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Abstract: An efficient synthetic route to highly functionalized naphthalenes and quinolines has
been developed using domino reactions between Morita—Baylis—Hillman (MBH) acetates and active
methylene compounds (AMCs) promoted by anhydrous K,COj in dry N,N-dimethylformamide
(DMF) at 23 °C. The substrates incorporate allylic acetates positioned adjacent to a Michael acceptor
as well as an aromatic ring activated toward a SN Ar ring closure. A control experiment indicated
that the initial reaction was an SN2'-type displacement of a side chain acetoxy by the AMC anion to
afford the alkene product bearing the added nucleophile trans to the SNyAr aromatic ring acceptor.
Thus, equilibration of the alkene geometry of the initial product was required prior to cyclization.
Products were isolated in good to excellent yields. Numerous cases (24) are reported, and several
mechanistic possibilities are discussed.

Keywords: Morita—Baylis—Hillman acetates; active methylene compounds; domino reactions;
naphthalenes; quinolines

1. Introduction

One facet of our research program has focused on domino reactions for the rapid assembly
of molecules with potential use in drug synthesis. This requires highly functionalized compounds
with reactive sites strategically positioned to capture intermediates from an initial reaction in one
or more subsequent reactions to produce targets of high value in an efficient, eco-friendly manner.
Among the compounds meeting these requirements are the products of the Morita—Baylis—Hillman
(MBH) reaction. These highly functionalized adducts have proven quite useful in drug synthesis [1,2].
Additionally, the naphthalenes [3] and quinolines [4,5] targeted in this work could have immense value
in medicinal chemistry.

Previous work by others has appeared in this area, but details were lacking, and the
diversity of examples reported was limited. One article outlined the formation of a number of
naphthalene derivatives [6] from MBH acetates and active methylene compounds (AMCs) (Figure 1A),
but the initial adduct was assumed to have the correct geometry for ring closure, and the only
molecule eliminated during the final aromatization was benzenesulfinic acid (PhSO,H). A second
report described a synthesis of 3-quinolinecarboxylic esters [7] involving the reaction of ethyl
2-((2-chlorophenyl)((tosylsulfonamido)methyl)acrylate acrylate with tosylsulfonamide (Figure 1B).
A third study [8] advanced a synthesis of dihydroacridines from MBH acetates derived from
2-chloroquinoline-3-carboxaldehyde and AMCs to fuse a substituted benzene ring to the heterocycle
(Figure 1C). The final account detailed the AMC-dependent annulation of substituted benzene rings by
reaction of this same MBH precursor to give acridines and phenanthridines [9] (Figure 1D). The current
work describes the synthesis of naphthalenes and quinolines with a broader range of functionality,
evaluates a selection of different leaving groups, and discusses several mechanistic possibilities.
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Figure 1. Previous cyclizations to generate aromatic systems using Morita-Baylis—Hillman (MBH)
acetates. (A): Formation of naphthalenes; (B): Formation of quinolines; (C): Formation of
dihydroacridines; (D): Formation of acridines and phenanthridines.

