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Abstract

Considering the known effects of xyloglucan endotransglycosylase (XET) on plant growth

and development, we aimed to determine whether XETs help to regulate the growth and

elongation of Huangguogan shoots and roots. We confirmed a possible role for XET during

seedling etiolation. Our results revealed that the roots of etiolated seedlings (H-E) were lon-

ger than those of green seedlings (H-G). However, shoot length exhibited the opposite pat-

tern. We also observed positive and negative effects on the xyloglucan-degrading activity of

XET in the root sub-apical region and shoots of etiolated Huangguogan seedling, respec-

tively. There was a significant down-regulation in CitXET expression in the etiolated shoots

at 15 days after seed germination. On the contrary, it was significantly increased in the root

sub-apical region of etiolated and multicolored seedlings at 15 days after seed germination.

The XET coding sequence (i.e., CitXET) was cloned from Huangguogan seedlings using

gene-specific primers. The encoded amino acid sequence was predicted by using bioinfor-

matics-based methods. The 990-bp CitXET gene was highly homologous to other XET

genes. The CitXET protein was predicted to contain 319 amino acids, with a molecular

mass of 37.45 kDa and an isoelectric point of 9.05. The predicted molecular formula was

C1724H2548N448O466S14, and the resulting protein included only one transmembrane struc-

ture. The CitXET secondary structure consisted of four main structures (i.e., 21% α-helix,

30.72% extended strand, 9.09% β-turn, and 39.18% random coil). Analyses involving the

NCBI Conserved Domains Database (NCBI-CDD), InterPro, and ScanProsite revealed

that CitXET was a member of the glycosyl hydrolase family 16 (GH16), and included the

DEIDFEFLG motif. Our results indicate that the differed degrees of etiolation influenced

the CitXET expression pattern and XET activity in Huangguogan seedlings. The differential

changes in XET activity and CitXET expression levels in Huangguogan seedlings may

influence the regulation of root and shoot development, and may be important for seedling

etiolation.
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Introduction

The genus Citrus of the family Rutaceae includes commercially important and widely culti-

vated fruit species [1]. In the same seed germination and seedling development conditions,

Citrus cultivar Huangguogan plants produce a few etiolated seedlings. Etiolated, multicoloured,

and green seedlings appeared on the fifth day after seed germination. The leaves of etiolated

seedlings do not turn green even at 20 days after seed germination, and even death after further

10 days. In previous study, we found that etiolation decreased the leaf area and reduced the

optical area, resulting in dwarf plants and weakening growth potential [2]. Etiolation, which is

common in angiosperms, is a phenomenon that leaves are yellow when they grow in darkness.

After seed germinating in darkness, seedlings undergo etiolated growth (i.e., skotomorphogen-

esis), and leaf color is dependent on carotenoids. This developmental step is characterized by a

rapid elongation of the hypocotyl topped by a hook with underdeveloped cotyledons [3]. Etio-

lation decreases the leaf area, causes dwarfism in plants, lowers the growth potential, and may

even cause to death. Over the past two decades, the growth and development of etiolated plants

have been studied in terms of light regulation [4], endogenous abscisic acid [3], ethylene

responses [5], phospholipid hydroperoxide glutathione peroxidase [6], riboflavin biosynthesis

[7], and the proteome [8].

Xyloglucan endotransglucosylase/hydrolases (XTHs), which belong to glycosyl hydrolase

family 16 (GH16), exhibit the activities of xyloglucan endotransglycosylase (XET) and xyloglu-

can endohydrolase (XEH) [9]. The XET and XEH activities occur throughout the growing

tissues of monocots and dicots, suggesting that these enzymes are essential for plant develop-

ment [10–12]. These enzymes have important roles during plant growth and differentiation

[13,14] because they are directly involved in the initial assembly [15] and subsequent re-struc-

turing [16] of the primary plant cell walls [17,18]. These enzymes are confirmed to function as

XETs and/or XEHs [19]. Initially, XETs release a smaller xyloglucan from the reducing end of

a donor xyloglucan, subsequently another xyloglucan chain is added to the newly generated

free end [18,20,21]. The XETs, which lack hydrolase activity, have been identified in some

charophytic algae and in all land plants [11,12,22]. They are considered to be involved in the

molecular grafting or modification of the plant cell wall, but not in the breakdown of xyloglu-

cans [20]. A few XTHs function primarily as XEHs [23].

