions to life inside the sponge host include
enrichment in transposases, toxin-antitoxin systems and restriction modifications
systems, enrichments previously reported also from bacterial sponge symbionts. Most
thaumarchaeal sponge symbionts lost the ability to synthesize rhamnose, which likely
alters their cell surface and allows them to evade digestion by the host. All but
one archaeal sponge symbiont encoded a high-affinity, branched-chain amino acid
transporter system that was absent from the analyzed free-living thaumarchaeota
suggesting a mixotrophic lifestyle for the sponge symbionts. Most of the other unique
features found in sponge-associated Thaumarchaeota, were limited to only a few
specific symbionts. These features included the presence of exopolyphosphatases and
a glycine cleavage system found in the novel genomes. Thaumarchaeota have thus likely
highly specific interactions with their sponge host, which is supported by the limited
number of host sponge species to which each of these symbionts is restricted.

Keywords: sponge (Porifera), archaea, thaumarchaeota, symbiosis, Petrosia ficiformis, Theonella swinhoei,
Hymedesmia (Stylopus) methanophila

INTRODUCTION

Sponges (phylum Porifera) are sessile, soft-bodied invertebrates that inhabit marine and freshwater
environments around the globe (Van Soest et al., 2012). As highly efficient filter feeders, they are a
crucial link between the pelagic and benthic environments (Yahel et al., 2003; de Goeij et al., 2013).
Their success has been attributed to their microbial symbionts (Taylor et al., 2007) that can make up
to 38% of their tissue volume (Vacelet and Donadey, 1977). Sponge symbionts, including bacteria
and archaea, can be transmitted both horizontally and vertically (Steger et al., 2008; Björk et al.,
2019). The symbionts support their host in various ways. They produce secondary metabolites that
are likely involved in the chemical defense of their host against predators, fouling, and pathogens
(Waters et al., 2014; Mori et al., 2018); remove waste products produced by their eukaryotic host,
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such as ammonia (Moeller et al., 2019); contribute nutrients
(Erwin and Thacker, 2008; Mohamed et al., 2008; Rubin-Blum
et al., 2019); and might even be involved in skeleton formation
(Uriz et al., 2012). Given that sponges are one of the earliest-
branching multi-cellular animals (Metazoa) (Feuda et al., 2017),
these symbiotic interactions are considered ancient.

The microbial communities in sponges are often complex
(Thomas et al., 2016) and comprise more than 60 different
bacterial and archaeal phyla (Moitinho-Silva et al., 2017b).
In many cases, these symbionts fall into phylogenetic clades
made up entirely of sequences derived from sponges (and
sometimes corals) suggesting highly specific relationships
(Simister et al., 2012; Taylor et al., 2013). Comparative analyses of
metagenomes from sponge-associated and seawater communities
found symbiont consortia to be enriched in features such as
transposable elements, defense mechanisms (e.g., CRISPR-Cas
systems) and eukaryote-like proteins, potentially involved in
symbiont recognition and interaction (Thomas et al., 2010; Fan
et al., 2012; Horn et al., 2016; Slaby et al., 2017). Studies on
individual bacterial clades revealed several additional features
that differ between sponge symbionts and their free-living
counterparts. The widespread sponge-associated cyanobacteria
Candidatus Synechococcus spongiarum have more streamlined
genomes than their close free-living relatives, lost genes encoding
low molecular weight peptides involved in stabilizing and
protecting the photosynthesis apparatus, and have fewer genes
related to oxidative stress protection and signal transduction
(Gao et al., 2014; Burgsdorf et al., 2015). Sponge symbionts of the
Alphaproteobacteria family Rhodospirillaceae lack genes related
to chemotaxis and motility compared to free-living bacteria
from the same family, but have more genes related to the
biosynthesis of secondary metabolites and cell detoxification
(Karimi et al., 2018).

Bacteria usually dominate sponge microbial communities,
but archaea are regularly found in sponge hosts and can
make up substantial parts of the community (e.g., 24% of
the microbial community in the Great Barrier reef sponge
Ianthella basta) (Moeller et al., 2019), and in some cases even
dominate the communities (e.g., up to 63% in the microbial
community of the sponge Axinella mexicana) (Preston et al.,
1996). A comparison of the archaeal sponge community from
hosts living in shallow waters and the deep-sea indicated that
sponge-associated archaea appear to be much more abundant
(up to three orders of magnitude greater) in the deep-sea
(Steinert et al., 2020). Most archaeal sponge symbionts are
Thaumarchaeota, with some belonging to sponge-specific clades
(Simister et al., 2012). Thaumarchaeota are found in sponge
larvae (Steger et al., 2008) and also in adult sponges, that acquire
their symbionts horizontally (Burgsdorf et al., 2014), indicating
the same variability in transmission routes as found in bacterial
sponge symbionts (Sipkema et al., 2015). Thaumarchaeota
are well-known ammonia-oxidizers (Pester et al., 2011; Baker
et al., 2020) making them a key player in sponge nitrogen
metabolism and nitrogenous waste removal. While their role
in the sponge nitrogen cycle is well established based on
in situ physiology measurements (Bayer et al., 2008; Radax
et al., 2012a; Moeller et al., 2019), amoA gene expression

studies (López-Legentil et al., 2010; Zhang et al., 2014) and more
recently metagenome (Moitinho-Silva et al., 2017a; Moeller
et al., 2019; Zhang et al., 2019), metatranscriptome (Radax
et al., 2012b; Moitinho-Silva et al., 2017a) and metaproteome
analyses (Moeller et al., 2019), less is known about the genomic
adaptations of Thaumarchaeota to life inside sponges.

The first published genome of a thaumarchaeal sponge
symbiont is that of Cenarchaeum symbiosum, hosted by the
demosponge Axinella mexicana (Hallam et al., 2006). Recently,
additional genomes of archaeal symbionts have become available,
including those hosted by deep-sea and glass sponges (Tian et al.,
2016, 2017; Moitinho-Silva et al., 2017a; Moeller et al., 2019;
Zhang et al., 2019). Only a limited number of studies compared
the genomes of symbiotic and free-living Thaumarchaeota
(Moeller et al., 2019; Zhang et al., 2019). Moeller et al. (2019)
compared a metagenome-assembled thaumarchaeal genome
(MAG) from the sponge Ianthella basta to those of three
other sponge-associated and several free-living Thaumarchaeota.
Zhang et al. (2019) compared the MAGs of three sponge-
associated Nitrosopumilus species with those of their free-living
relatives. Both studies found that the sponge symbiont genomes
had elevated GC content. These symbiotic Thaumarchaeota are
likely mixotrophs, due to the presence of a branched-chain
amino acid transporter and are enriched in mechanisms for
defense against phages, such as restriction-modification systems.
Sponge-associated Thaumarchaeaota also encode eukaryotic-like
proteins, which are absent from free-living Thaumarchaeota,
that are assumed to be involved in interactions with the sponge
hosts (Moeller et al., 2019; Zhang et al., 2019). Here, we aim
to expand our knowledge of the genomic repertoire in sponge-
associated Thaumarchaeota. We analyzed three new MAGs
of sponge-associated Thaumarchaeota, together with the nine
previously reported sponge-associated archaea genomes, and
the high-quality (>95% completeness) genomes of twelve free-
living Thaumarchaeota.

MATERIALS AND METHODS

Sponge Sampling and DNA Isolation
Samples of the sponges Theonella swinhoei and Petrosia ficiformis
were collected by SCUBA from the Gulf of Aqaba, Red Sea
(29◦29′N 34◦54′E) at 25 m, Israel on July 31st, 2012 and the
Achziv nature marine reserve (33◦00′N 35◦02′E) at 20 m, Israel
on May 5th, 2013, respectively, and transported on ice to the
laboratory for further processing (T. swinhoei within 20 min to
IUI-Eilat and P. ficiformis within 2 h to University of Haifa,
respectively). Cortex tissue of P. ficiformis and both cortex and
endosome of T. swinhoei were used for microbial cell enrichment,
followed by DNA extraction. Microbial cell enrichment by a
series of filtration and centrifugation steps and DNA extraction
followed previously described methods (Thomas et al., 2010).