2. Results and Discussion

The MBH reaction was first reported in 1968 [10] and has undergone many modifications [11-13]
to improve its outcome. The generally accepted procedure calls for 1 equiv. of the aldehyde and
1.2 equiv. of the electron-poor alkene in the presence of 1.5 equiv. of 1,4-diazabicyclo [2.2.2]octane
(DABCO) in acetonitrile (ACN) at room temperature (23 °C) [14]. For the current project, we have
generated these adducts by the reaction of polarized alkenes with aromatic aldehydes incorporating
functionality that further activates the aromatic ring toward a SyAr reaction using a 2:1 stoichiometry
of alkene:aldehyde with 1.2 equiv. of DABCO (Scheme 1). Thus, 2-fluoro-5-nitrobenzaldehyde (1a),
2-fluoro-5-cyanobenzaldehyde (1b), and 2-fluoronicotinaldehyde (1c) were each treated with ethyl
acrylate (2a) and acrylonitrile (2b) in ACN at 23 °C for 2 days to give the MBH alcohols (3a—e) in 86-98%
yields. Attempts to acylate the alcohol adduct 3b with acetic anhydride at reflux led to acylation of
the alcohol and allylic inversion of the acetate to afford (E)-2-cyano-3-(2-fluoro-5-nitrophenyl)allyl
acetate (4). Interestingly, an X-ray structure of this product showed the acetoxymethyl group of the
rearranged acetate to be trans to the substrate aromatic ring (see Scheme 1 and the Supplementary
Materials). Acylation of the MBH adducts without rearrangement was achieved using trimethylsilyl
trifluoromethanesulfonate (TMSOTf) as an acylation catalyst [15] in dichloromethane (DCM).
This catalyst permitted the acylation of 3a—e at 0 °C in 30 min and delivered the unrearranged
acetates 5-9, respectively, in 95-98% yields.

The results of our study are summarized in Tables 1 and 2. The reaction of substrates 5-8 (1 equiv.)
with AMCs 10-14 (1.5 equiv.) yielded 1,3,6-trisubstituted naphthalenes 15-18, while precursor 9
afforded 6,8-disubstituted quinolines 19 with the same panel of nucleophiles. Naphthalene formation
was promoted by K,COj (1.5 equiv.) in N,N-dimethylformamide (DMF) at 23 °C in 1 h, while quinolines
were similarly prepared but required heating at 90 °C for 6 h. Yields were uniformly good to excellent,
with the 2-fluoro-5-nitrophenyl Sy Ar acceptor giving the most efficient ring closure, followed by the
2-fluoro-5-cyano compound and finally 2-fluoropyridine. The overall process appears to involve
diastereoselective addition of the nucleophile to the double bond methylene of the MBH substrate with
loss of the acetoxy group. Following this addition, deprotonation of the methine hydrogen from the
added nucleophile, Sy Ar cyclization, and elimination fuses a disubstituted benzene ring to the original
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aromatic nucleus. The exact sequence of events for this process is unclear and is discussed in more detail
below. In the current reactions, the final aromatization occurred by the elimination of benzenesulfinic
acid (PhSO,H) [6,16], nitrous acid (HNO3) [9,17], or ethoxycarbonyl (CO,Et, presumably by hydrolysis
and decarboxylation) [9,18], all of which have precedent in the literature, although the loss of CO,Et in
preference to the CN group was not expected. Aromatization by the elimination of CN is known [19,20],
but it appears to be quite rare.

oH 3a (W =CH, X = CO,Et, Z=NO,)
, , i 3b(W=CH,X=CN,Z=NO,)
X X
0, W DABCO | 3¢ (W=CH, X = CO,Et, Z=CN)
W F CH;CN, 48 h, rt WO F 3d (W=CH, X=CN, Z=CN)
86-98% 3¢ (W=N, X = CO,Et, Z=H)

1a (W=CH, Z=NO,) 2a(X=CO,Et)
1b (W=CH,Z=CN) 2b(X=CN)
le (W=N,Z=H)

Ac,0 07 N~
3b C
reflux ]
N
NO
4 )
OAc 5 (W=CH, X = CO,Et, Z = NO,)
AcyO 6 (W=CH, X =CN, Z=NO,)
Jace VSN X 7 (W=CH, X = CO,Et, Z = CN
TMSOT{, DCM | (W=CH, X=CO,Et,Z=CN)
0°C, 30 min P 8 (W=CH, X=CN, Z=CN)
95-98% woF 9 (W=N, X = CO,Et, Z = H)

Scheme 1. Synthesis of MBH acetates for cyclization and rearranged product 4 (CCDC 2035023).