The XET activity and XTH gene expression levels are correlated with cell expansion [10,24].

The considerable evidence that XTHs can serve as cell growth promoters is based on the

results of molecular studies involving loss and gain of function [25–28]. The XTHs are usually

encoded by a large multigene family. For example, there are 29 XTH genes in rice (Oryza
sativa) [29], 41 in poplar (Populus spp.) [30], 22 in barley (Hordeum vulgare) [9], 25 in tomato

(Solanum lycopersicum) [31], and 33 in Arabidopsis thaliana [32]. One-third of these genes are

the result of genome duplications [33]. The XTHs are the main enzymes mediating plant cell

wall restruction. Additionally, the correlation between XTH gene expression levels and cell

expansion and morphology suggests that these enzymes play a key role in stress responses

[34]. Microarray results have revealed that the XTH gene is differentially expressed in the roots

and shoots of A. thaliana plants subjected to a 24-h drought stress treatment [35]. In well-

defined topological regions of plants, the spatial regulation of XTH gene expression is helpful

for strengthening or loosening the cell wall, which contributes to dehydration tolerance [34].

In angiosperms, the XTHs are associated with cell wall biosynthesis and degradation during

seedling development [36–38]. In response to decreased exposure to blue or red light, these

enzymes regulate petiole elongation [39,40].

Considering the known effects of XETs on plant growth and development, we aimed to

determine whether XETs help to regulate the growth and elongation of Huangguogan shoots
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and roots. Another objective was to elucidate the XET gene expression pattern and function

in etiolated seedlings. Thus, we identified and isolated the Huangguogan XET gene and com-

pleted bioinformatics-based analyses. We herein describe the growth of Huangguogan seed-

lings with differed degree of etiolation, and discuss its role during the elongation of the roots

and shoots of etiolated seedlings. Our findings may be useful for characterizing the function of

CitXET in Huangguogan root and shoot development during the process of etiolation.

Materials and methods

Plant materials

Huangguogan seeds were obtained from the Institute of Pomology and Olericulture, Sichuan

Agricultural University, China. The seeds were presoaked in water for 4 h, incubated at

25 ± 1˚C for 3 days, and then transferred to pots filled with vermiculite and perlite (1:1, v/v).

The pots were placed in a growth chamber set at 25 ± 1˚C and 50–60% relative humidity. The

seedlings were exposed to a 12-h light/12-h dark photoperiod, and watered every 2 days. The

etiolated (H-E), multicolored (H-M), and green (H-G) seedlings were harvested at 5, 10, 15,

and 20 days after seed germination (i.e., emergence of the radicle through the seed coat). The

collected samples were immediately frozen in liquid nitrogen and stored at −80˚C.

Root and shoot dry weight and length

Eight H-E, H-M, and H-G Huangguogan seedlings were collected at 20 days after germinating,

and then divided into shoots and roots. The root and shoot length was measured using a ver-

nier caliper. The shoots and roots were dried at 70˚C for 24 h. The root and shoot dry weight

was measured by an electronic balance.

Enzyme extraction

For estimating enzyme activities, total proteins were extracted from the shoots and root sub-

apical regions of the H-E, H-M, and H-G seedlings at different time points (i.e., 5, 10, 15, and

20 days after seed germination) as previously described [19,41].