The asphalt-encrusting deep-sea demosponge Hymedesmia
(Stylopus) methanophila was collected using the ROV QUEST
4,000 m (Marum, Bremen) operated from the research vessel
Meteor during the M114-2 cruise to Campeche Knolls, Southern
Gulf of Mexico, in March 2015 (Rubin-Blum et al., 2019). The

Frontiers in Microbiology | www.frontiersin.org 2 January 2021 | Volume 11 | Article 622824

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-622824 January 16, 2021 Time: 10:0 # 3

Haber et al. Genome Analysis of Symbiotic Thaumarchaeota

specimen was collected from the Chapopote knoll (21◦54′ N;
93◦26′ W at 2,925 m. The collection site is described in detail
elsewhere (Sahling et al., 2016). Upon retrieval, the sponge
tissue was removed from the underlying asphalt with a scalpel,
fixed in RNAlater (Sigma R©, Steiheim, Germany) according to
the manufacturer’s instructions and stored at −80◦C. DNA was
extracted with the AllPrep DNA/RNA Mini Kit (Qiagen, Hilden,
Germany) following the manufacturer’s instructions.

Shotgun Sequencing, Assembly, and
Taxonomic Binning
T. swinhoei and P. ficiformis microbiomes were sequenced
using an Illumina HiSeq2000 platform (2 × 100 bp, paired-
end) at the Institute for Genomics and Systems Biology’s Next
Generation Sequencing Core (IGSB-NGS, ANL) at the University
of Chicago. Libraries were generated using the TruSeq DNA
standard protocol and pooled for sequencing using the Illumina
HiSeq2000 platform. 69 and 129 million 100 bp sequences
were generated from T. swinhoei and P. ficiformis, respectively.
Sequence quality was assessed and low-quality reads (q = 3) were
trimmed using the FASTX-Toolkit 0.0.13.21. Sequence data sets
were assembled de novo using IDBA-UD version 1.1.0 (Peng
et al., 2012) with a kmer range of 50–70, and a step size of 5,
following empirical tests. To assign contigs into genome bins,
genes on contigs ≥2 kb long were predicted using Prodigal
with the metagenome option (Hyatt et al., 2010, 2012). For
each contig, we determined the GC content, coverage, and the
taxonomic affiliation based on the best hit for each predicted
protein in the Uniref90 database (accessed September 2013;
Suzek et al., 2007) following UBLAST searches (usearch64; Edgar,
2010). Contigs were assigned to MAGs using these data, as
well as emergent self-organizing maps (ESOM) based analysis
of fragment tetranucleotide frequencies (Dick et al., 2009), as
detailed by Handley et al. (2013). Among the metagenome-
assembled genomes (MAGs) obtained from T. swinhoei was
one archaea genome containing 158 contigs and 1,859,711 bp
(coverage 65×). P. ficiformis contained two archaea genomes: one
with 108 contigs and 1,791,570 bp and a second one with 161
contigs and only 521,474 bp. These two genomes (labeled bin A
and B) were easily distinguishable based on their coverage (493×
vs. 38×).

Genomic DNA libraries for Hymedesmia (Stylopus)
methanophila were generated with the DNA library prep
kit for Illumina (BioLABS, Frankfurt am Main, Germany)
and sequenced on the Illumina HiSeq 2500 platform at the
Max Planck Genome Centre (Cologne, Germany). 12.5 million
250 bp paired-end metagenomic reads were generated, while
the remaining 15.5 million were generated as 150 bp paired-end
reads. The metagenome was assembled with IDBA-UD (Peng
et al., 2012) following decontamination, quality filtering (Q = 2)
and adapter-trimming of the reads with BBDuk tool from the
BBMap suite (Bushnell B)2. The archaeal MAG was binned based
on genome coverage, GC content and taxonomic affiliation with
genome-bin-tools (Seah and Gruber-Vodicka, 2015). The MAG

1http://hannonlab.cshl.edu/fastx_toolkit/
2http://sourceforge.net/projects/bbmap/

was reassembled with Spades V3.10 (Bankevich et al., 2012)
using a maximum k-mer length of 127, following re-mapping
of Illumina reads to the bins using BBMap with 0.98 minimum
identity. Contigs of <2 kbp were removed and the resulting bin
was used in the analysis. Hereafter, we refer to this MAG as Ca.
Nitrosopumilus sp. ESC.

Genome Dataset
In addition to the three sponge-associated archaeal genomes
generated in this study, 20 previously published genomes were
downloaded from NCBI and IMG for comparisons. These
included 8 sponge symbiont genomes: Crenarchaeum symbiosum
A (Hallam et al., 2006), Ca. Nitrosopumilus sp. LS AOA (Tian
et al., 2016), Ca. Nitrosopumilus sp. Nsub (Tian et al., 2017) the
most complete genome of each of Ca. Nitrosopumilus hexadellus,
Ca. Nitrosopumilus detritiferus, and Ca. Cenporiarchaeum
stylissum (Zhang et al., 2019), Ca. Nitrosopumilus cymbastelus
(Moitinho-Silva et al., 2017a), Ca. Nitrosospongia ianthallae
(Moeller et al., 2019). In addition, 12 free-living Thaumarchaeota
genomes were retrieved that belong to the Nitrosopumilaceae
family (5 from marine sediment, 5 from marine pelagic, 2 from
soil) (see Supplementary Table S1 for details). The selection of
free-living genomes was based on passing an estimated genome
completeness threshold of >95% based on 46 single copy COGs
(see below for details of assessment).

Completeness Estimation, and
Functional Annotation
All 23 genomes were uploaded to RAST (Aziz et al., 2008;
Overbeek et al., 2014). Open reading frames (ORFs) were
identified with the classic RAST algorithm and SEED annotations
were obtained. Protein fasta files of predicted ORFs were
downloaded and protein domains (PFAM) (Finn et al., 2010)
and clusters of orthologous groups (COGs) (Tatusov et al.,
2003) were annotated through the WebMGA annotation tool
(Wu et al., 2011) with an e-value cutoff of 0.001. COGs were
identified by rpsblast 2.2.15 searches against the NCBI COG
database 2/2/2011. In the case of multiple COGs, only the best
hit was retained. COGs were assigned to COG classes according
to Galperin et al. (2015). PFAMs were assigned with hmmscan 3.0
and the Pfam database 24.0.

To select genomes for analysis, genome completeness was first
determined by comparing the annotated COGs to a list of 53
essential single-copy COGs previously described to be present in
all archaea (Puigbò et al., 2009). After the exclusion of COG0455
that was absent in all analyzed Thaumarchaeota genomes, and
six COGs that were present in multiple copies in more than half
of the analyzed genomes (present in 17–28 genomes in multiple
copies), 46 COGs remained for completeness estimation. Only
one of these COGs was present more than once in two or more
genomes (5 times). Only sponge-associated Thaumarchaeota
genomes with >90% completeness (>41 of the 46 COGs present)
and free-living ones with >95% completeness (>43 COGs)
were used in the analyses. Of the four newly generated sponge
symbiont MAGs, three were retained. The rarer archaeal MAG
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(bin B) from P. ficiformis contained only 19 of the 46 single-
copy COGs (41.3% completeness) and thus was excluded from
further analysis. For the selected genomes, we then assessed
genome completeness and contamination using CheckM (Parks
et al., 2015). Completeness results of both methods are reported
in the Supplementary Table S1 and details for the 46 COGs in
Supplementary Table S2.

Comparative Genomic Analyses
COG annotations of MAGs were compared to identify functions
specific to symbiotic and free-living Thaumarchaeota. To
test for significant differences in COG and COG class
relative abundances between free-living and sponge-associated
Thaumarchaeota we used a two-tailed t-test implemented in
STAMP v.2.1.3 (Parks et al., 2014). P-values were corrected using
false discovery rate corrections according to Benjamin-Hochberg.
COGs associated with multiple classes were added to each of the
classes. COGs and COG classes with corrected p-values <0.05
were considered enriched. We determined enrichment in specific
groups of COGs and Pfams with similar functions were tested in
the same way using a two-tailed t-test and FDR correction.