The syntheses are quite efficient, requiring only three steps and one chromatographic purification
for the final products 15-19. The products were isolated in good to excellent yields (75-96%) and
were fully characterized by spectroscopic methods. The IR spectra indicated the presence of the
expected functional groups (conjugated CO,Et or CN, polarized conjugated double bonds, and NO;).
The naphthalenes showed three one-proton doublets (J; 3 < 3 Hz or apparent singlets) for the isolated
protons at C2, C4, and C5, a doublet of doublets (J1 7 4n4 1,3 = large and small) for the proton at C7,
and a doublet (J; , > 8 Hz) for the proton at C8. The chemical shifts were in accordance with those
expected for an electron-deficient aromatic system. The quinolines exhibited two doublets (J; 3 < 3 Hz)
for the protons at C2 and C4 as well as characteristic chemical shifts and couplings for the protons on
C5-C7 of the system. The '3C-NMR were appropriate with respect to the number of carbonyl, aromatic,
and aliphatic carbons. The mass spectra showed an ion corresponding to the molecular weight of the
compound, and elemental analyses confirmed the formulas and purity.

Two basic mechanisms are possible for this domino transformation: (1) initial SyAr attack by the
AMC anion on the aromatic ring, followed by conjugate addition to the side chain double bond with an
elimination of acetoxy or (2) initial SN2'-type displacement of acetoxy from the side chain, followed by
a SNAr cyclization. Option 1 would unquestionably predict the final product of the reaction and would
not depend on the selective formation of a single alkene from the SN2” process. Option 2 would require
a diastereoselective addition to give the double bond geometry that positions the active methylene
fragment cis to the SNyAr acceptor ring. To probe this aspect of the transformation, a control experiment
was performed wherein the anion of methyl phenylsulfonylacetate was generated in the presence of a
mixture of 2-fluoro-5-nitrotoluene (20) and 2-cyano-1-(2-fluorophenyl)allyl acetate (21) to determine
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the relative reactivity of the side chain versus the aromatic ring. If the side chain reacted preferentially,
we were also interested in assessing any E-Z diastereoselectivity in the allylically rearranged double
bond. Under the standard conditions, a reaction occurred exclusively at the side chain of the MBH
acetate and also afforded only methyl (Z)-4-cyano-5-(2-fluorophenyl)-2-(phenylsulfonyl)-4-pentenoate
(22, 70%) having the added active methylene nucleophile positioned trans to the aromatic S\yAr acceptor
ring. This was confirmed by an X-ray structure of adduct 22 (see Scheme 2 and the Supplementary
Materials). Compound 20 (93%) was recovered unchanged from this experiment. Thus, the overall
sequence must proceed via Option 2 above, followed by double bond equilibration prior to SyAr
ring closure.

Table 1. Formation of naphthalenes.

OAc
z X Yy
; K,CO,, DMF, 23 °C, 1 h

10 (L=CO,Et, Y =CN)
5-8 11 (L = SOzph, Y= COzMe) 15-18
12 (L =NO,, Y = CO,Et)
13 (L = SO,Ph, Y = COPh)
14 (L =SO,Ph, Y = COMe)

Substrate AMC? LP X Y Z Pdt (%Yield)
OAc 10 COEt  COEt  CN NO, 15a (90)
O,N m CO,Et 11 SO,Ph COEt CO,Me  NO, 15b (91)
12 NO, CO,Et CO,Et NO, 15¢ (94)
F 13 SO,Ph  CO,Et COPh  NO, 15d (96)
5 14 SO,Ph  CO,Et COMe NO, 15e (92)
OAc 10 COEt  CN CN NO, 16a (80)
O,N m@\] 11 SO,Ph CN  CO,Me NO, 16b (86)
12 NO, CN  COEt NO, 16¢ (88)
F 13 SO,Ph  CN  COPh  NO, 16d (90)
6 14 SO,Ph  CN  COMe NO, 16e (88)
OAc 10 COEt  COEt  CN CN 17a (80)
NC mcozm 11 SO,Ph  CO,Et CO,Me CN 17b (82)
12 NO, CO,Et COEt CN 17c (83)
F 13 SO,Ph CO,Et COPh  CN 17d (85)
7 14 SO,Ph CO,Et COMe CN 17e (84)
OAc 10 COEt  CN CN CN 18a (75)
NC CN 11 SO,Ph  CN  COMe CN 18b (78)
m 12 NO, CN COEt CN 18c (80)
F 13 SO,Ph  CN  COPh CN 18d (80)
8 14 SO,Ph  CN  COMe CN 18e (79)

2 AMC = active methylene compound. P L = leaving group.
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Table 2. Formation of quinolines.