Quantitative real-time polymerase chain reaction analysis

Total RNA was extracted from the root sub-apical regions (10 mm to 50 mm distance from

root cap) and shoots of H-E, H-M, and H-G seedlings using RNAiso Plus (TaKaRa, Dalian,

China). First-strand cDNA was synthesized with the PrimeScript RT reagent Kit with gDNA

Eraser (Takara, Dalian, China). To analyze the highly conserved XET gene, we aligned the fol-

lowing sequences, which were obtained from the NCBI database: A. thaliana (X92975.1), Acti-
nidia deliciosa (L46792.1), Vitis vinifera (AY043238.1), Solanum lycopersicum (D16456.1),

Fragaria chiloensis (GQ280283.1), Pyrus pyrifolia (EU432411.1), and Malus domestica
(AY144593.1). We also searched the Citrus Genome Database (http://citrus.hzau.edu.cn) to

identify the homologous citrus XET gene (CitXET). The Primer 3.0 online tool (http://bioinfo.

ut.ee/primer3-0.4.0/) was used to design CitXET-specific primers (i.e., CitXET-F: 50-ATGAC
GAATATACGTTTTTCATTT-30 and CitXET-R: 50-TCATATGTCTCTGTCTCTTCTGCAT-30).
These two primers along with those specific for Actin (GenBank: XM 006480741.2) (i.e., Actin-

F: 50-CCTCACTGAAGCACCACTCA-30 and Actin-R: 50-GTGGAAGAGCATACCCCTCA-30)
were synthesized by Sangon Biotech, China. The quantitative real-time polymerase chain reac-

tion (qRT-PCR) experiment was conducted using SYBR Premix Ex Taq II (Takara, Dalian,

China) and the CFX96 Real-Time PCR system (Bio-Rad, USA). The qRT-PCR experiment was
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completed using three separate biological replicates. The relative gene expression levels were

calculated based on the 2−ΔΔCT method, with a citrus Actin gene serving as the internal control.

Cloning and sequence analysis of CitXET

Total RNA was extracted from Huangguogan as previously described [42]. First-strand cDNA

was synthesized with the HiScript 1st Strand cDNA Synthesis Kit (Vazyme Biotech Co., Ltd,

Nanjing, China). The extracted RNA was treated with DNase I (Invitrogen) to eliminate con-

taminating genomic DNA, and then stored at −20˚C. The PCR amplification of the target

sequence was completed in a 25-μL solution that included 12.5 μL 2× Taq Master Mix

(Vazyme Biotech Co., Ltd, Nanjing, China), 1 μL forward and reverse gene-specific primers,

1 μL cDNA template, and double-distilled H2O up to 25 μL. The PCR program was as follows:

94˚C for 3 min; 35 cycles of 94˚C for 30 s, 55˚C for 30 s, and 72˚C for 90 s; 72˚C for 5 min. The

amplified target fragment was analyzed by agarose gel electrophoresis, and then purified using

the Agarose Gel DNA Recovery Kit (TIANGEN Biotech Co., Ltd, Beijing, China). The target

fragment was incorporated into the pMD19-T vector, which was then inserted into Escherichia
coli DH5α cells and sequenced.

Bioinformatics analysis

The BlastN online tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to analyze the

homology between CitXET and the other plant XET genes. The amino acid sequence encoded

by CitXET was determined using the DNAMAN program. The amino acid composition, iso-

electric point and molecular mass of the CitXET protein were calculated with the ExPASy

ProtParam tool (http://web.expasy.org/protparam/). Additionally, we analyzed the protein

transmembrane region with the TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/

TMHMM/), while the protein signal peptide was predicted using SignalP 4.1. Furthermore,

SOPMA, ClustalX 1.83, BioEdit, and MEGA 7.0.12 program were used to compare the amino

acid sequences and construct a phylogenetic tree. ESPript 3.0 was used for multiple sequence

alignment and homology modeling. The secondary and tertiary protein structures were pre-

dicted using RCSB PDB and SWISS-MODEL [43].