Taxonomic Classification and
Phylogenetic Analyses
A phylogenomic tree for the dataset of 11 symbiotic archaeal,
12 free-living archaeal and 4 outgroup genomes was based
182 single copy marker genes and constructed as follows: A
concatenated alignment of protein sequences was generated
using PhyloPhlAn2 (Segata et al., 2013). The alignment was
then used to infer maximum-likelihood trees with RAxML
(Stamatakis, 2014) with the PROTCATLG model of evolution
and 1000 bootstrap replications. The best tree was visualized with
iTOL (Letunic and Bork, 2019).

Near full-length 16S rRNA gene sequences were obtained from
the RAST annotated genomes of the free-living and sponge-
associated archaea, except bin A from P. ficiformis, which
contained a 64 bp fragment at the end of a contig. We generated a
targeted small subunit rRNA gene assembly from the P. ficiformis
metagenome using EMIRGE (Miller et al., 2011) and a 16S
rRNA gene clone library from the same DNA as used for
the metagenome (see Supplementary Material for details). The
resulting 11 sequences were used in the phylogenetic analyses.

These sequences were analyzed together with representative
sequences of five previously established sponge-specific
Thaumarchaeota clusters and the closest related non-host
associated sequences [SC174-178 from Simister et al. (2012)
as well as the closest environmental sequences for the sponge
symbionts as determined by BLAST search (Altschul et al.,
1990)]. The 16S rRNA gene sequences of three group I.1b
thaumarchaota (Ca. Nitrosphaera gargensis Ga92, Ca. N.
evergladensis SR1, and Ca. N. viennensis EN76) were used as
outgroup. Sequences were aligned with the SINA aligner version
1.2.11 (Pruesse et al., 2012) and the resulting alignment was
manually improved. A maximum likelihood tree was calculated
in MEGA X (Kumar et al., 2018) using the Kimura-2-parameter

substitution model with a portion of invariant sites and a gamma-
shaped distribution of mutation rates, which was the best model
for the data according to model test implemented in MEGA
X. Sites with >5% ambiguous or missing data were omitted.
The best tree was found using a heuristic search with the NNI
algorithm starting from an initial Neighbor-Joining tree. The
robustness of the tree was tested using 500 bootstraps replicates.

All genomes were also classified with GTDB-Tk v0.3.2 (Parks
et al., 2018) with the default parameter classify_wf to determine
the taxonomy of the genomes.

The Relative Abundance of
Thaumarchaeal Symbionts in Different
Sponge Species
To analyze the abundance of the symbiotic Thaumarchaeota
in diverse sponge species from around the world, we searched
the Sponge Microbiome Project (SMP) (Thomas et al., 2016;
Moitinho-Silva et al., 2017b) part of the Earth Microbiome
Project (EMP3). The project contains 16S rRNA gene amplicon
data from the hypervariable V4 region. We used the 16S rRNA
gene sequences from the MAGs as a query for BLASTn 2.2.30 +
(Altschul et al., 1990). Sequences matching our genomes with
alignment length ≥95 bp and a maximum of 1 mismatch (99%
similarity) were used to determine the relative abundance of the
symbiotic Thaumarchaeota among the SMP samples. Sequences
with relative abundances below 0.1% in the samples were not
used in the analysis. The binomial (presence/absence) p-values
enrichment (Moitinho-Silva et al., 2017b) among various sponge
species and environmental samples were calculated and corrected
as described previously (Burgsdorf et al., 2019). p-values were
corrected for multiple testing using the p.adjust() R function and
the false-discovery (FDR) correction. Samples with corrected p-
values of ≤0.05 were considered enriched. Only environmental
samples and sponge species with at least three replicates were
included in the analysis. Only samples from sponges collected
directly from their habitat were included. Samples of unhealthy or
manipulated sponges and samples with unclear taxonomy (e.g.,
“Porifera”) were excluded. The final dataset included 2,131 tissue
samples from of 180 sponge species, collected in 33 countries, as
well as 305 seawater and 54 marine sediment samples. Boxplots
were created using the ggplot2 package in Rstudio.

In addition, we mapped reads from 55 sponge metagenomes
obtained 13 sponge species against the genomes of the sponge-
associated Thaumarchaeota. All but six metagenomes were
quality trimmed (quality threshold 20) with the reformat
tool from the BBtools package4. Of the remaining six,
three metagenomes (IMG accession numbers 3300003175,
3300003251, 3300003254) were quality trimmed as described in
Burgsdorf et al. (2015) and the other three (SAMN11333419,
SAMN11333441, SAMN12828169) according to Burgsdorf
et al. (2019). The quality-filtered and -trimmed reads were
mapped against the genome sequences of the sponge-associated
Thaumarchaeota using bbmap tool v 37.62 from the BBtools

3www.earthmicrobiome.org
4https://jgi.doe.gov/data-and-tools/bbtools/
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package with default kmer length of 13 and minimum percentage
identity cutoff of 95%.

Data Deposition
Metagenomes of T. swinhoei and P. ficiformis were submitted to
the Integrated Microbial Genomes (IMG) database (Markowitz
et al., 2012)5 and are accessible via the accession numbers
3300003175 and 3300003254, respectively. The draft genomes
of Thaumarchaeon TS and Ca. Nitrosopumilus sp. Pfa have
been deposited in GenBank under JAEFDA000000000 and
JAEFCZ000000000 accession numbers, respectively. The
metagenome of Hymedesmia (Stylopus) methanophila and the
draft genome of its thaumarchaeal symbiont were deposited in
GenBank under the project number PRJNA475438. 16S rRNA
sequences from the clone library of P. ficiformis were deposited
under accession numbers MT876199-MT876208.

RESULTS AND DISCUSSION

General Genomic Information
The estimated genome completeness based on CheckM ranged
from 75.6 to 87.5% with 1.2–8.9% potential contamination for
the sponge-associated and 84.6–88.9% with 3.0–9.5% potential
contamination for the analyzed free-living Thaumarchaeota
genomes (Supplementary Table S1). Estimated genome sizes
and the number of predicted genes did not differ significantly
between genomes from the sponge-associated and free-living
archaea (two-tailed t-tests, p > 0.05). This is in-line with the
general observation that genome reduction in symbiotic archaea
is not seen or at least not to the same extent as in symbiotic
bacteria (Kellner et al., 2018).

One of the few previously identified general patterns for
sponge-associated archaeal genomes is a higher GC content
compared to free-living Thaumarchaeota (Moeller et al., 2019;
Zhang et al., 2019). Our analysis confirmed the overall higher
%GC of the symbiotic Thaumarchaeota but also indicated that
this pattern is not universal. Apart from the soil-associated
Nitrosotenius chungbukensis MY2, which had a relatively high
GC content (41.8%), the GC content of the analyzed free-
living Thaumarchaeota ranged from 32.5 to 34.2%. Seven of the
eleven sponge-associated had GC content between 47 and 67%,
the exception being Ca. Nitrosopumilus cymbastelus (38.4%)
and all three deep-sea sponge symbionts (31.4–33.3%). As the
GC content is shaped both by phylogeny and the environment
(Reichenberger et al., 2015), the Thaumarchaeota with elevated
GC content are likely true symbionts and were not transient as
a result of the filter feeding of the sponge host. The inclusion
of the here generated genome of the thaumarchaeal symbiont
from the deep-sea sponge Hymedesmia (Stylopus) methanophila
suggests that low GC content is a general feature among deep-sea
sponge-associated Thaumarchaeota. This is further supported by
the recently published thaumarchaeal genomes from the deep-sea
glass sponge Vazella pourtalesii, which had GC content between

5https://img.jgi.doe.gov/cgi-bin/mer/main.cgi

31.8 and 40.4% (Bayer et al., 2020). The general features of the
analyzed genomes are summarized in Supplementary Table S1.