OAc
CO,Et >y
| NN K,CO3, DMF, 23 °C, 1 h
10 (L =CO,Et, Y = CN)
9 11 (L =SO,Ph, Y = CO,Me) 19
12 (L =NO,, Y = CO,Et)
13 (L = SO,Ph, Y = COPh)
14 (L = SO,Ph, Y = COMe)
Substrate AMC? Lb Y Pdt (%Yield)
OAc 10 CO,Et CN 19a (75)
N CO,Et 11 SO,Ph CO,Me 19b (82)
| _ 12 NO, CO,Et ND ©
N F 13 SO,Ph COPh 19d (80)
9 14 SO,Ph COMe 19e (76)

2 AMC = active methylene compound. P L = leaving group. ¢ ND = not done.

PhSO,
OAc MeO,C
OzN\@CHg CK\WCN PhSO;_CO,Me Y
F ' P K,CO;, DMF, 23 °C, 1 h C\\\N
20 21 F
22

Scheme 2. Control experiment: Selective reaction of the MBH acetate and formation of the Z alkene 22
(CCDC 2035022).

Analysis of the reactant in the SN2’ reaction (Option 2 above) demands that the starting conformation
minimizes the steric interaction between the aryl, the acetoxy, and the electron-withdrawing group
(EWG = CO,Et or CN) (Scheme 2). An earlier study describing the reaction of an acrylate-derived MBH
alcohol with HBr proposed conformation 23 (Figure 2), which has an additional stabilizing H-bond
between the OH and the EWG, to rationalize the products [20]. This model would favor formation of
the alkene that places the incoming active methylene fragment cis to the 2-fluoro-5-nitrophenyl moiety
in the product. With the current substrates, H-bonding is not possible, and so the large acetoxy group
was expected to orient away from the EWG (perhaps more so for CO,Et than CN) to minimize steric
crowding (Scheme 3). Then, an initial SN2’ reaction involving a syn orientation of the nucleophile and
leaving group invoked in some earlier work [21,22] would give an adduct with the AMC fragment
trans to the SNAr acceptor ring as in the aforementioned competitive reaction. Thus, in order for the
cyclization to occur, the initial Michael adduct 22 must equilibrate to bring the nucleophilic center
cis to the activated aromatic ring to allow cyclization by an intramolecular SN Ar reaction. Possible
mechanisms for this isomerization are discussed below.
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Figure 2. Conformation of an MBH alcohol with a stabilizing H-bond.
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Scheme 3. SN2’ mechanism leading to the formation of naphthalenes from MBH acetates.

In reactions at the side chain allylic moiety, there are two possible scenarios to explain the
addition to the MBH acetate. The first [22] invokes an Sn2’ process where a nucleophile attacks C1
(unsubstituted) of the allylic moiety, resulting in an accumulation of electron density on the opposite
face of the molecule at C2. Then, this electron density is responsible for assisting in the departure of the
acetoxy leaving group at C3. This process has been used to rationalize the reported preference for a syn
orientation between the incoming nucleophile and the leaving group often seen in the reaction [23-25],
although exceptions are known [26] with certain Nu™/L™ combinations. The second scenario [27] claims
that there is no justification for a syn orientation between the nucleophile and the leaving group. In fact,
in highly substituted derivatives, such as 5-9, it has been suggested that the formation of a stabilized
carbocation is more likely, in which case the avoidance of steric interactions guides the transformation
to give the final product stereochemistry.

