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Neuroprotective agents effective against radiation 
damage of central nervous system
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Abstract  
Ionizing radiation caused by medical treatments, nuclear events or even space flights 
can irreversibly damage structure and function of brain cells. That can result in serious 
brain damage, with memory and behavior disorders, or even fatal oncologic or 
neurodegenerative illnesses. Currently used treatments and drugs are mostly targeting 
biochemical processes of cell apoptosis, radiation toxicity, neuroinflammation, and 
conditions such as cognitive-behavioral disturbances or others that result from the 
radiation insult. With most drugs, the side effects and potential toxicity are also to be 
considered. Therefore, many agents have not been approved for clinical use yet. In this 
review, we focus on the latest and most effective agents that have been used in animal 
and also in the human research, and clinical treatments. They could have the potential 
therapeutical use in cases of radiation damage of central nervous system, and also in 
prevention considering their radioprotecting effect of nervous tissue.
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Introduction 
For a long time, human brain was thought to be highly radioresistant, 
nerve cells are generally considered to be less sensitive and thereby 
better resisting the possible damage of radiation. Radiation induces 
injuries to multiple cell types, also in the brain tissue. Depending on 
the type, more dangerous ionizing radiation can be blocked by some 
barriers. Nevertheless, it can enter the body externally (irradiation 
or radioactive contamination) and/or internally (by ingestion or 
inhalation), and cause significant organ damage. Major types of 
ionizing radiation are alpha, beta, neutron, gamma and X-rays. The 
effects on biological systems of any type of radiation increase with 
the linear energy transfer (LET). Therefore, the damage from high-LET 
type radiation (alpha, beta, neutrons) is bigger than that from low-
LET radiation (gamma). The reason is, the tissue repair of a damage 
that is spread in a large area is easier than of one focused in a small 
area (Stabin, 2010).

The radiation danger for body and brain arises during medical 
radiation, cosmic space flights, and other events such as laboratory, 
industrial, military, or power plant nuclear accidents (Coeytaux at al., 
2015). The accidents in Hiroshima, Chernobyl, Fukushima and other 
reactor incidents or potential use of nuclear weapons are still a harm 
to human health, and could be a great risk in the future as well. High 
doses of irradiation used in the therapy or those present in the deep 
space, can cause significant central nervous system (CNS) damage.

Medical radiation is used as a part of cancer treatment therapy. 
It is often applied together with surgery and systemic therapy. 
Nowadays, estimated more than 60% of all cancer patients undergo 
radiotherapy, with high number of female patients treated with 
frequent radiation for breast cancer. Perhaps also because of that, in 
females in comparison with male patients, could occur more severe 
radiation-induced cognitive decline (Bryant et al., 2017). High-LET 
heavy ions are used in treatment of brain tumors, and it should 
be also considered that the potential damage to healthy tissues 
surrounding the tumor can happen during the treatment. 

In the deep space, astronaut is under the high-LET galactic cosmic 

radiation, that is of higher doses than on Earth. HZE particles in 
galactic cosmic radiation includes multitude of different elements, 
also 56Fe particles, which can cause oxidative stress in neurons, 
neuroinflammation, defects in neurogenesis, and cognitive 
impairment. When exposed to HZE particles at the relevant doses 
(> 30 cGy) of National Aeronautics and Space Administration, 
many negative effects happen in organism, that influence not only 
physiological but also cognitive function, and can be of a great risk to 
the crew in exploratory Mars missions (Patel et al., 2020).

Ionizing radiation has various negative effects on the brain tissue. 
Neurocognitive damage in rodents and humans relate to neural stem 
cell dysfunction, inflammation of brain tissue, and demyelination 
(Roughton et al., 2013). The dysfunction of central nervous system 
in patients after irradiation is complex, includes many factors, 
and is influenced also by individual factors such as age, sex, other 
health diagnosis, psychological and genetic predispositions, and 
possible injuries caused by other treatments such as surgery and 
chemotherapy (Ahles et al., 2012). Therefore, the search for effective 
and accessible radioprotective agents is critical, especially those 
without any significant toxicity or side effects. Their practical use 
would be much needed in all cases of radiation danger. For that 
reason, the aim of this review was to thoroughly research the latest 
literature on the use of various natural and medical options and 
other possibilities, that could serve in neuroprotection of the nervous 
tissue in all above-mentioned cases of radiation risk. A review of 
the most effective radioprotectants that are helpful specifically in 
CNS, with the focus on the brain tissue, would not only broaden the 
knowledge of the latest drugs used in research, but also support 
their application in clinical treatment.

Search Strategy and Selection Criteria 
The research presented is analysis of the articles and works 
retrieved in PubMed database with the keywords: ionizing 
radiation, neuroprotectants, radioprotectants, brain radiation 
damage, antioxidants in CNS, cosmic radiation damage, novel 
neuroprotectants, radioprotective agents of CNS. The timeline 
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criterion was applied, with the focus on the newest articles, mostly 
published in the past 5 years.

Pathophysiology of Radiation Toxicity in the 
Brain and Neural Damage
Radiation acts in human organism directly and indirectly. It can 
potentially directly damage critical biological molecules, and 
indirectly produce ions and free radicals that then interact with 
cellular components. In the deep space, nuclear catastrophes or 
some types of medical treatment, the radiation influence result 
in total body irradiation (TBI). In medicine, TBI has been used 
in hematologic stem cell transplant or bone marrow transplant 
preparative regimes (Wilhelm-Buchstab et al., 2020). In case of TBI, it 
is necessary to mention the acute radiation syndrome that describes 
many manifestations and symptoms that display severe damage to 
specific organ systems. Their clinical effects, timing and severity is 
highly dependent on the dose received.