Taxonomic Identity and Phylogeny
GTDB-tk placed the genomes generated from P. ficiformis and H.
(S.) methanophila as new species within the genus Nitrosopumilus
with an average nucleotide identity (ANI) of <88% to the closest
species in GTDB (Supplementary Table S3). Their placement
within the Nitrosopumilus genus was supported by the 16S rRNA
gene tree (Supplementary Figure S1) and the phylogenomic tree
(Figure 1). In the 16S rRNA gene tree, all P. ficiformis derived
sequences grouped together. Hence, we refer to the two novel
genomes as Ca. Nitrosopumilus sp. PfA and ESC, respectively.
They join five previously available sponge-associated genomes
in the Nitrosopumilus genus. The third new symbiont genome,
obtained from T. swinhoei, had an ANI of 76.6% to the closest
match in GTDB, the sponge symbiont Cenarchaeum symbiosum.
It was assigned as new species within the Cenarchaeum genus by
the GTDB-tk classification algorithm but a new genus by pplacer
taxonomy (Supplementary Table S3). Given this inconsistency,
the fact that the genus Cenarchaeum is represented by just
one species, and that our MAG from T. swinhoei did not
group in a well-supported clade with C. symbiosum neither
in the phylogenomic nor the 16S rRNA tree, we refrained
from assigning taxonomy to our MAG and refer to it as
Thaumarchaeon TS.

None of the three novel genomes were part of previously
identified sponge-specific clusters (Simister et al., 2012) in the
16S rRNA gene tree. Of the previously available genomes, Ca.
Nitrosopongia ianthellae, Ca. Nitrosopumilus hexadellus B06
and Ca. Nitrosopumilus detritiferus H13 might be part of
the sponge-specific cluster (SC) 174 and Ca. Cenporiarchaeum
stylissum S13 of SC176. These results are in line with previous
reports (Moeller et al., 2019; Zhang et al., 2019) and indicate
a high degree of specificity of their association with sponges.
A major difference between the 16S rRNA tree and the
phylogenomic tree was the placement of the clade containing Ca.
Nitrosopumilus hexadellus B06, Ca. Nitrosopumilus detritiferus
H13, and Ca. Nitrosospongia ianthellae. The taxonomy algorithm
of GTDB-tk placed the former two within Nitrosopumilus and
the latter outside of it (see Supplementary Table S3). In the
16S rRNA tree they all grouped within the Nitrosopumilus genus,
while in the phylogenomic tree they grouped outside of the clade
containing the Nitrosopumilus and Nitrosoarchaeum genera, a
placement consistent with previous analysis (see Supplementary
Figure S1B in Zhang et al., 2019).

Distribution of Thaumarchaeal
Symbionts in Sponge and Environmental
Samples
To investigate how widespread the analyzed thaumarchaeal
symbionts are in sponges, we used their 16S rRNA sequences
as queries for BLAST searches against the Sponge Microbiome
Project (SMP), an amplicon database of the V4 region of the 16S
rRNA gene from >3,500 sponge specimen collected worldwide
as well as seawater and sediment samples collected next to the
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FIGURE 1 | Phylogenomic tree of free-living and sponge-associated Thaumarchaeota. Origin is indicated by font color. Genomes obtained in this study are indicated
by an orange star. The tree was calculated using maximum likelihood with the PROTCATLG model of evolution and is based on 182 single copy marker genes (see
“Materials and Methods” section for details). Branch colors indicate bootstrap support based on 1,000 repetitions: orange 87–89%, red > 97%. The tree was rooted
with Ca. Caldiarchaeum subterraneaum (black branch).

sponges (Moitinho-Silva et al., 2017b). The symbionts displayed
different specificity ranging from generalists (found in a wide
range of sponge species and environmental samples) to specialists
(which live in obligate association with a small number of
sponge species).

Ca. Nitrosopumilus sp. PfA, Nsub and LS AOA (which have
an identical 16S rRNA gene sequence in the V4 region used in
the SMP) as well as Ca. Nitrosopumilus sp. ESC and Ca. N.
hexadellus B06 are considered by us to be generalists. They were
significantly associated with 23 sponge species (average relative
abundance ranging from 0.2 to 20.7%) and were also found in
marine sediment samples (0.5%) (Binominal test, FDR-corrected
p-value <0.1) (Figure 2A and Supplementary Table S4). We
likely underestimated their distribution due to the limited power
of the statistical test (e.g., presence in 3 of 3 sponge samples
was not significant). Given that the Nitrosopumilus species are
highly related to each other, this wide-spread distribution is
not surprising. To further differentiate them from one another,
we performed a read recruitment analyses using 55 sponge
metagenomes from 13 sponge species. Ca. Nitrosopumilus sp.
PfA, Nsub and LS AOA clearly differed in this analysis, as
most reads were recruited from sponge metagenomes of the
host species (Supplementary Table S5). However, they were also
detected in other sponge species albeit at a lower level (e.g.,

one to two orders of magnitude less than in their host sponge)
confirming a broad distribution.

Even with the low resolution of the short sequences present
in the SMP, we were able to detect an effect of biogeography
on the abundance of Ca. Nitrosopumilus sp. PfA (Figure 2B).
It was most abundant in samples from Israel (average relative
abundance 7.1%), from where its genome was recovered
(Supplementary Table S6). Its abundance was lower in samples
from Portugal (average relative abundance 1.2%), Spain (2.1%),
France (0.4%), Italy (0.3%) and Greece (3.2%). The recruitment
analysis of the whole genome supports this trend as Ca.
Nitrosopumilus sp. PfA recruited a higher proportion of reads
from metagenomes of sponge specimens collected from Israel
than from a Greek specimen (Supplementary Table S6). This is
in line with the previous observation that the whole microbial
community associated with its host sponge P. ficiformis is heavily
influenced by biogeography (Burgsdorf et al., 2014).

The other six symbionts (Ca. Cenporiarchaeum styllisum
S13, Ca. Nitrosospongia ianthaella, Cenarchaeum symbiosum A,
Thaumarchaeon TS, Ca. Nitrosopumilus detritiferus H13, Ca.
Nitrosopumilus cymbastellus) were significantly associated with
up to 13 sponge species and not with environmental samples
(Supplementary Table S4). They also recruited only a small
proportion of reads from most sponge metagenomes apart
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FIGURE 2 | Distribution of Ca. Nitrosopumilus sp. PfA.: (A) Sponge species and environmental samples with significant association. (B) Presence in samples of host
sponge Petrosia ficiformis from different locations.

from their host sponge (Supplementary Table S5). Hence, we
regard them as specialists. The degree of specificity varied: Ca.
Nitrosopumilus detritiferus H13 and Cenarchaeum symbiosum
A were not significantly associated with any sponge species

indicating that they are highly specific symbionts of their
host sponges, Hexadella cf. dedritifera and Axinella mexicana,
respectively. Both sponge species were not present in the SMP
dataset. Host phylogeny had a clear effect on the distribution
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of Ca. Cenporiarchaeum styllisum S13 and Ca. Nitrosospongia
ianthaella. The former was only significantly associated with
sponges of the Agelasida C6 clade [Figure 2A in Morrow et al.
(2012) shows the phylogeny of some of these host sponge
species], while the latter was significantly associated only with
Ianthella basta (22.3%), from which it was recovered, and another
Verongiida sponge (16.3%) (Supplementary Table S4).

The differentiation between specialist and generalist did not
correlate with the symbiont taxonomy as Ca. N. detritiferus H13
is highly specific to its host, while the closely related Ca. N. sp.
hexadellus B06 is a generalist. However, it is possible that Ca.
N. detritiferus H13 was not found in any sample due to the
strict thresholds in our analysis and may be present in very low
abundance in other sponges.