Statistical analysis

The data was analyzed using Duncan’s multiple range test in the XLSTAT program (version

2010) (P = 0.05 level of significance).

Results

Huangguogan seedling growth

The dry matter content as well as the root and shoot lengths of Huangguogan seedlings were

measured at 20 days after seed germination (Fig 1). The dry weight, shoot length, and root-to-

shoot ratio of H-E seedlings were significantly lower than those of H-G seedlings. However,

the opposite trend was observed for root length (Table 1). These results suggest that the H-E

seedling roots and shoots grow faster and slower than those of the H-G seedlings, respectively.

Identification and isolation of the CitXET gene

The cDNA produced by reverse transcription was used as the template for PCR amplifications.

The 990-bp amplicons observed during agarose gel electrophoresis was consistent with the

expected fragment size (S1 Fig). The results of the sequencing by GENEWIZ Biotechnology

Co., Ltd. indicated that the amplified DNA fragment consisted of 990 bp. A comparison with
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other sequences using the Blastn and GenBank online tools revealed that CitXET was 99%

homologous to the corresponding Citrus sinensis gene. Additionally, CitXET was 82%,

81%, 80%, and 82% homologous to sequences of V. vinifera (AY043237.1), M. domestica
(EU494960.1), P. pyrifolia (EU432411.1), and Glycine max (NM_001253317.2), respectively.

These results confirmed that the cloned sequence represented the Huangguogan XET gene.

We observed a slight but significant down-regulation in CitXET expression in the H-E

shoots (log2 fold change = −2.15) at 15 days after seed germination (Fig 2a). For the other time

points (i.e., 5, 10, and 20 days after seed germination), there was a small but consistent decrease

in the CitXET expression levels of H-E and H-M seedlings (log2 fold change between −2 and

−1). However, this decrease was considered insignificant. In the root sub-apical region (Fig

2b), a small but consistent increase in the CitXET expression levels of H-E and H-M seedlings

was observed at 15 days after seed germination. The log2 fold change values for the CitXET
expression levels in H-E and H-M seedlings were about 2.49 and 2.28 (i.e., up-regulated),

respectively. At 10 days after seed germination, a significant up-regulation in CitXET expres-

sion was detected in H-E seedlings (log2 fold change = 2.20).

The xyloglucan-degrading activity of XET during Huangguogan seedling etiolation was esti-

mated using an iodine based detection of xyloglucans. Compared with H-G, a significant

Fig 1. Figures of Huangguogan seedlings in 20 days after seed germination. H-E, etiolated seedlings. H-M, multicoloured seedlings.

H-G, green seedlings.

https://doi.org/10.1371/journal.pone.0178973.g001

Table 1. Effect of etiolation on Huangguogan seedling growth.

Seedlings Dry weight/g Dry weight of Shoot/g Dry weight of Root/g Root length/cm Shoot length/cm Root shoot ratio

H-E 0.74±0.005c 0.25±0.009b 0.49±0.006c 21.35±0.71ab 3.64±0.04b 0.51±0.06b

H-M 0.83±0.009b 0.27±0.014b 0.56±0.008b 21.00±0.68bc 4.61±0.07a 0.48±0.05c

H-G 1.09±0.013a 0.42±0.018a 0.67±0.010a 19.01±0.63c 4.59±0.06a 0.63±0.08a

H-E, Huangguogan etiolated seedlings; H-M, Huangguogan multicolored seedlings; H-G, Huangguogan green seedlings. Different letters in each column

indicate significantly different values (at P = 0.05 level).

https://doi.org/10.1371/journal.pone.0178973.t001
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(P< 0.05) decrease in extractable enzyme activity of H-E was evidenced in the shoots for 5, 10,