In whole-body exposures, equivalent doses of radiation are 
transported to parts of the body. This might not have such high 
mortality however; it is also very damaging. The clinical effect 
of irradiation depends on many variables, such as radiation and 
exposure type, the type of tissue exposed and its sensitivity, the 
depth of radiation penetration in the body, and also the total 
absorbed dose, effective dose, and the dose rate. Radiation can 
cause short- and long-term negative effects in every organ system in 
the body (Swartz et al., 2020).

Radiation-induced brain damage includes both anatomic and 
functional deficits. Depending on the time of clinical expression 
radiation-induced brain injury could be characterized as acute, early 
delayed, and late delayed injury (Sah et al., 2019). Damaging effects 
from radiation can occur during or just after the radiation event, or 
with the late onset after months to years and can be irreversible. 
Moreover, there is also the possibility for secondary malignancies 
to occur. Radiation induced brain damage and all its complex 
pathophysiological mechanisms are yet not completely understood. 
Nowadays however, it is known that radiation-induced brain injury is 
multifactorial, depending factors such as dose, duration of irradiation, 
the presence of shielding. It depends of complex interactions 
between various brain cell types, e.g., endothelial cells, neurons, 
astrocytes and microglia (Miyatake et al., 2015). Furthermore, the 
risk of the radiation damage of the brain can be increased also by 
neurotoxic factors. Those change microvascular integrity or blood-
brain-barrier. The neurotoxic factors include cytotoxic drugs, older 
age and concurrent diseases such as diabetes, neurological disorders 
and vascular diseases (Murray et al., 2014).

All types of ionizing radiation can be toxic to the central nervous 
system. Functional toxicities can have correlation to changes in the 
whole brain, including gray matter, white matter, ventricles, and their 
combinations (Prust et al., 2015). During radiation exposure, free 
radicals form, which causes damage in cerebellum that is responsible 
for locomotion. Irradiation causes increased oxidative stress leading 
to metabolic stress, DNA damage, and other damaging biochemical 
processes in brain tissue (Pariset et al., 2020).

The recent research shows, that other mechanisms of radiation-
induced injury can cause additional stress and damage, such as 
oxidation of the lipid bilayer, changes in microvascular permeability, 
cell-cell junctional complex rearrangements and mitochondrial 
alterations (Abdel-Magied et al., 2019). Radiation can induce vascular 
damage, devascularization, gliosis, demyelination and white matter 
necrosis. The tissue toxicity incorporates coagulation necrosis of 
cerebral vasculature by demyelination of axons and damage to 
vascular endothelial cells (Greene-Schloesser et al., 2013). That 
further causes ischemia which progresses in N-methy-D-aspartate 
(NMDA) receptor stimulation and excitotoxicity.

Cranial irradiation is used for the treatment of tumors that are 
localized in the central nervous system. In the brain, there is a high 
capacity for metastasis of the tumor to seed and spread as the normal 
blood-brain barrier prevents systemic agents from be delivered to 
tumor cells. The radiotherapy still remains the main treatment option 
for patients with brain metastases, but it is important to mention 
that it can cause negative neurocognitive deficits. Patients with brain 
metastases often undergo whole brain irradiation (WBI) (Westover et 
al., 2020), that may halt the progression of metastases and prolong 

Figure 1 ｜ Factors of radiation impact in cosmos and psycho-physiological 
effects on CNS.
Graphic demonstration of various types of radiation influencing the nervous 
tissue in the space environment. Early and late psycho-physiological 
disturbances as a result. AD: Alzheimer’s disease; CNS: central nervous 
system; PD: Parkinson’s disease, TBI: traumatic brain injury. 1-Variset et al., 
2020; 2-Parihar et al., 2015b; 3-Parihar et al., 2015a; 4-Vlkolinsky, 2010; 
5-Cherry et al., 2012; 6-Nelson et al., 2016; 7-Rabin et al., 2014; 8-Britten 
et al., 2012; 9-Seidensaal et al., 2020; 10-Cucinotta and Cacao, 2020; 
11-Cucinotta and Cacao, 2019; 12-Boice, 2019.

lifespan, but it can cause cognitive deficits. Patients after fractionated, 
partial or whole brain irradiation have chronic, progressive cognitive 
damage and show progressive deficits in information processing 
speed, frontal lobe executive functions, memory (also spatial 
memory), visual motor processing, quantitative skills, and possibly 
also attention (Peng et al., 2018). While the toxic radiation effects 
depend on total dose, fractionation schedule, and treated volume, 
research is showing on the difference in radiation sensitivity in 
various CNS subcompartments. Radiation causes inflammation and 
leads to activation of microglia and macrophages, which can lead 
to neuronal cell death. Furthermore, it increases the expression of 
cytotoxic molecules in brain, such as pro-inflammatory cytokines and 
chemokines. These processes have been involved in radiotherapy-
associated brain damage (Lumniczky et al., 2017). The process of 
pathogenesis of radiation-induced neurocognitive damage also 
comprises activation of microglia in dentate gyrus, and apoptosis of 
neuroproliferative cells in the subgranular zone of the hippocampus. 
This brain region is vital for learning and memory because there 
the neurogenesis is still possible in the course of one’s life. After 
irradiation, a long-term decrease in neurogenesis in subgranular 
zone was observed (Ouyang et al., 2017). Also, direct irradiation 
of the hippocampus results in serious cognitive deficits. There are 
deficits of learning, memory, and spatial processing, accompanied 
by pronounced alteration in neurogenic microenvironment. Not only 
early but also late effects occur, that can manifest as chronic and 
irreversible cognitive impairment and dementia. 