Carbon and Nitrogen Metabolism
Except for a recently discovered basal lineage (Aylward and
Santoro, 2020), Thaumarchaeota can fix carbon via the highly
energy-efficient 3-hydroxypropionate/4-hydroxybutyrate
pathway (Könneke et al., 2014; Baker et al., 2020). The
pathway was present in all Thaumarchaeota genomes
analyzed here (Supplementary Table S8). Therefore, symbiotic
Thaumarchaeota could potentially contribute to the sponge’s
carbon demands by transferring fixed carbon to the host.

Thaumarchaeota are also well known for their ability to
perform ammonia oxidation (Baker et al., 2020). All genomes
contained an ammonia transporter and all, but one had amoA,
amoB and amoC genes (Supplementary Table S11). Only the
newly obtained genome of Thaumarchaeon TS lacked amoC.
The amoA gene and a hypothetical gene (amoX) of the
ammonia monooxidase gene cluster were found at the end
of one contig and a potential amoB at the end of another
contig. Assuming the same gene synteny (amoA-amoX-amoC-
amoB) as in most Nitrosopumilaceae (Park et al., 2014), this
suggests that amoC was not assembled, and Thaumarchaeon TS
is likely able to oxidize ammonia. Previous metatranscriptomic
and -proteomic studies reported that ammonia oxidation and
ammonia transporter genes are expressed in sponges (Liu
et al., 2012; Radax et al., 2012b; Moitinho-Silva et al., 2017a;
Moeller et al., 2019). Hence, Thaumarchaeota symbionts are
likely involved in the removal of ammonia, a waste product of
their sponge hosts (Jiménez and Ribes, 2007; Bayer et al., 2008;
Hoffmann et al., 2009; Morley et al., 2016).

Some sponges excrete urea as a nitrogenous waste product
(Morley et al., 2016). Eight sponge symbionts (and 3 free-living
Thaumarchaeota) had a complete set of urease genes including
a potential regulator and thus have the potential to produce
ammonia from urea. Most of them encoded a transporter of
the sodium:solute symporter family, which likely works as urea
transporter in Thaumarchaeota (Offre et al., 2014; Carini et al.,
2018). A cultured free-living Thaumarchaeota encoding the
urease gene cluster was previously shown to grow on urea as
a sole form of energy and nitrogen (Carini et al., 2018). Hence
the eight sponge symbionts studied here might be able to live off
sponge-derived urea as sole energy and nitrogen source.

Ammonia can also be obtained from other sources such as
cyanate, creatinine, and aspartate. None of the genomes analyzed

here encoded a cyanase, which catalyzes the reaction from
cyanate to ammonia. However, as previously reported for some
sponge-associated Thaumarchaeota (Moitinho-Silva et al., 2017a;
Moeller et al., 2019), we found that all encoded a creatinine
amidohydrolase (annotated either by COG1402 or PF02633).
This likely enables the sponge symbionts to produce creatine
from sponge-derived creatinine. In contrast to previous reports
(Moitinho-Silva et al., 2017a; Moeller et al., 2019), we found
a potential creatinase domain in all genomes, based on PFAM
annotations (PF01321) and BLAST searches. Creatinase converts
creatine into urea and sarcosine. In addition, most genomes
also had a Xaa-Pro aminopeptidase (COG0006), which has
been hypothesized to work as a functional analog to creatinase
(Moitinho-Silva et al., 2017a). Eight sponge symbionts and three
free-living Thaumarchaeota could potentially use the resulting
urea to produce ammonia (Figure 3). The alternative pathway
of creatinine degradation to sarcosine and ammonia via cytosine
deaminase (COG0402), N-methylhydantoinase (COG0145), and
N-carbamoylsarcosine amidase (PF00857) appeared to be
incomplete in all but one genome. Cytosine deaminase
(COG0402) was only missing from the sponge symbiont
Thaumarchaeon TS. N-methylhydantoinase (COG0145) was
present in three sponge-associated genomes and eight free-living
ones. Two genomes (Thaumarchaeon TS, Ca. Nitrosopumilus
sediminis AR2) had urease genes as well, giving them potentially
two different routes from creatinine to ammonia. All other
genomes with COG0145 lacked urease genes, while the deep-
sea sponge symbiont Ca. Nitrosopumilus sp. LS AOA lacked
both COG0145 and urease genes. N-carbamoylsarcosine amidase
(PF00857 part of the isochorismatase family), which catalyzes
the conversion to sarcosine, was only present in the sediment-
dwelling Ca. Nitrosopumilus sediminis AR2. It is possible that
other Thaumarchaeota use an alternative enzyme that has not
been annotated. All but one genome encoded aspartate-ammonia
lyase, which lyses L-aspartate to fumarate and ammonium
(COG1027), suggesting the ability to produce ammonium from
aspartate. Hence, we conclude that sponge symbionts have several
ways to obtain ammonia for oxidation and energy production
(Figure 3).

For the sponge-associated Thaumarchaeota, nitrogen
availability is likely stable, based on the low copy numbers of
nitrogen regulatory protein P-II-encoding genes (PF00543) in
Cenarchaeum symbiosum and Ca. Nitrosospongia ianthallae
(Moeller et al., 2019). Our analysis indicated that this seems
to be true for most sponges and their symbionts. The nitrogen
regulatory protein P-II and a negative transcriptional regulator
of the NmrA-like family (PF05368) were both more common
in the free-living Thaumarchaeota than the sponge-associated
ones (Supplementary Table S11). An exception was the newly
obtained genome of Ca. Nitrosopumilus sp. Pfa from the
sponge P. ficiformis. This genome had 6 and 3 copies of the
two regulators, respectively, which was in the range of free-
living Thaumarchaeota. While P. ficiformis is a high microbial
abundance sponge (Vacelet and Donadey, 1977; Gloeckner
et al., 2014), indicating a dense associated microbial symbiont
community, it obtains its symbionts by horizontal transfer
(Maldonado and Riesgo, 2009). Therefore, its symbionts likely
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FIGURE 3 | Pathways for generating ammonia in the sponge-associated and free-living Thaumarchaeota. Boxes indicate proteins or pathways. Numbers inside
colored boxes represent number of genomes found with the pathway or protein. The maximum number of sponge-associated and free-living MAGs is 11 and 12,
respectively. THF, tetrahydrofolate.

need to survive outside of the sponge. This could explain why
its thaumarchaeal symbiont needs more genes for nitrogen
metabolism regulation than the symbionts of other sponge hosts.

Marine planktonic Thaumarchaeota are mixotrophs that
can take up organic nitrogen and carbon (Ouverney and
Fuhrman, 2000; Herndl et al., 2005; Kirchman et al., 2007).
However, recent experimental data suggest that most assimilate
only the nitrogen from amino acids rather than assimilating
the complete amino acid (Dekas et al., 2019). As expected,
we found ABC-type transporters for di- and oligopeptides
(based on COG annotations). An amino acid transporter
(COG0531) was almost exclusively limited to the free-living
Thaumarchaeota. In contrast, an ABC-type branch-chained
amino acid transport system was found in ten of the 11 sponge-
associated Thaumarchaeota and absent from the genomes
analyzed here of free-living Thaumarchaeota. Given that this
transporter type can have a wide range of substrates (Hosie et al.,
2002), we do not know which amino acids are taken up by the
sponge symbionts. Branch-chained amino acid transporters are
expressed in the sponge host based on metatranscriptome and
-proteome data (Liu et al., 2012; Moitinho-Silva et al., 2017a;
Moeller et al., 2019). They can also be found in the genomes of
bacterial sponge symbionts (Gauthier et al., 2016). The expression
of thaumarchaeal branched-chain amino acid transporters in
the sponge host could indicate a mixotrophic lifestyle of its
thaumarchaeal symbionts as previously suggested (Moeller et al.,
2019), but experiments are necessary to determine if also the
carbon is taken up and not only the amino group as shown for
free-living Thaumarchaeota (Dekas et al., 2019).