15, and 20 days after seed germination. In shoots (Fig 3a), the basal levels for H-E (0.17 U/mg)

and H-M (0.27 U/mg) seedlings were observed on day 5. The XET activities of root sub-apical

region were slightly more active (>1.50 U/mg) than that of shoots. Gradual increases in activ-

ity were observed for H-E (0.29–0.33 U/mg), H-M (0.30–0.35 U/mg), and H-G (0.34–0.42 U/

mg) seedlings between days 10 and 20 (Fig 3a). Maximum activity was recorded on day 15 in

shoots and root sub-apical region. In shoots, XET activity of H-G seedlings was the most

active, followed by that of H-M seedlings and H-E seedlings. But it was the opposite to the root

sub-apical region, the XET activity of H-E seedlings was significantly (P< 0.05) higher than

that of H-G seedlings (Fig 3b).

Analysis of the CitXET sequence

A 990-bp amplicon was generated using CitXET-specific primers. The encoded amino acid

sequence was determined using the DNAMAN program. A subsequent search using the NCBI

ORF finder and NCBI Protein-Blast algorithm revealed that CitXET containing a 960-bp cod-

ing region encoded a protein, which consisted of 319 amino acids (Fig 4). The ExPASy Prot-

Param tool indicated that the 319 CitXET amino acids formed a 37.45-kDa protein (molecular

formula: C1724H2548N448O466S14), with an isoelectric point of 9.05. The most common amino

acid was phenylalanine (29, 9.1%), followed by aspartic acid (22, 6.9%), glycine (22, 6.9%), and

Fig 2. CitXET expression profiles of the etiolated (H-E) and multicolored (H-M) Huangguogan seedlings at different time points

(i.e., 5, 10, 15, and 20 days after seed germination). a: shoots; b: root sub-apical region. The CitXET expression levels are provided as

the transcript inhibition levels (log2 fold change) relative to the values for the green Huangguogan seedlings. Data are presented as the

mean ± standard deviation of three independent replicates (n = 3).

https://doi.org/10.1371/journal.pone.0178973.g002
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lysine (21, 6.6%). The least common amino acids were methionine (8, 2.5%), cysteine (6,

1.9%), and histidine (6, 1.9%). The instability index was calculated as 44.12. Additionally, the

grand average of hydropathicity value was −0.398. We submitted the full-length CitXET
sequence to the GenBank database using the BankIt tool (Accession number: KY576851).

Secondary and tertiary protein structures of CitXET

An analysis of the CitXET protein secondary structure using SOPMA revealed the enzyme

consists of four main structures (i.e., 21% α-helix, 30.72% extended strand, 9.09% β-turn, and

39.18% random curl) (Fig 5). The deduced amino acid sequence was compared with the XET

protein sequences from other plants. Additionally, ESPript was used for homology modeling

(Fig 6). The CitXET sequence and secondary structures were highly homologous to those of

other plants. To investigate the evolutionary relationships between CitXET and the XETs of

other plant species, we constructed a phylogenetic tree using the protein sequences for known

plant XET sequences in the GenBank database (Fig 7). The phylogenetic tree was divided into

two evolutionary branches. TaXTH1 (Triticum aestivum, AAT94293.1) and ZaXTH1 (Zea
mays, AAC49011.1) clustered into one evolutionary branch (IV), while genes from the dicoty-

ledonous plants were grouped together to form another main branch. CitXET, GaXET (Gossy-
pium arboreum, KHG12145.1), and PtXET (Populus trichocarpa, XP-002297895.1) clustered

together in branch I, suggesting these were the most closely related proteins.

Using the NCBI Conserved Domains Database (NCBI-CDD), InterPro, and ScanProsite, we

determined that CitXET carried the GH16 domain. The CitXET protein sequence also con-

tained the consensus signature motif conserved among GH16 proteins (i.e., -EIDFEFLGNRT-).