Radiation dose and age dependence have to be also taken into 
consideration in the evolution of neuro-cognitive impairments, that 
can manifest even from young age (Figure 1) (Newton et al., 2020). 
Early insults can cause lifelong problems, both physical and mental. 
The brain that is not mature enough, is highly susceptible to negative 
impacts on its circuit formation. Radiotherapy causes adverse 
neurocognitive outcome in young age survivors. They may develop 
motor, intellectual, visual, and psychological dysfunctions, with 
moderate to severe disabilities. The younger the age, higher cranial 
irradiation dose, larger brain volume irradiated, and prolonged 
time predict worse neurocognitive outcomes (Chu et al., 2020). In 
clinical research, it is difficult to gather much data about the group 
of older patients, since they are often excluded from clinical trials. 
Also, radiation therapy in this case requires special considerations, 
concerning also other comorbidities and chronic conditions they may 
have. Nevertheless, higher age is one of the significant predictors of 
cognitive decline after whole brain radiotherapy. In the recent study 
by Chan et al. (2020) was seen that after WBRT there is diminished 
cognitive function in older patients, and also that every patient over 
70 years experienced cognitive decline after WBRT.
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In standard treatment guidelines, there are many ways how to 
prevent and treat radiation damage. In clinical care, medicaments 
can be used to bind radioisotopes in the gastrointestinal tract to 
avoid their absorption. Among other agents, the important and 
often used agent is potassium iodide (Parrish and Seda, 2019). 
Compounds that have been used in treatment include statins, 
non-steroidal anti-inflammatory drugs, angiotensin converting 
enzyme inhibitors, angiotensin II receptor blockers, metformin, 
N-acetylcysteine, calcium channel blockers, beta blockers, fingolimod, 
and pentoxifylline (McLaughlin et al., 2017). However, not all of 
them are effective enough and many have serious side effects. That 
is why it is important to find agents that could be safely used as 
radioprotectants in treatment, and to avoid the toxicity in patients. 

Neuroprotectants in Radiation Medicine
In radiation medicine, there are agents used in protection against 
ionizing radiation. Radioprotectors are used before radiation to 
protect cells and tissues from the damage. Other group of agents, 
radiomitigators are used early after the exposure to help in repairing 
and recovering of the tissues even before the presence of symptoms. 
And finally, there are therapeutics that are utilized after radiation to 
enhance healing of injuries and regeneration (Obrador et al., 2020). 
Various radioprotectants have different effect on tissues and organs. 
Not each one has effect in neural cells, however, there are some 
used in a therapy of CNS radiation damage (Figure 2). 

progenitors derived from human embryonic stem cells were 
disseminated into the forebrain and cerebellum of young rats, the 
remyelinization and to amelioration of cognitive deficits was seen 
(Piao et al., 2015).

Other lifestyle changes, such as exercise can partially restore 
hippocampal neurogenesis and behaviour. Clinical studies show that 
exercise may be beneficial in children and young adults as well (Sabel 
et al., 2017).  

Natural Radioprotectors
Antioxidants and natural agents
In search for protection that could be effective and reliable in 
cancer therapy and cases of space radiation, with the focus on the 
brain tissue, there is a need for neuroprotection against heavy-ion 
radiation. Estimated 70% of tissue destruction that happen during 
irradiation is due to free radicals, therefore it is necessary to find 
agents that could neutralize or eliminate free radicals. Antioxidants 
can stop or slow down oxidation in tissue and so reduce DNA 
damage that results from ionizing radiation (Brand et al., 2015). 
Most important antioxidant enzymes in human body are superoxide 
dismutase, catalase and glutathione peroxidase (SOD, CAT, GSH-Px). 
Radioprotective agents could generate endogene neuroprotection, 
influence DNA repair, lower inflammatory response, and slow down 
cellular division. The use of neuroprotective substances before or 
during radiation exposure could be a possible option to reduce 
radiation-induced tissue damage. 

T h e re  a re  m a ny  a nt i ox i d a nt s  exa m i n e d  a s  a  p o te nt i a l 
neuroprotectants against neuro-cognitive damage resulting after 
cranial irradiation. In the search for radioprotectors, successful seem 
to be many of them, such as vitamin C, N-acetyl cysteine, curcumin, 
resveratrol, cinnamic acid, even a watermelon juice. Some of them 
showed also neuroprotecting function against radiation (Smith et al., 
2017). Most promising seems to be vitamin E and its derivates. In 
clinical study, patients treated with radiotherapy for nasopharyngeal 
carcinoma that resulted in temporal lobe radionecrosis received 
alpha-tocopherol or no treatment for one year. At one year, alpha-
tocopherol group improved significantly in global cognitive ability 
(Chan et al., 2004).

Flavonoids
Flavonoids are the important group of polyphenolic substances with 
a big area of biological activities. They pass through the blood-brain 
barrier, can directly influence neuro-endocrine system and act anti-
inflammatory, antithrombotic, antioxidant, antiallergic, antibacterial, 
analgesic and vasodilatory effects (Numakawa and Odaka, 2021).