Vitamin Production
Microbial symbionts of animals are important contributors to
their hosts’ metabolism through the production of essential

nutrients such as vitamins and cofactors (Moya et al., 2008).
Free-living marine Thaumarchaeota are known as vitamin B12
producers (Doxey et al., 2015; Heal et al., 2017). Analysis
of the microbial community of the sponge Ircinia ramosa
identified Thaumarchaeota symbionts as producers of riboflavin
(vitamin B2), biotin (vitamin B7), and cobalamin (vitamin B12)
(Engelberts et al., 2020). Using the SEED annotations, we found
that all 23 Thaumarchaeota analyzed, including the sponge
symbionts, have the genetic potential to synthesize pyridoxin (B6)
and coenzyme F420. Most sponge-associated Thaumarchaeota
could also synthesize the vitamins B1, B2, B7, and B12
(Supplementary Table S12). Two symbionts lacked genes for the
synthesis of these vitamins. Ca. Cenporiarchaeum stylissum S13
lacked a single gene in the biosynthetic pathways of vitamin B1
and B7, and 5 genes for vitamin B12 synthesis. As it is the least
complete genome, we cannot rule out the possibility that it can
produce these vitamins. The newly obtained Thaumarchaeon TS
lacked two genes for vitamin B2 synthesis, which likewise might
be due to incompleteness. Sponge-associated Thaumarchaeota
have, therefore, the genetic potential to provide vitamins to their
host and its microbial community.

Functional Differences Between
Sponge-Associated and Free-Living
Thaumarchaeota
Overall, we identified 1394 COGs from 24 classes in the analyzed
genomes. 156 COGs were only found in free-living and 191
only in sponge-associated genomes (Supplementary Table S7).
Most of the COGs specific to sponge symbionts (88%) were
only present in one (132 COGs) or two (36 COGs) genomes.
None of these symbiont specific COGs was present in all
sponge-associated Thaumarchaeota genomes. A similar trend
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was found in the free-living Thaumarchaeota with 78% of the
free-living specific COGs being present only in one or two
genomes and none present in all (Figure 4A).

Sponge-associated genomes were significantly enriched in the
COG classes “Replication, recombination & repair,” “Nucleotide
transport & metabolism,” “Amino acid transport & metabolism,”
“Translation, ribosomal structure & biogenesis,” and significantly
depleted in the class “Cell wall/membrane/envelope biogenesis”
(t-test, two-tailed, FDR-Benjamin-Hochberg corrected p-values
<0.05) (Figure 4B). Some of these differences (e.g., the
enrichment in “Replication, recombination & repair” and
reduction in “Cell wall/membrane/envelope biogenesis”) fit
earlier reports from sponge metagenomes (Thomas et al., 2010)
and bacterial symbionts (Burgsdorf et al., 2015).

10 COGs were significantly different distributed between
sponge symbionts and free-living Thaumarchaeota (t-test,
FDR corrected p-value <0.05) (Figure 4C). The four COGs
(COG0410, COG0411, COG0559, COG4177) of the sponge-
specific ABC branched-chain amino acid transporter were the
only COGs significantly enriched in sponge symbionts. The
only sponge symbiont without any part of this transporter
was Ca. Nitrosopumilus sp. Nsub. The six COGs significantly
enriched in free-living Thaumarchaeota included the above-
mentioned amino acid transporter (COG0531), which was
present in 11 of 12 free-living Thaumarchaeota in 1 to 3
copies and among sponge-associated Thaumarchaeota only
in Ca. Nitrosopumilus cymbastellus in a single copy. Another
transporter limited to most free-living Thaumarchaeota
was COG1814, a predicted Fe2+/Mn2+ transporter of the
VIT1/CCC1 family. It was present in 9 of the 12 analyzed
free-living Thaumarchaeota genomes (1–2 copies). Other COGs
enriched in the free-living Thaumarchaeota included two COGs
of class M Cell wall/membrane/envelope biogenesis, COG0451
(a nucleoside-diphosphate-sugar epimerase) and COG3264 (a
small-conductance mechanosensitive channel). The former was
present in 0–5 copies in sponge symbionts compared to 2–12
copies in free-living ones, whereas the latter had 1 copy in sponge
symbionts and 2–3 copies in the free-living ones except for the
two pelagic Pacific Ocean Thaumarchaeota, which also had a
single copy. Finally, COG2860 and COG3272, for which no
function is known (class S), were both enriched in the free-living
Thaumarchaeota (Supplementary Table S8).

Proteins Involved in Host-Symbiont
Interactions
Eukaryotic like protein (ELP) domains in the genomes of
sponge symbionts have been suggested to be important for the
interaction between the symbiont and their hosts (Fan et al.,
2012; Hentschel et al., 2012; Reynolds and Thomas, 2016).
ELP domains such as ankyrin repeats and tetratricopeptide
(TPR) repeats are often enriched in sponge-associated bacteria
and sponge metagenomes (e.g., Fan et al., 2012; Burgsdorf
et al., 2015). Hence, we investigated if there are ELPs that
are enriched in sponge-associated Thaumarchaeota and if
there are ELPs that are only present in sponge-associated
Thaumarchaeota. We found no common distribution pattern

of ELPs in the sponge symbionts. The distribution of several
known and some new ELP candidates appeared to be highly
specific. ELPs that were exclusively found in sponge-associated
Thaumarchaeota, were encoded in up to three sponge symbiont
genomes (Supplementary Table S11). Ankyrin repeats, known
to be enriched in various sponge-associated bacterial symbionts
and sponge metagenomes (Fan et al., 2012; Burgsdorf et al.,
2015) and shown to alter phagocytosis of amoeba (Nguyen
et al., 2014), were only present in Ca. Nitrosopumilus sp. ESC.
Other ELP domains previously shown to be enriched in sponge
metagenomes (Fan et al., 2012) included leucine-rich repeat
DUF285 and PQQ enzyme repeats. These were only present in
2 and 1 thaumarchaeal symbiont genomes, respectively, with
the leucine-rich repeat found in two of the novel genomes. We
also identified four ELP domains specific to sponge-associated
Thaumarchaeota that have not been previously reported from
bacterial sponge symbionts. These were the CUB-domain, the
EPTP domain, pentatricopeptide repeats (PPR), and annexin.
The deep-sea sponge symbionts Ca. Nitrosopumilus sp. ESC
and LS AOA encoded a protein with a CUB domain. CUB-
like domains are widely occurring structural motifs that in
eukaryotes are found almost exclusively in extracellular and
plasma membrane-associated proteins. They are involved in a
wide range of biological functions, including cell signaling, axon
guidance and receptor-mediated endocytosis, and are generally
involved in the recognition of substrates and binding partners
(Blanc et al., 2007). In the T. swinhoei symbiont MAG, we
identified a genomic sequence that encodes an EPTP domain,
which occurs in eukaryotic receptors and secreted proteins
(Staub et al., 2002). PPR domains, structurally similar to ELP
tetratricopeptide repeats that are well known from bacterial
sponge symbionts (e.g., Fan et al., 2012; Burgsdorf et al.,
2015), were encoded by Ca. Nitrosopumilus detritiferus H13
and Ca. Nitrosopumilus cymbastellus. PPRs are common in
plant genomes. They play essential roles in posttranscriptional
processes in mitochondria and chloroplasts (Lurin et al., 2004).
Annexin, which is involved in the endocytosis and exocytosis of
vesicles in eukaryotes (Gerke and Moss, 1997), was encoded by
Ca. Nitrosopumilus cymbastellus.