The SN2’ initiated mechanism is depicted in Scheme 3 for the reaction of 6 with 11 to give 16b.
The initial conformation of 6 would allow minimal steric interaction between the groups on the allylic
side chain. In this conformation, the acetoxy substituent should hinder approach to the top face while
the planar aromatic ring does not significantly block the bottom face. Introduction of the nucleophile
to the bottom face would result in an accumulation of negative charge on the top face of the allylic
system, as shown in A. Rotation of the acetoxy group 120° would position it anti to the accumulated
negative charge and move the substrate 2-fluoro-5-nitrophenyl (Ar) moiety away from the newly added
nucleophile to give B. Then, the elimination of acetoxy would deliver the Z alkene 22. Subsequent
equilibration of the double bond geometry to generate 24 and deprotonation of the residual active
methine proton to give C would be followed by ipso attack at the fluorine-bearing aromatic carbon
to afford Meisenheimer intermediate D. Rearomatization by loss of fluoride should then lead to 25.
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After ring closure, a conformation aligned for the elimination of benzenesulfinic acid by an E2 process
would afford the fused aromatic compound 16b.

The second mechanistic scenario, illustrated in Scheme 4, begins with loss of the acetoxy group
to form stabilized 3-arylallylic cations E and F [27]. At this point, it may appear that addition to
carbocation F should be easier, since the alkene terminus is less hindered. Furthermore, since the EWG
should not be coplanar with the allylic cation, it should have less steric influence on the reaction, and the
larger bond angles around the carbocation should permit the formation of both E and F. Addition of
the active methylene nucleophile would then lead to both 22 and 24, which could cyclize as above.
In both examples cited in this paper, the alkene with the nucleophile trans to the SyyAr aromatic system
was isolated with no contamination by the cis. This observation could disqualify this mechanism,
but if 24 cyclizes very rapidly, it may not be possible to detect or isolate this short-lived intermediate.

H OAc -
Nc—\@ ~OAc or
Ar
6
o ( SO,Ph
CO,Me
elim SNAr B: equil
16b 25 24 — 22

Scheme 4. Carbocation mechanism leading to the formation of naphthalenes from MBH acetates.

Two pathways can be envisioned for the equilibration of 22 to 24 that must occur before SN Ar
cyclization: (1) a well-precedented Michael-reverse Michael process [28-32] involving the excess AMC
or perhaps (2) an intramolecular addition—elimination reaction (Scheme 5). This alternative process
would involve loss of the acidic methine proton from 22 and addition of the resulting anion G to the
benzylic double bond to give H. This may be possible, since the electron-deficient aromatic ring should
stabilize the benzylic anion. Then, bond rotation to give I and ring opening would deliver the anion
needed for cyclization. Once equilibration occurs, ring closure to 25 and elimination to generate 16b
should be facile. Even if the equilibrium does not strongly favor the required alkene geometry, product
formation should gradually siphon the initial adduct over to the fused aromatic target.

SO,Ph

°r

excess CO,Me B:
22 -
Michael-reverse Michael
\ B: 24 CO,Me
)
) . O,N f) CN
O,N Q _~e SO,Ph O,N &, ~SO,Ph
2 AN 2 ’/\
CN  CO,Me g CN COMe F
F PhO,S CO,Me
G H I
B: ON N SNAr ‘
16b
—PhSO,H -F-