Over a period of time, blueberry addition has showed to be 
helpful decreasing in suppressing the negative radiation effects 
and improving cognition. When diet is enriched with antioxidant 
fruits and vegetables, in particular blueberries, the reactive oxygen 
species caused neuronal tissue damage and neuroinflammation 
could be reduced after exposure to HZE radiation, such as in space 
missions. In studies with animals fed on 2% blueberry or strawberry 
supplemented food before irradiation, the damage after exposure to 
heavy particles was lowered (Shukitt-Hale et al., 2007). When young 
rats were exposed to 1.5 Gy or 2.5 Gy of 56Fe particles irradiation, 
altered gene expression was observed. This was noted in the 
hippocampus within 36 h after the exposure. When supplementing 
their diets with 2% of berries before irradiation, an up-regulation 
of some protective stress signal genes such as IKKe and MMK3 
(apoptotic regulator genes) was observed (Shukitt-Hale et al., 2013). 
In another study, antioxidant-rich berry diets of animals significantly 
reduced neurotoxicity and dysfunction after radiation. In experiment 
with 100 cGy of 56Fe particle radiation, it prevented or reduced 
the PHF-tau proteins accumulation in hippocampus, which was 
enhanced after 56Fe HZE particle irradiation (Poulose et al., 2014). 
In later study by Poulouse et al. (2017), an antioxidant blueberry 
diet prevented/ameliorated HZE particle-induced cognitive and 
neural disturbances that are connected also with the behavioral 
changes. Oxidative damage was prevented in the hippocampus and 
frontal cortex region in the learning group on blueberry diet that 
was indicated before irradiation. It significantly reduced the levels of 
cyclooxygenase in the hippocampus and frontal cortex when 56Fe 
irradiation applied. Also, the reduction of radiation-induced increase 
in NADPH oxidase 2 in the hippocampus was seen in the learning 
and the memory groups (Poulose et al., 2017).

Chrysin (5,7-dihydroxyflavone) is a flavonoid extracted from 

Figure 2 ｜ Schematic illustration of the use and effects of active agents in 
the radiation research and therapy.
Main types of neuroprotectants, increase of reparation processes (green) and 
reduction of the impairment (red) is displayed.

Neuroprotectants are a category of neuroprotective agents generally 
used for the protection of neuronal structure and/or function. They 
are used in medicine to protect against neuronal injury following 
acute diseases or neurodegeneration in the brain following chronic 
neurodegenerative diseases. The goal of neuroprotection is to 
prevent or slow progression of disease and also secondary injuries 
by ceasing or decreasing the neuronal loss (Paul and Candelario-Jalil, 
2021). Mostly used neuroprotective agents are glutamate antagonists 
and antioxidants, which suppress excitotoxicity and oxidative stress, 
and also some cognitive enhancers. Recently, some nootropic drugs 
showed radioprotective effect in the animal research (Lyakhova et al., 
2019; Severyukhin et al., 2020). Many neuroprotectants have shown 
positive effects on brain tissue also in cases of ionizing radiation, 
as though they can be also used in prevention or treatment of CNS 
radiation injury.

Besides them, some natural products, diet and lifestyle changes 
are also recommended in cases of radiation risk. In experimental 
researches, other strategies such as environmental enrichment, 
voluntary running, or chronotherapy has shown a positive effect 
on irradiated brain. With the use of chronotherapy, it is possible to 
precisely schedule time of drug/therapy administration to enhance 
treatment effects on the disease while reducing negative outcomes 
in healthy tissue, mostly by using the body’s circadian rhythms. That 
can be used also in treatment of patients that undergo medical 
radiation with very promising outcomes (Ballesta et al., 2017; 
Shuboni-Mulligan et al., 2019). Nowadays, the modern approaches in 
stem-cell transplantation could be also a promising way for mitigation 
of the radiation-induced cognitive decline. When oligodendrocyte 
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propolis, honey and several plants, such as Passiflora caerulea. It 
can cross the blood-brain barrier and acts antiestrogenic, antitumor, 
antidiabetogenic, anti-hypertensive, anti-inflammatory, antioxidant, 
anxiolytic and is involved in cancer cell apoptosis. It shown to be 
helpful in reducing the increase of malondialdehyde levels and 
caspase-3 activity in rat brains after whole body irradiation of 5 Gy. 
Its administration decreased the brain-derived neurotrophic factor 
level, which is important in processes of synaptic plasticity, neuronal 
growth and survival, and it thereby decreased β-amyloid production. 
The study also suggests a significant increase in whole brain 
epinephrine and norepinephrine and serotonine levels (Mansour 
et al., 2017). 5,7-Dihydroxyflavone showed not only anti-oxidative 
properties, but a potentially neuroprotectant activity.

Other flavonoids as well have proven to be able to cross blood-brain 
barrier and so they can act and influence biological processes in 
brain tissues. Many show radioprotective effects as well.

Biomedical Agents
For prophylaxis of radiation-induced neurocognitive damage, some 
approved drugs seem to be promising novel agents (Table 1). 

Valproic acid
Valproic acid (VPA) is a short branched-chain carboxylic acid. It 
is a histone deacetylase inhibitor, clinically used in treatment of 
epilepsy, it is anti-seizure and antidepressant drug which shows 
positive effect and low toxicity. It showed antitumor effects, could 
reduces cognitive decline, and has radio-sensitizing effects in 
gliomas and radioprotection in normal brain tissue and hippocampal 
neurons. It acts in cases of neurological insults, such as glutamate 
toxicity, intracerebral hemorrhage, ischemia, and oxidative stress it 