We used the NPS@ web server and ProScan to predict the active site of the Huangguogan XET

protein. The results indicated that CitXET consisted of one GH16 active site, one N-glycosyla-

tion site, two protein kinase C phosphorylation sites, one casein kinase II phosphorylation site,

one tyrosine kinase phosphorylation site, four N-myristoylation sites, and one amidation site

(Table 2). The TMHMM server predicted that the CitXET protein had only one transmem-

brane structure (Fig 8). Using SignalP to identify the signal peptide revealed that the CitXET

protein likely lacked a signal peptide.

Fig 3. XET activity in excised segments of the etiolated (H-E), multicolored (H-M), and green (H-G)

Huangguogan seedlings at different time points (i.e., 5, 10, 15, and 20 days after seed germination). a: shoots;

b: root sub-apical region. Total proteins were extracted from seedlings, and XET activity was estimated using

xyloglucan polymer as the specific substrate (extracted from tamarind flour). The data are presented as the mean of

six biological replicates ± standard error. Duncan’s multiple range tests were used to establish statistical significance.

Different letters indicate significantly different values (at P = 0.05 level).

https://doi.org/10.1371/journal.pone.0178973.g003
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The SWISS-MODEL server was used to predict the tertiary structure of CitXET based on

known crystal structures of homologous proteins. The model was refined to a resolution of 1.8

Å, oligo-state was monomer, and coverage was 0.84. According to the prediction of the tertiary

structure of CitXET, there were two ligands, BGC-BGC-BGC-XYS: SUGAR (4-MER) and

XYS-GAL: SUGAR (2-MER), respectively. The active site residues E136, Q149, N151, E161,

R163, D225, W226, and G230 were included in BGC-BGC-BGC-XYS, and D159, E161, R163,

Y297, and R305 in XYS-GAL. Results regarding tertiary structure indicated that the CitXET

protein was similar to other family GH16 enzymes with β-jellyroll–type structure (Fig 9a),

especially PttXET16A (PDB ID: 1UMZ_A). The highest scoring (Seq identity: 91.08) and vali-

dated model for CitXET that exhibited the greatest amino acid sequence identity with the

Fig 4. Deduced CitXET gene and encoded amino acid sequences. Underlined EIDFEFLGNRT was the

conserved consensus signature motif of glycosyl hydrolase family 16 protein. The functional site

(-DEIDFEFLG-) of most XTHs in family GH16 was highlighted in red color.

https://doi.org/10.1371/journal.pone.0178973.g004
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crystal structure was the protein of Populus tremula PttXET16A (Fig 9b). However, a notable

structural feature arised because of an insertion of 41 residued at the N-terminus of CitXET,

forming α-helix and β-sheet in the molecule (Figs 5, 9a and 9b). QMEAN analysis was also

used to evaluate and validate the model, the QMEAN4 score was 0.11 (between 0 and 1), all

atoms (−1.21), C-beta interactions (−1.10), solvation (−1.20) and torsion (0.61), which showed

a good quality of the model (Fig 9c).

Discussion

The XTHs catalyze reactions affect cell wall xyloglucans and xylans [9]. Additionally, XET

activity is an important part of an ancient machinery that regulates cell wall modifications, and

is common among all major groups of green plants [10], including all vascular plants [44]. To

the best of our knowledge, there is limited information regarding the effects of XET on the

elongation of plant roots and shoots, especially during seedling etiolation. Specific XET activity

was detected in Huangguogan seedlings. Furthermore, we revealed a correlation between root

and shoot elongation and changes in XET activity. We observed that XET activity was specific

to elongation, which is consistent with the results of a previous study on liverworts [45].

Our data regarding XET activity and CitXET temporal expression patterns during etiolation

indicated that there was a gradual increase in CitXET gene expression, especially between days

10 and 20, which coincided with the period when the seedling roots and shoots were rapidly

growing. These findings confirmed that CitXET affected the etiolation of Huangguogan seed-

lings. Additionally, we detected relatively low and high CitXET gene expression levels in the

shoots and root sub-apical regions of etiolated seedlings, respectively. The XET activities of

root sub-apical region were higher than those of shoots during seedling etiolation. These

implied that the higher CitXET expression and XET activity, the longer roots and shoots length

(Table 1, Figs 2 and 3).