PhSO, CO,Me
25

Scheme 5. Possible mechanisms for double bond equilibration.
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Addition to the substrates with formation of the Z alkene (EWG and added AMC trans) was
confirmed by both a side reaction observed during the synthesis to form acetate 4 and a control
experiment to form 15 (Scheme 2). The formation of a single product has significant precedent in
the case of EWG = CO,Et, but it is less probable for the sterically smaller EWG = CN group [33].
Unfortunately, the ester intermediate, while a single isomer, was not a solid and could not be subjected
to X-ray structure analysis. Additionally, Nuclear Overhauser enhancement (NOE) measurements
were inconclusive. Nevertheless, products incorporating both EWGs formed in high yields. In cases
where the initial addition yields the Z alkene, a reversible Michael reaction [28-32] or intramolecular
isomerization could establish an E-Z equilibrium that would eventually cyclize and eliminate H-L to
afford the aromatic products. A similar rationale can be applied to the pyridine-containing substrates
that lead to quinolines. The stereoselective formation of the alkenes with the added nucleophile cis
to the aromatic ring has been observed in the past with small nucleophiles [21,34-40]. This has been
confirmed by spectral characterization, and in one instance, X-ray analysis [41]. However, our results,
using large stabilized nucleophiles, appear to differ from these earlier findings.

3. Material and Methods

3.1. General Methods

Unless otherwise indicated, all reactions were carried out under dry N; in oven-dried
glassware. All reagents and solvents were used as received. Reactions were monitored by thin
layer chromatography on silica gel GF plates (Analtech No 21521, Newark, DE, USA). Preparative
separations were performed by flash chromatography on silica gel (Davisil®, grade 62, 60-200 mesh,
Sorbent Technologies, Norcross, GA, USA) containing UV-active phosphor (Sorbent Technologies No.
UV-05) slurry packed into quartz columns. Band elution for all chromatographic separations was
monitored using a hand-held UV lamp (Fisher Scientific, Pittsburgh, PA, USA). Wash solutions used in
work-up procedures were all aqueous. Melting points were obtained using a MEL-TEMP apparatus
(Cambridge, MA, USA) and are uncorrected. FT-IR spectra were run using a Varian Scimitar FTS 800
spectrophotometer (Randolph, MA, USA) as thin films on NaCl disks. 'H- and '*C-NMR spectra
were measured using a Bruker Avance 400 system (Billerica, MA, USA) in the indicated solvents at
400 MHz and 101 MHz, respectively, with (CHz3)45i as the internal standard; coupling constants (J)
are given in Hz. Low-resolution mass spectra were obtained using a Hewlett-Packard Model 1800A
GCD GC-MS system (Palo Alto, CA, USA). Details of the X-ray structure determinations are given in
the Supplementary Materials. Elemental analyses (+ 0.4%) were determined by Atlantic Microlabs
(Norcross, GA, USA).

3.2. Representative Procedure for the Synthesis of MBH Alcohols (3a—e)

To a stirred solution of the aldehyde 1a—c (1 equiv.) and DABCO (1.2 equiv.) in ACN (8 mL) under
N, was added ethyl acrylate (2a) or acrylonitrile (2b) (2 equiv.) at23 °C. After 24-48 h, TLC analysis (10%
EtOAc/hexane) indicated the reaction was complete. The solution was added to water, and the mixture
was extracted with EtOAc (3 x 25 mL). The combined organic layers were washed with 0.5 M HCl
(2 X 10 mL), saturated NaHCQO3, and saturated NaCl and then dried (Na,SOy). Removal of the solvent
under vacuum resulted in pure MBH alcohols 3a—e, which were used without further purification.