Several other ELP domains were found in the genomes of
some sponge-associated Thaumarchaeota, but also present in
several free-living Thaumarchaeota. These included cadherins,
TPRs, NHL repeats, HYR domains, Ig domains, TIR domains
and WD40-like repeats (Supplementary Table S11). Fibronectin
type III, which was previously found to be enriched in sponge-
metagenomes (Fan et al., 2012) and the sponge cyanobacterial
symbiont Ca. Synechococcus feldmannii (Burgsdorf et al., 2019),
and von Willebrand factor type A domains did not show
any obvious abundance difference between sponge-associated
and free-living Thaumarchaeota. Laminin domains, which are
enriched in Poribacteria (Siegl et al., 2011), were present in
four sponge-associated Thaumarchaeota but were not enriched
compared to free-living Thaumarchaeota. Overall, ELPs are
likely to play a role in the recognition of sponge-associated
Thaumarchaeota as symbionts by their host sponge. In contrast
to their bacterial counterparts, we found high inter-species
variability in ELPs, such that each ELP was only shared among a
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FIGURE 4 | Differences in COGs between free-living (blue) and sponge-associated (green) Thaumarchaeota. (A) Distribution of free-living and sponge symbiont
specific COGs among genomes. The maximum for free-living Thaumarchaeota is 12 and for sponge-associated ones is 11 genomes. (B) COG classes with
significant differences in free-living vs. sponge symbiont genomes (t-test, FDR Benjamin-Hochberg corrected p-value <0.05). (C) Distribution of COGs with
significant differences (t-test, FDR Benjamin-Hochberg corrected p-value <0.05). COGs 0410, 0559, 4177, and 0411 are part of the branched chain amino acid
transporter. Free-living enriched COGs were related to an amino acid transporter (COG0531), a Fe2+/Mn2+ transporter (COG1814), a small-conductance
mechanosensitive channel (COG2364), a nucleoside-diphosphate-sugar epimerase (COG0451), an uncharacterized membrane protein (COG2860), and a protein of
unknown function (COG3272).
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FIGURE 5 | Heatmap summarizing functional differences in the genomic repertoire between sponge-associated (green) and free-living (blue) Thaumarchaeota.
Numbers indicate copies per MAG.

few genomes at most (Figure 5). This suggests Thaumarcheaota
employ diverse strategies for interacting with their hosts.

Another proposed way for bacterial sponge symbionts to
avoid digestion by their sponge host is the modification of the
O-antigen on the cell wall surface. The absence of rhamnose
in the sponge-associated cyanobacterium Ca. Synechococcus
spongiarum has been suggested to aid in the evasion of sponge-
phagocytosis and phage predation (Burgsdorf et al., 2015).
Thaumarchaeota have surface layer glycoproteins (Rodrigues-
Oliveira et al., 2017) and rhamnose can be part of these proteins in
archaea (Schäffer and Messner, 2004). Of the analyzed genomes,
eight sponge-associated thaumarchaeal genomes missed all
four COGs necessary for rhamnose biosynthesis (COG1898
dTDP-4-dehydrorhamnose 3,5-epimerase and related enzymes,
COG1091 dTDP-4-dehydrorhamnose reductase, COG1088
dTDP-D-glucose 4,6-dehydratase, COG1209 dTDP-glucose

pyrophosphorylase). The other three symbiont genomes (Ca.
Nitrosopumilus sp. LS AOA, Ca. Nitrosopumilus cymbastellus,
Ca. Nitrosospongia ianthellae) encoded two out of these four
COGs. Eleven of the 12 free-living Thaumarchaeota had at
least two of these COGs, with only Ca. Nitrosomarinus catalina
SPOT01 having none (Supplementary Table S8). Hence, the
modified surface layer glycoproteins might aid thaumarchaeal
symbionts to evade digestion by their host sponges as proposed
for Ca. Synechococcus spongiarum.

Another six Pfam annotated domains involved in outer
cell wall modifications were present only in one to three
symbiont genomes and absent from the genomes of free-
living Thaumarchaeota. The OmpA domain is known from
outer membrane proteins of Gram-negative bacteria. It is
necessary for pathogenesis in E. coli and can interact with
host receptor molecules (Selvaraj et al., 2007). FemAB domains
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are involved in cell wall synthesis and mutations in them
decrease antibiotic resistance in Streptococcus strains (Rohrer
and Berger-Bächi, 2003). The PEGA domain has been previously
found in archaea and is structurally similar to surface-layer
proteins (Adindla et al., 2004). Likewise, the LVIVD domain,
which was found in three sponge symbionts (Figure 5), especially
Thaumarchaeon TS, is a component of bacterial and archaeal
surface proteins (Adindla et al., 2004). Two other sponge-
specific domain annotations involved in cell wall modifications
are related to bacterial O-antigen modifications and might have
similar roles in archaeal surface layer proteins. The O-antigen
polysaccharide polymerase Wzy links O-units via a glycosidic
linage to form a long O-antigen. WbqC-like proteins might be
involved in O-antigen production in bacteria. Finally, we found
cache domain (3 Pfams, two sponge-specific) to be enriched in
some sponge-associated archaea. Cache domains are extracellular
domains likely having a role in small-molecule recognition and
might be potential chemotaxis receptors (Anantharaman and
Aravind, 2000). Given that the six sponge symbiont-specific
domains and the enriched cache domains are on the cell surface,
they are potential candidates for specific recognition between the
sponge-associated Thaumarchaeota and their host sponges and
thus might help the symbiont avoid digestion by its host.

Sponge-associated MAGs also encoded proteins that can
potentially modulate the host metabolism and the immune
system. Seven of the 11 sponge symbionts and none of the
free-living Thaumarchaeota had proteins with a FIC domain
(PF02661) (Figure 5). This domain family is widespread
in bacteria and has multiple functions including the toxin
component of toxin-antitoxin systems. In pathogenic bacteria,
the FIC domain bearing toxins can divert host cell processes
(Veyron et al., 2018). The FIC domain was overrepresented
in sponge metagenomes compared to seawater metagenomes
(Fan et al., 2012). Previous work identified 15 genes in Ca.
Nitrosospongia ianthellae encoding serpin domains (Moeller
et al., 2019). Serpins belong to a class of irreversible substrate
inhibitors of proteases, often of the serine class. Here, we
show that the domain was also present in the genomes of
the sponge symbionts Cenarchaeum symbiosum (5 copies), Ca.
Nitrosopumilus cymbastellus (5 copies), Thaumarchaeon TS (1
copy), Ca. Nitrosopumilus sp. Nsub (1 copy), while among free-
living Thaumarchaeota, only the soil-inhabiting Nitrosotenuis
chungkubensis MY2 had a single copy (Figure 5). Serine proteases
are found as part of the innate immune system in some
sponges (Riesgo et al., 2014) and are known activators of the
lectin complement pathway, a highly sophisticated host defense
system that detects, contains and kills pathogens (Iwaki et al.,
2011). In gut bacteria, serpins have been suggested to act as
protection against exogenous proteolysis (Ivanov et al., 2006).
Therefore, symbiotic Thaumarchaeota might use serpins as
protection against digestion by sponge amoebocytes, the “feeding
cells” of sponges, with which they must coexist within the
sponge mesohyl matrix.

Defense Against Phages
Due to the high filtration activity of their host, sponge symbionts
are likely exposed to a vast number of phages (Hadas et al.,

2006; Jahn et al., 2019). Sponge metagenomes and genomes
of bacterial symbionts are often enriched in genes involved in
the defense against phages such as CRISPR-Cas, restriction-
modification systems, and toxin-antitoxin modules (Fan et al.,
2012; Horn et al., 2016; Podell et al., 2019). This does not
seem to be the case in sponge-associated Thaumarchaeota.
COG class V “Defense mechanisms” did not differ significantly
between the free-living and sponge-associated Thaumarchaeota
analyzed. While we found components of several toxin-
antitoxin modules, sponge-associated Thaumarchaeota genomes
were overall not enriched in toxin-antitoxin modules, when
compared to free-living Thaumarchaeota ones (irrespective
of whether COG or Pfam annotations were used, both two-
tailed t-test, p > 0.05) (Supplementary Tables S8, S11,
respectively). Some modules were present only in sponge-
associated Thaumarchaeota genomes. This included a
putative abortive infection system (AbiE family), which
has only recently been reported in archaea (Li et al., 2018)
(Supplementary Table S11). However, another domain, an
ATPase domain associated with the cellular activity (AAA)
(PF13304), which in some cases has been associated with
the Abi toxin, was found in all genomes in varying numbers
(Supplementary Table S11).