modulates various cellular and tissue pathways, such as cell-cycle 
arrest, angiogenesis, apoptosis, differentiation, senescence and DNA 
repair (Rahman and Nguyen, 2021).
Intravenous application of VPA (150 mg/kg) after severe TBI in swine 
animal model exerts neuroprotective and prosurvival effects. The 
treatment showed a significant reduction in brain lesion size after 
isolated TBI (Biesterveld et al., 2020).
Pretreatment with VPA (300 mg/kg) in mice with cranial irradiation 
of 7 Gy prevented the radiation induced damage in the normal 
hippocampus and in the same time it sensitized malignant gliomas 
to radiation. VPA treatment reduced number of apoptotic cells in 
hippocampal neurons, lowered levels of the pro-apoptotic protein 
BAX and the levels of the anti-apoptotic protein Bcl-2 in HT22 cells 
increased, and thereby prevented radiation-induced apoptosis in 
mice (Thotala et al., 2015). Studies also indicate that valproic acid 
alone or in combination treatment can prolong the life span also in 
humans with brain cancer. It could improve cognition and protect 
against many neurological insults. Therefore, VPA could be used as a 
drug in patients during brain cancer treatment (Zhuo et al., 2019).
VPA, either used alone or with other agents, can influence brain 
tissue tumor growth, and show a strong neuroprotective effect also 
in cases with ionizing radiation. 

Memantine 
Memantine is a NMDA receptor competitive antagonist, and is 
currently used in patients with Alzheimer’s disease. Radiation can 
cause neuronal NMDA receptor stimulation and excitotoxicity. In 
this context, inhibition of the NMDA receptor by memantine could 
reduce whole brain radiation induced cognitive damage. 

Table 1 ｜ Neuroprotectants and biologically active substances used for prevention and treatment of radiation-induced brain damage 

Agent Type of compound Other usage Effect in radiation damage Literature

Vitamin C, E Antioxidants, vitamins Anti-inflammatory, antioxidant DNA damage reduction, free radical 
scavengers, cellular protection

Brand et al., 2015; 
Smith et al., 2017; 
Fischer et al., 2018

Curcumin, resveratrol, cinnamic 
acid, gallic acid, watermelon 
juice, zingerone, caffeic acid, 
carnosic acid, green tea extract, 
rutin, quercetin, α-lipoic acid, 
coenzyme Q10

Phytochemicals Anti-inflammatory, antioxidant, 
anti-cancerous, neuroprotection, 
cardiovascular benefits, antiallergic, 
antibacterial, antidiabetogenic, 
anxiolytic antitumor

Improve cognitive function, protect 
gene upregulation, reduce DNA 
damage free radical scavengers, 
neurotoxicity reduction, and 
increase neurotransmitters

Shukitt-Hale et al., 2013; 
Mansour et al., 2017; 
Poulose et al., 2017; 
Smith et al., 2017; 
Fischer et al., 2018

Flavonoids Polyphenols
VPA Organic acid Anti-epileptic drug, anti-seizure, 

antidepressant drug
Antitumor effects, DNA repair, 
protection against apoptosis

Thotala et al., 2015; 
Rahman and Nguyen, 2021

Memantine NMDA receptor 
antagonist

Alzheimer’s disease Reduce WBRT cell damages, extra-
cerebral endothelial cell injuries 
and chronic effects of radiation, 
improve memory

Brown et al., 2013; 
Wong et al., 2016

Minocycline Tetracyclin Infections, antioxidant, anti-
inflammatory

Anti-tumorigenic, neuroprotectant, 
protect gene upregulation, improve 
of cognitive abilities

Yazlovitskaya et al., 2006; 
Mehrotra et al., 2014

Lithium Lithium salts Bipolar mood disorder Cell death and neuroinflammation 
inhibitor, irradiation injury 
reduction, inhibition of apoptosis, 
neuroprotection

Yazlovitskaya et al., 2006; 
Zanni et al., 2021

Fingolimod Immunomodulator Multiple sclerosis, anti-
inflammatory, immunosupressant

Neuroprotection, cognitive 
abilities, and learning preservation

Stessin, et al., 2017; 
Metzdorf et al., 2019

Ramipril ACE inhibitor Cardiovascular drug Reduce WBRT cognitive 
impairment and alleviate the late 
delayed effects of WBI

Kim et al., 2008; 
Robbins et al., 2009

Melatonine Hormone Sleep disorders, antioxidant Reduction of apoptosis, 
neuroprotection, and improvement 
of cognitive abilities

Li et al., 2016; 
Motallebzadeh et al., 2020; 
Pipová Kokošová et al., 2020

Amifostine Cytoprotectant Cancer therapy Reduction of radiation toxicity, 
radioprotection, and antimutagenic 
effects

Kataoka et al., 1996; 
Little, 2000

Atorvastatin Statin Cardiovascular Inhibition of apoptosis Naeimi et al., 2017
Kukoamine A Catechol Anti-inflammatory, antioxidant, 

Parkinson’s disease
Neuroprotection, inhibition of 
oxidative stress and apoptosis 
after WBI, amelioration of 
neuroinflammation