The XETs are members of the GH16 family, and are encoded by multigene families. Gener-

ally, the XTHs can be divided into three or four subgroups, and those belonging to classes I, II,

Fig 5. Predicted CitXET secondary structures. Blue line, α-helix; Red line, extended chain; Green line, β-sheet; Purple line, random

curl.

https://doi.org/10.1371/journal.pone.0178973.g005
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Fig 6. Multiple sequence alignment and homology modeling of XETs from Huangguogan and other

plant species. Multiple alignment analysis of CitXET protein sequence was generated with the protein

sequences of other known plant XET sequences from the NCBI database (https://www.ncbi.nlm.nih.gov/).

GaXET (Gossypium arboretum, KHG12145.1), PtXET (Populus trichocarpa, XP-002297895.1), AdXET

(Actinidia deliciosa, AAC09388.1), VvXET2 (Vitis vinifera, AAK81881.1), SIXET (Solanum lycopersicum,

BAA03923.1), FcXTH1 (Fragaria chiloensis, ADE42488.1), RbXET (Rosa x borboniana, ABB86296.1),

PpXET (Pyrus pyrifolia, ACA02823.1), PcXET1 (Pyrus communis, BAC58038.1), MdXET1 (Malus domestica,

AAN07897.1), GmXET (Glycine max, BAA03922.1), PsEXGT1 (Pisum sativum, BAA34946.1), AcXET2
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and IIIB exhibit XET activity [36,46]. Several members of the XET gene family have been

cloned and identified in many fruit trees. For example, three litchi, three longan, and four pear

XET genes are available in the GenBank database. In this study, we used a homologous cloning

method to isolate the complete coding sequence of the Huangguogan XET gene (i.e., CitXET),

which encodes 319 amino acids (Fig 4). Based on comparisons with XET sequences from other

plant species as well as the constructed phylogenetic tree, we determined that the N-terminal

of CitXET was highly conservative. Additionally, there was a high degree of homology among

the XET sequences from various plant species. The CitXET active site was identical to the func-

tional site (-DEIDFEFLG-) of most GH16 XTHs (Fig 4), suggesting the catalytic domain was

highly conservative. Similar results were reported by Nishitani et al. [18] and Henrissat et al.

[47]. The CitXET amino acid sequence in the catalytic domain and in the following potential

N-glycosylation site [i.e., N-{P}-[ST]-{P} (access number: PS00001)] [48] (Fig 4 and Table 2)

was highly homologous to sequences from other known XETs (Fig 6). CitXET, GaXET (G.

arboreum, KHG12145.1), and PtXET (P. trichocarpa, XP-002297895.1) were clustered together

in branch I, implying a close relationship among these genes (Fig 7).

(Annona cherimola, ACK36946.1), AcXET1 (Annona cherimola, ACK36945.1), MdXET2 (Malus domestica,

AAN07898.1), LcXET3 (Litchi chinensis, ABK30789.1), VvXET1 (Vitis vinifera, AAK81880.1), AtXET

(Arabidopsis thaliana, CAA63553.1), BjXTH3 (Brassica juncea, AEX07607.1), TaXTH1 (Triticum aestivum,

AAT94293.1) and ZaXTH1 (Zea mays, AAC49011.1).

https://doi.org/10.1371/journal.pone.0178973.g006

Fig 7. Phylogenetic tree of XETs from various plant species. The tree was generated using the neighbor-

joining method of the MEGA 7.0.12 program. GaXET (Gossypium arboretum, KHG12145.1), PtXET (Populus

trichocarpa, XP-002297895.1), AdXET (Actinidia deliciosa, AAC09388.1), VvXET2 (Vitis vinifera,