3.3. Synthesis of (E)-2-cyano-3-(2-fluoro-5-nitrophenyl)allyl acetate (4)

A solution of the MBH alcohol 3b (1.11 g, 5 mmol) was dissolved in acetic anhydride (5.0 mL) and
boiled for 6 h. The mixture was cooled, concentrated under vacuum, and the residue was dissolved
in DCM (25 mL). The solution was washed with saturated NaHCO3 (3 X 50 mL) and water, dried
(NapSO4), and concentrated under vacuum to afford 4 (1.13 g, 4.3 mmol, 86%) as an off-white solid, m.p.
78-79 °C. IR: 2222, 1749, 1621, 1530, 1352 cm™!; TH-NMR (400 MHz, CDCl3): § 8.99 (dd, ] = 6.3, 2.8 Hz,
1H), 8.35 (ddd, | = 9.0, 4.4, 2.8 Hz, 1H), 7.43 (s, 1H), 7.33 (t, ] = 9.0 Hz, 1H), 4.22 (d, ] = 1.3 Hz, 2H),
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2.19 (s, 3H); 3C-NMR (101 MHz, CDCl3): § 170.1, 163.5 (d, | = 263.3 Hz), 144.4,135.9 (d, ] = 5.4 Hz),
127.8 (d,] =10.7 Hz), 125.4 (d, ] = 3.7 Hz), 122.1 (d, ] = 14.3 Hz), 116.1 (d, ] = 24.4 Hz), 115.5, 112 4,
(d, ] =2.1Hz), 64.2,20.7; MS (EI): m/z 264 [M]*; Anal. Calcd for C;oH9FN,Oy: C 54.55; H, 3.43; N, 10.60.
Found: C, 54.58; H, 3.45; N, 10.53. The X-ray structure of 4 (CCDC 2035023) was obtained and the
thermal elipsoid plot is shown in Scheme 1 and the Supplementary Materials.

3.4. Representative procedure for the Synthesis of MBH Acetates (5-9)

A solution of the MBH alcohol 3a-d (1 equiv.) in DCM (2 mL) was treated with acetic anhydride
(1.5 equiv.) at 0 °C, followed by a 1 M solution of TMSOTf in DCM (20 pL/mmol substrate) [15].
The MBH alcohol 3e (1 equiv.) required acetic anhydride (3 equiv.) and 1 M TMSOTf in DCM
(60 pL/mmol substrate). After 30 min, TLC analysis (10% ether in hexane) showed the reaction was
complete. The reaction mixture was added to saturated NaHCO3, and the mixture was extracted with
DCM (3 x 5 mL). The organic extracts were washed with water, dried (Na;SO;), and evaporated under
vacuum to afford clean MBH acetates 5-9, which did not require further purification. After optimization,
this procedure was scaled up by a factor of five with no significant decrease in yield.

3.4.1. Ethyl 2-(acetoxy (2-fluoro-5-nitrophenyl)methyl)acrylate (5)

Yield: 305 mg (0.98 mmol, 98%) as a colorless oil; IR: 1751, 1723, 1639, 1532, 1351 cem~L; TH-NMR
(400 MHz, CDCl3): 4 8.26 (dd, | = 6.0, 2.8 Hz, 1H), 8.23 (ddd, ] = 8.9,4.3,2.9 Hz, 1H), 7.22 (t, ] = 8.9 Hz,
2H), 6.91 (s, 1H), 6.54 (s, 1H), 4.18 (qd, ] = 7.1, 1.3 Hz, 2H), 2.15 (s, 3H), 1.25 (t, ] = 7.1 Hz, 3H); 13C.NMR
(101 MHz, CDCl3): 6 169.0, 164.2, 163.7 (d, ] = 232.5 Hz ), 144.2 (d, ] = 2.9 Hz), 137.4, 127.5, 127 .4
(d, ] =3.1Hz),126.0(d, ] =10.5Hz), 125.1 (d, ] = 5.4 Hz), 116.9 (d, | = 24.5 Hz), 66.6 (d, ] = 2.8 Hz), 61.3,
20.8 (d, ] = 1.6 Hz), 14.0; MS: m/z 311 [M]""; Anal. Calcd for C14H14FNQOg: C, 54.02; H, 4.53; N, 4.50.
Found: C, 53.94; H, 4.54; N, 4.39.