Zhang et al., 2016, 2017

NAC Acetylated cysteine Neurodegenerative and psychiatric 
disorders

Radioprotection and decreased 
DNA damage 

Stehli et al., 2014; 
Velauthapillai et al., 2017

ACE: Angiotensin-converting enzyme; NAC: N-acetyl cysteine; NMDA: N-methyl-D-aspartate; VPA: valproic acid; WBI: whole brain irradiation; WBRT: whole 
brain radiotherapy.
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In some recent studies, memantine showed neuroprotection 
from radiation-induced excitotoxicity. In patients it prevented 
radiation induced normal-appearing white matter vasculature 
permeabilization. The study with adult patients who recieved 
WBRT of 30 Gy and 37.5 Gy shows reduction in WBRT neuronal and 
endotelian damages. When memantine was applied (5mg up to 
10 mg) with radiotherapy it reduced extra-cerebral endothelial cell 
damage and the rate of chronic radiation side effects in patients, and 
so it could help with long-term secondary toxicities from irradiation 
(Wong et al., 2016). Another clinical study of patients undergoing 
whole brain radiotherapy that received memantine (20 mg per day) 
or placebo while in treatment or after that for 6 months showed, 
that it improved delayed memory recall at 6months, and overall 
cognition (Brown et al., 2013). Memantine applied before and during 
whole brain radiotherapy significantly delayed time to cognitive 
failure and lowered the rate of decline in memory, cognitive function, 
and processing speed. In addition, brain edema, size of brain infarct, 
and vascular changes of brain tissue of patients decreased (Lynch, 
2019).

Memantine has a safety profile with high tolerability, which makes it 
a promising drug for future use in cases of brain radiation damage.

Minocycline 
Minocycline is a semi-synthetic tetracycline derivative. It has been 
used in a many bacterial infections but has many biological actions 
not related to its anti-microbial properties. As other agents showing 
neuroprotective actions, it can efficiently cross the blood-brain 
barrier and protected brain tissue in researches on cerebral ischemia, 
traumatic brain injury and other nervous system related pathologies 
(Kim and Suh, 2009). It has been observed to be neuroprotective in 
acute CNS injuries and neurodegenerative diseases. This is probably 
because of its antioxidant activity. Minocycline also shows anti-
apoptotic, anti-inflammatory and anti-tumorigenic effects, free 
radical scavenging properties and acts in microglial activation and 
thereby rescues neurogenesis (Bassett et al., 2021).

Intraperitoneal injection of minocycline (45 mg/kg) influenced brain 
cytokine levels, it increased the levels of IL-10, IL-15 and vascular 
endothelial growth factor (VEGF) in mice receiving 1-, 2- and 3-Gy 
of radiation which shows immuno- and anti-inflammatory effect 
of the drug, and its anti-apoptosis and neuroprotective properties. 
In mammalian models, it stimulates the production of anti-
inflammatory and neuroprotective cytokines. Also, it “normalized” 
expression of genes that were up-regulated by radiation and could 
preserve viability of neural cells such as astrocytes (Mehrotra et al., 
2014). Minocycline intervention (90 mg/kg) ameliorated radiation-
induced cognition impairment after single dose of 20 Gy of whole-
brain irradiation in rats, improved learning and memory, decreased 
radiation-induced neuronal apoptosis as a result of radiation. The 
minocycline treatment act also in the newborn and immature 
neurons in the dentate subgranular zone and can protect from 
radiation-induced apoptosis and depletion of newborn neurons 
(Zhang et al., 2014). 

The oral administration of minocycline and its relatively long half-life 
supports its practical use in cases of a nuclear event or during deep 
space missions.

Lithium
Lithium has many antiapoptotic activities, and it is commonly used 
in the treatment of bipolar mood disorder. It shows neuroprotective 
and radioprotective effects as well, such as inhibition of stem or 
progenitor cell death and enhancing their neurogenesis, preservation 
of synaptic plasticity, and reduction of neuroinflammation and 
irradiation injury. Therefore, it could be used for treatment of 
radiation damage (Zanni et al., 2021). It protects against a variety 
of cytotoxic processes, such as oxygen and glucose deprivation, 
glutamate-mediated excitotoxicity (Taler et al., 2020). 

Lithium was applied two weeks before, during and one month after 
radiotherapy, without any toxical effects (Carret et al., 2016). Since 
the protection is activated after treatment longer that a couple of 
days with maximal effect after 6 to 7 days, the lithium application 
requires pretreatment. This neuroprotection has been observed 
at therapeutic concentrations of LiCl, at 50 mg/kg LiCl with an 
almost maximal effect at 100 mg/kg. On the molecular basis, the 
mechanisms involve among others activation of antiapoptotic cell 
signaling pathway phosphatidylinositol 3-kinase/Akt, that leads to 
the inhibition of glycogen synthase kinase-3h. Lithium showed the 
effect in decreasing levels of the proapoptotic proteins p53 and 

Bax, together with increasing levels of the prosurvival protein Bcl-
2 (Jope, 2003). In experiment with 7 Gy of irradiation in 2-week-old 
pups of mice treatment with 3 mM of LiCl before cranial irradiation 
was observed better performance in the Morris water maze. Lithium 
could decrease cognitive deficits after cranial irradiation. LiCl 
treatment decreased radiation-induced apoptosis of hippocampal 
neurons, and by inhibiting of the apoptosis it increased survival of 
irradiated hippocampal neurons. Pretreatment with lithium changed 
radiation-induced response of proteins, upstream and downstream 
of GSK-3 beta, including activation of Akt and protein accumulation 
of h-catenin and cyclin D1 in HT-22 cells which may lead to protection 
from radiation-induced apoptosis (Yazlovitskaya et al., 2006).

Other research with lithium pretreatment (LiCl in saline, 1 and 
2 mmol/kg intraperitoneally) in male Wistar rat pups, where 
single absorbed dose of 6 Gy was applied, showed prevention 
from the radiation-induced cognitive decline. It also reduced 
signs of hypothalamus-pituitary dysfunction, with the doses used 
approximated to those in humans, without any signs of toxicity. 
Lithium treatment prevented irradiation-induced acute inflammatory 
reactions 6 hours after irradiation, and hippocampal cell death. When 
administered before and after irradiation, it prevented or delayed 
cell death at 6 and 24 hours after irradiation. It also prevented 
inflammatory response which was seen by cytokine and chemokine 
expression, which was reduced at 6 hours after irradiation. Increase 
in brain-derived neurotrophic factor levels was arrested by as well 
(Zhou et al., 2017).