AAK81881.1), SIXET (Solanum lycopersicum, BAA03923.1), FcXTH1 (Fragaria chiloensis, ADE42488.1),

RbXET (Rosa x borboniana, ABB86296.1), PpXET (Pyrus pyrifolia, ACA02823.1), PcXET1 (Pyrus

communis, BAC58038.1), MdXET1 (Malus domestica, AAN07897.1), GmXET (Glycine max, BAA03922.1),

PsEXGT1 (Pisum sativum, BAA34946.1), AcXET2 (Annona cherimola, ACK36946.1), AcXET1 (Annona

cherimola, ACK36945.1), MdXET2 (Malus domestica, AAN07898.1), LcXET3 (Litchi chinensis,

ABK30789.1), VvXET1 (Vitis vinifera, AAK81880.1), AtXET (Arabidopsis thaliana, CAA63553.1), BjXTH3

(Brassica juncea, AEX07607.1), TaXTH1 (Triticum aestivum, AAT94293.1) and ZaXTH1 (Zea mays,

AAC49011.1).

https://doi.org/10.1371/journal.pone.0178973.g007
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Conclusions

Our results indicate that the degree of etiolation affects the XET activity and CitXET expres-

sion patterns of Huangguogan seedlings. Furthermore, CitXET is vital for root and shoot

growth in etiolated seedlings. The 960-bp CitXET coding sequence encodes a protein consist-

ing of 319 amino acids. CitXET belongs to GH16, based on analyses using the NCBI-CDD,

InterPro, and ScanProsite, and the protein has only one transmembrane structure. Our data

regarding the XET-related activity and expression patterns in etiolated Huangguogan seed-

lings may be relevant to future studies on the root and shoot elongation of etiolated seedling.

These studies should focus on biochemical and structural characterizations. A more thor-

ough understanding of the effects of CitXET expression patterns and XET activities on root

and shoot development may expand our knowledge regarding the role of XTHs during seed-

ling etiolation.

Table 2. Predicted CitXET active sites.

Active sites Access

number

Motif Site and Sequence

GH16 active sites PS01034 E-[LIV]-D-[LIVF]-x(0,1)-E-x(2)-[GQ]-

[KRNF]-x-[PSTA]

132 to142 EIDFEFLGNRT

N-glycosylation site PS00001 N-{P-[ST]-{P} 140 to143 NRTG

Protein kinase C

phosphorylation site

PS00005 [ST]-x-[RK] 245 to 247 SYK, 301 to 303 TDR

Casein kinase II

phosphorylation site

PS00006 [ST]-x(2)-[DE] 128 to131 SEHD

Tyrosine kinase

phosphorylation site

PS00007 [RK]-x(2,3)-[DE]-x(2,3)-Y 157 to 165 KGDREQRIY

N-myristoylation site PS00008 G-{EDRKHPFYW}-x(2)-[STAGCN]-{P} 116 to 121 GSVTAF, 139 to 144 GNRTGQ, 231 to 236

GLEKTD, 253 to 258 GCEASV

Amidation site PS00009 x-G-[RK]-[RK] 266 to 269 QGKR

https://doi.org/10.1371/journal.pone.0178973.t002

Fig 8. Predicted CitXET protein transmembrane structures.

https://doi.org/10.1371/journal.pone.0178973.g008

CitXET expression and XET activity in Huangguogan seedlings with differed degrees of etiolation

PLOS ONE | https://doi.org/10.1371/journal.pone.0178973 June 15, 2017 12 / 16

https://doi.org/10.1371/journal.pone.0178973.t002
https://doi.org/10.1371/journal.pone.0178973.g008
https://doi.org/10.1371/journal.pone.0178973


Supporting information

S1 Fig. Agarose gel electrophoresis results for PCR-amplified CitXET. The band in lanes 1

and 2 in corresponds to the amplified CitXET gene. M: molecular weight standard (Marker

III).
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