While bacterial sponge symbionts are often enriched in
CRISPR-associated genes compared to closely related free-
living bacteria (Fan et al., 2012; Horn et al., 2016), this
is not clear in sponge-associated Thaumarchaeota. Sponge-
associated Thaumarchaeota did not differ significantly from
free-living Thaumarchaeota in cas domains when using Pfam
annotations (two-tailed t-test, p = 0.31), but were enriched
in CRISPR-associated genes when using COG annotations
(two-tailed t-test, p = 0.047). Irrespective of COG or Pfam
annotation, all free-living Thaumarchaeota had between 0 and
2 CRISPR-associated genes except for Nitrosopumilus adriaticus
NF5, which had 4. The sponge-associated Thaumarchaeota
Ca. Nitrosopumilus sp. PfA, Ca. Nitrosopumilus sp. LS AOA,
Ca. Nitrosopumilus cymbastellus, and, depending if COG or
Pfam annotations were used either Cenarchaeum symbiosum or
Thaumarchaeon TS had 4–6 CRISPR-associated genes surpassing
most free-living Thaumarchaeota (Figure 5 and Supplementary
Tables S8, S11, respectively). Hence enrichment in CRISPR-
associated genes is present in some Thaumarchaeota, but not
as common as it appears to be for bacterial sponge symbionts
[but see recent work on Verrucomicrobia for an exception
(Sizikov et al., 2020)].

The DNA phosphorothioation system, which in archaea
likely works as a defense system against phage (Xiong et al.,
2019), appeared to be more prevalent in sponge-associated
than free-living Thaumarchaeota. In addition to the previously
reported presence in Ca. Nitrosospongia ianthellae and Ca.
Nitrosopumilus cymbastellus (Moeller et al., 2019), we found
at least one of dndB and dndE in the Thaumarchaeon TS
and in Ca. Cenporiarchaeum stylissum S13 MAGs. Only one
free-living Thaumarchaeota species, Ca. Nitrosomarinus catalina
SPOT01, encoded this system (Ahlgren et al., 2017). When
including the protein domains DUF262 (PF03235) and DUF1524
(PF07510), which have been previously found in dndB genes
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and identified as components of restriction-modification systems
(Makarova et al., 2011; Moeller et al., 2019), four more sponge
symbionts were found to have at least part of the system:
Cenarchaeum symbiosum, Ca. Nitrosopumilus sp. ESC, Ca.
Nitrosopumilus sp. LS AOA and Ca. Nitrosopumilus detritiferus
H13. Metagenome analyses showed that the DUF262 and
DUF1524 domains are enriched in sponge metagenomes (Fan
et al., 2012; Horn et al., 2016).

The sponge-associated Thaumarchaeota were also enriched in
restriction enzymes (two-tailed t-test, p = 0.006). Nine of the 19
different Pfam domains related to restriction enzymes were found
only in the sponge-associated Thaumarchaeota, whereas two
domains were specific to the free-living Thaumarchaeota. The
same significant difference was found when analyzing domains
of methylases and methyltransferase known to be involved in
restriction modifications systems (two-tailed t-test, p = 0.037).
Here three of nine domains were specific to sponge symbionts.
The number of domains of both elements of the restriction-
modification system was significantly correlated (Pearson’s r
0.7007, p < 0.001). The enrichment of restriction-modification
systems in some sponge-associated Thaumarchaeota was noted
previously (Moeller et al., 2019; Zhang et al., 2019). This
enrichment is also seen in bacterial members of sponge microbial
communities relative to free-living bacteria (Horn et al., 2016;
Slaby et al., 2017; Burgsdorf et al., 2019), which points to the
importance of phage defense mechanisms within the sponge host
for both these microbial domains.

Potential for Horizontal Gene Transfer
Many bacterial sponge symbionts are enriched in transposases
(Fan et al., 2012), which suggests enhanced horizontal gene
transfer between members of the sponge microbiome (Pita et al.,
2018). This does not seem to be the case for the majority of
sponge-associated Thaumarchaeota, as the mobilome COG class
X did not differ significantly between sponge-associated and
free-living Thaumarchaeota. However, 11 of the 14 transposases
(or inactive derivatives) annotated by COG and 13 out of
16 domains annotated by Pfam were restricted to the sponge
symbiont genomes. Sponge-associated Thaumarchaeota had a
larger variability in transposases ranging from 0 to 21 COGs
and 0 to 56 Pfam domains per genome, compared to only 0–
3 in genomes of free-living ones (with the exception of the
soil-inhabiting Nitrosotenius chungbukensis MY2) (Figure 5 and
Supplementary Tables S8, S11). Based on COG annotations,
the three newly analyzed genomes and Ca. Nitrosopumilus
cymbastellus had more transposases than their marine free-
living counterparts ranging from 5 COG annotated transposases
in Ca. Nitrosopumilus cymbastellus to 21 in Thaumarchaeon
TS (Supplementary Table S8). Pfam annotations but not COG
annotations confirmed the previously reported enrichment of
transposases in Ca. Nitrosopumilus ianthallae and C. symbiosum
(Moeller et al., 2019) (Supplementary Tables S8, S11). Together
this indicates a greater potential for gene transfer in some
thaumarchaeal sponge symbionts, though it remains unclear why
the high number of transposases is restricted to these few sponge-
associated thaumarchaeal genomes.

Metabolic Functions Specific to the
Novel Sponge Archaea
The two novel sponge-associated Thaumarchaeota genomes
Ca. Nitrosopumilus sp. ESC and Thaumarchaeon TS
harbored the glycine cleavage system, which was absent
from all other genomes. It consisted of the genes gcvHPT
[COG0509, COG0403/COG1003, COG0404 and COG1249,
the dihydrolipoamide dehydrogenase (E3)] together with the
genes necessary for lipoate production (COG0095, COG0320),
which binds to GcvH. The system enables the reversible reaction
glycine + tetrahydrofolate (THF) + NAD+ ↔ 5,10-methylene-
THF + CO2 + NH3 + NADH + H+. It has been recently
found in the genomes of free-living deep-sea Thaumarchaeota
(León-Zayas et al., 2015; Wang et al., 2019; Zhong et al.,
2020). The methylene-THF can be used in the biosynthesis
of purine and methionine (León-Zayas et al., 2015). When
working in the direction of glycine cleavage, the reaction
provides energy. Moreover, via the downstream oxidation
of ammonia and regeneration of THF, it would enable an
additional way to generate energy for the sponge symbionts
(Figure 3).

Out of the 23 analyzed genomes, the Thaumarchaeon TS from
the Red Sea sponge T. swinhoei and Ca. Nitrosopumilus sp. PfA
from P. ficiformis collected from the Southeastern Mediterranean
Sea were the only ones that encoded exopolyphosphatases
(COG0248). This in addition to a high-affinity phosphate
transporter consisting of PhoU, PstSABC, which was also
present in six other sponge symbionts and six free-living
Thaumarchaeota [based on SEED annotations (Supplementary
Table S13)]. Phosphorus sequestration in the form of
polyphosphate by microbial symbionts has been shown
in Caribbean sponges (Zhang et al., 2015). In the case of
the symbiont of P. ficiformis, the sponge was collected in
the Southeastern Mediterranean Sea, which is known for
phosphorus limitation (Krom et al., 1991). It is possible that
Ca. Nitrosopumilus sp. PfA has a free-living phase (see above),
during which it experiences phosphorus stress.

CONCLUSION

Free-living marine Thaumarchaeota are known as ammonium
oxidizers and are key suppliers of vitamins in microbial
communities. Our comparative genome analysis supports the
previous notion that these traits are conserved in sponge-
associated Thaumarchaeota. Some genomic features known to
be enriched in bacterial sponge symbionts were also enriched
in sponge-associated archaea (e.g., restriction-modification
systems), suggesting that the sponge environment selects for
these features. However, adaptations to life inside the sponge
host appear to diverge in Thaumarchaeota symbionts, as
many of these traits were specific only to a few symbiont
genotypes. For example, we found a glycine cleavage system
and polyphosphatases only in the three novel symbiont
genomes. Thus, the analysis of additional novel Thaumarchaeota
symbionts is likely to reveal more unique adaptations to the
symbiosis with sponges.
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