Neuroprotection with lithium could enhance protection of normal 
neuronal tissue during in cases of medical radiation, and suggests 
a treatment complementary to cranial radiotherapy that help to 
decrease the irradiation-induced brain injury and cognitive damage.

Fingolimod
Fingolimod, sphingosine-1-phosphate receptor modulator (FTY720), 
can also be a novel therapeutic used in prevention of irradiation-
induced cognitive dysfuncion. Sphingosine-1-phosphate receptors 
are expressed on many cells of the nervous system and are important 
in neuronal development and angiogenesis. Fingolimod can cross 
the blood-brain-barrier and acts neuroprotective, showed to reduce 
excitotoxicity and microglial activation in CNS (Wang et al., 2021).

In mice after a single dose of 6 Gy X-ray irradiation, pretreatment 
fingolimod (1 mg/kg per day orally) reduced radiation-induced cell 
death, microglia activation and partly rescued radiation-induced 
inhibition of neurogenesis. It decreased the activated microglia in 
the dentate gyrus 24 hours after irradiation, and almost reached 
the values of non-irradiated control group. This was observed also 
four weeks after irradiation. FTY720 treatment of neural progenitor 
cells (NPCs) before X-ray exposure led to an ameliorated cell death 
both in vitro and in vivo. Observed also was a suppression of 
microglia activation in the dentate gyrus 24 hours after the exposure. 
The results in vivo showed the number of neuronal progenitor 
cells increased 4 weeks after the exposure, which indicates a 
neuroprotection (Metzdorf et al., 2019). FTY 720 used at nanomolar 
concentrations, which correspond to drug levels in the brain, 
increased the viability of irradiated neural stem cells (NSCs) in a 
dose-dependent manner. Its administration also promoted neuronal 
differentiation, counteracting the radiation-induced suppression of 
NSC neurogenic potential. In contrast, FTY 720 did not radioprotect 
human glioma cells and led to decreased viability in the breast 
cancer cell line (Stessin et al., 2012). In another study, it partially 
restored neurogenesis in the dentate gyrus, 7 weeks post-irradiation 
and improved the Morris water maze test results after 7 Gy cranial 
irradiation in mice, and completely restored the learning ability to 
control levels. This is showing the effect of fingolimod on improving 
cognition and learning after irradiation (Stessin et al., 2017).

The shown safety profile of Fingolimod, and neuroprotective results 
from recent researches imply its potential use in the clinic, mostly for 
patients receiving whole brain radiation therapy.

Ramipril
Ramipril belongs to the angiotensin-converting enzyme inhibitors, 
that can influence memory and learning. The renin-angiotensin 
system is involved in many pathophysiological processes in the 
central nervous system, also in TBI. Angiotensin-converting enzyme 
inhibitors inhibit the activity of enzymes involved in the renin-
angiotensin system and thereby diminish the negative outcome 
of the damage. Their benefit is that they are well-tolerated drugs 
and could selectively modulate radiation-induced normal tissue 
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injury. Ramipril was proven to improve various types of learning and 
memory, also showed positive effect in lowering the intensity of 
radiation injury in rats (Erpolat et al., 2020).

Ramipril, is able to modulate radiation-induced optic neuropathy 
(Kim et al., 2004), and prevent or reduce fractionated whole-brain 
radiation-induced cognitive damage (Robbins et al., 2009). Ramipril 
influences the brain renin-angiotensin system directly, because of 
its ability to cross the blood-brain barrier. By inhibition of the renin-
angiotensin system, it is possible to alleviate the development of 
late delayed effects after whole brain radiation in doses above the 
necrotic threshold (Kim et al., 2008). 

In male rats, the application of ramipril (15 mg/L of ramipril/water) 
before, during and after fractionated whole brain radiation injury 
prevented the decline in perirhinal cortex-dependent cognitive 
function. It also arrested the increase in activated microglia in the 
dentate gyrus after irradiation, and increased systemic levels of Ang 
I. This ability to influence Ang I, also in plasma, suggests angiotensin-
converting enzyme inhibition (Lee et al., 2012).

In another study, ramipril (1.5 mg/kg in water) was applied 24 hours 
after 10 Gy WBI for 12 weeks, and it reduced the negative effect on 
neurogenesis in the dentate gyrus in rats. As an addition, it lowered 
the basal rate of granule cell neurogenesis in control rats, indicating 
that Ang II participates in maintaining granule cell neurogenesis 
(Jenrow et al. 2010). Some of the most radio-sensitive cells of the 
CNS are the neural progenitor cells. Atorvastatin combined with 
ramipril administered 24 hours after exposing rats to 10 Gy of WBI 
synergistically mitigated destruction of doublecortin positive neural 
progenitor cells (Jenrow et al., 2011). 

Administration of ramipril seems to prevent the fractionated whole-
brain irradiation disturbance of cognitive function, and influences 
other key processes in the neural cells. It might be therefore used as 
a radioprotector with very positive outcomes.

Melatonin
Melatonin (MEL), N-acetyl-5-methoxytryptamine, is a hormone 
synthesized in pineal gland. Melatonin is a small, lipophilic molecule, 
can penetrate the blood-brain-barrier, it can effortlessly pass through 
biomembranes, which means its high bioavailability. It is a strong free 
radical scavenger that impede inflammation and apoptosis in brain 
tissue injuries. It is produced during the dark phase of the day, and 
therefore has an important function in the regulation of the circadian 
rhythms. Melatonin and its metabolites are effective scavengers 
of almost all reactive oxygen and nitrogen species and powerful 
antioxidants, with neuroprotective effects in the CNS (Rancan et al., 
2018; Salman et al., 2021). 

From many researches it is obvious, that it could act neuroprotective 
in irradiation-induced apoptosis and oxidative stress in the CNS. 
Pretreatment with melatonin at different concentrations before 
ionizing radiation may reduce oxidative damage through the 
regulation of SOD by lowering O2

– as well as of GPx and CAT by 
decreasing H2O2. Melatonin reduces radiation-induced apoptosis in 
other parts of the body as well. In CNS, it increases the antioxidant 
capacity of the tissue (Li et al., 2016). It was found, that melatonin 
relieved the signs of radiation injury in the normal cells (Najafi et al., 
2017), and also the brain injuries caused by X- and gamma-irradiation 
(Manda and Reiter, 2010). Its application (100 mg/kg) prior to 
radiation reduced the processes of apoptosis in various organs such 
as the subventricular zone (SVZ), hippocampus, peripheral blood 
lymphocytes in rats (Naseri et al., 2017). Melatonin also preserved 
adult hippocampal neurogenesis and cognition after irradiation 
(Manda and Reiter, 2010).

It was noted, that melatonin treatment protects from the DNA 
damage after gamma-radiation, showed anti-apoptotic effect, 
prevented oxidative stress in the brain of the irradiated rats after 
whole-body exposed to 4-Gy γ-radiation. Also, it increased the 
release of neurotransmitters, antioxidants, and anti-inflammatory 
factors (El-Missiry et al., 2021).

After single radiation dose of 25 G WBI in rats, melatonin 
pretreatment lowered the NO level significantly in the brainstem 
tissues. Also, it increased antioxidant enzymes in the brainstem 
(Karbownik and Reiter, 2000). Caspase-3 is an irreversible apoptotic 
marker, this protein acts in the late stage of apoptosis (Kiang et 
al., 2017). The pretreatment reduced the level of expression and 

activation of caspase-3 after radiation, and thereby stopped X-
radiation-mediated apoptosis in the brainstem. In addition, after 4-Gy 
whole-brain X-irradiation it acted neuroprotective against apoptosis 
in hippocampus (Motallebzadeh et al., 2020).

In recent studies, in irradiated animals with melatonin treatment 
there was measured a higher number of surviving mature neurons 
than without it. In a study with two-month-old rats, melatonin-
treated, the number of NeuN-positive cells was increased in the 
CA1 region after irradiation. It also seemed to stimulate immune 
reactions, with strongly elevated level of reactive oxygen species 
in irradiated group treated with melatonin, reaching the value 
of healthy animals. There was also the recovery in hippocampal-
dependent memory recognition in irradiated animals with treatment. 
Melatonin treatment (4 mg/kg in drinking water) could prevent the 
decline of the proliferative activity in the hilus of juvenile rats, the 
loss of hippocampal neurons and increase cognition after ionizing 
irradiation (Pipová Kokošová et al., 2020).

Melatonin  appl ied before  25 Gy s ing le  dose i r radiat ion 
decreased the oxidative stress in SVZ of irritated rats, as well 
as the levels of malondialdehyde, and stimulated the CAT. It 
increased the anti-oxidant level and prevented the production 
of free radicals (Naseri et al., 2017). The injection of 100 mg/kg  
was administered before radiation of 1000 cGy (cobalt-60 source), 
which led to the significant reduction of the DNA fragmentation and 
lipid peroxidation in the brain (Ündeğer et al. 2004). Observed also 
was an inhibition the cerebellum cell apoptosis in mice brains with 2 
Gy 56Fe particle irradiation (Manda and Reiter, 2010).

In other study, when mice were irradiated with 4 Gy carbon ion 
radiation, an extensive decline in the apoptotic brain cells was 
measured after the use of melatonin. This indicates, that melatonin 
could stop apoptosis in brain tissue after carbon ion irradiation, 
it could suppress the cytochrome c release, and thereby stop the 
processes of cell death. The study showed also prevention of the 
reduction in antioxidant enzyme activities (SOD and CAT) as well as 
enhancing Nrf2 activation (Liu et al., 2012).

Since melatonin is a natural product, it shows low toxicity and 
therefore, safety and availability of use. It could be possibly used also 
for astronauts during long-term flights in deep space.

Conclusion
Exposure to ionizing radiation results in serious CNS malfunctions 
and cognitive deficits, with many morphological and also clinical 
manifestations. The prevention strategies or treatment options of 
early and late effects of radiation would strongly improve quality of 
life. In the past years, many new drugs have been in development for 
the possible use as prophylaxis or therapeutics of radiation induced 
brain damage. Not each one has yet been clinically approved for 
the treatment, however there are many very promising agents. In 
this review, we provided the view on the novel agents that have 
proved efficacy for treatment of radiation induced brain damage. 
They all show a great potential, however it is important to test all of 
the side effects and other possible interactions of those and also of 
the other medical drugs that are now in the developmental stages, 
to prove their safety and efficacy in the clinical medicine. It is also 
important to continue the research of CNS to fully understand the 
radiation-induced cognitive impairment and damage of the nervous 
tissue to broaden the knowledge of its mechanisms, detection and 
thereby also to improve the development and the selection of the 
new agents, that can help to prevent or effectively treat radiation 
damage.
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