3.4.2. 2-Cyano-1-(2-fluoro-5-nitrophenyl) allyl acetate (6)

Yield: 259 mg (0.98 mmol, 98%) as off-white crystals, m.p. 66-67 °C; IR: 2232, 1759, 1632, 1532,
1535, 1352 cm™!; 'H-NMR (400 MHz, CDCl3): & 8.42 (dd, ] = 6.1, 2.8 Hz, 1H), 8.31 (ddd, ] = 9.0, 4.4,
2.8Hz, 1H),7.29 (t,] =9.0 Hz, 1H), 6.64 (s, 1H), 6.19 (s, 1H), 6.18 (s, 1H), 2.26 (s, 3H); 13C-NMR (101 MHz,
CDCly): 5 168.8,163.1 (d, ] = 260.1 Hz), 144.7, 133.7, 126.8 (d, ] = 10.3 Hz), 125.3 (d, ] = 15.1 Hz), 124.1
(d, ] =49 Hz), 120.9,117.1 (d, ] = 23.7 Hz), 115.2, 67.8 (d, ] = 3.0 Hz), 20.8; MS: m/z 264 [M]*’; Anal.
Calcd for C1oH9FN,Oy4: C, 54.55; H, 3.43; N, 10.60. Found: C, 54.63; H, 3.45; N,10.52.

3.4.3. Ethyl 2-(acetoxy(5-cyano-2-fluorophenyl)methyl)acrylate (7)

Yield: 285 mg (0.98 mmol, 98%) as a colorless oil; IR: 2234, 1752, 1729, 1637 cm~ L TH-NMR
(400 MHz, CDCl3): $7.69 (dd, ] = 6.6,2.1 Hz, 1H), 7.64 (ddd, | = 8.5,4.7,2.1 Hz, 1H), 7.19 (t, ] = 9.3 Hz,
1H), 6.88 (s, 1H), 6.51 (s, 1H), 5.92 (s, 1H), 4.19 (q, | = 7.1 Hz, 2H), 2.15 (s, 3H), 1.25 (t, ] = 7.1 Hz, 3H);
I3C-NMR (101 MHz, CDCl3): § 169.0, 164.2, 162.6 (d, ] = 260.3 Hz), 137.6, 134.4 (d, ] = 9.8 Hz), 133.6
(d, ] =4.8 Hz), 127.7 (d, ] = 149 Hz), 127.3, 117.8, 117.2 (d, ] = 23.4 Hz), 108.7 (d, ] = 4.0 Hz), 66.6
(d, ] =29 Hz), 61.3,20.8, 14.0; MS: m/z 291 [M]*"; Anal. Calcd for C15H14,FNOy: C, 61.85; H, 4.84; N,
4.81. Found: C, 61.77; H, 4.86; N, 4.85.

3.4.4. 2-Cyano-1-(5-cyano-2-fluorophenyl)allyl acetate (8)

Yield: 259 mg (0.98 mmol, 98%) as off-white crystals, m.p. 74-75 °C; IR: 2255, 2235, 1757, 1613 cm™L;
TH-NMR (400 MHz, CDCl3): § 7.86 (dd, ] = 6.6, 2.1 Hz, 1H), 7.72 (ddd, ] = 8.4, 4.8, 2.1 Hz, 1H), 7.24
(t,] =9.3 Hz, 1H), 6.60 (s, 1H), 6.16 (s, 1H), 6.15 (s, 1H), 2.24 (s, 3H); 13C-NMR (101 MHz, CDCl;): &
168.8,161.9 (d, ] = 259.0 Hz), 135.2 (d, ] = 9.8 Hz), 133.7,132.3 (d, ] = 4.3 Hz), 125.6 (d, ] = 14.2 Hz),
120.9,117.44 (d, ] =22.8 Hz), 117.41,115.3,109.6 (d, ] = 4.0 Hz), 67.8 (d, ] = 3.2 Hz), 20.8; MS: m/z 244
[M]*"; Anal. Calcd for C13H9FN,O,: C, 63.93; H, 3.71; N, 11.47. Found: C, 63.81; H, 3.77; N, 11.35.
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3.4.5. Ethyl 2-(acetoxy(2-fluoropyridin-3-yl)methyl)acrylate (9)

Yield: 254 mg (0.95 mmol, 95%) as a colorless oil; IR: 1758, 1727, 1637 cm~L; TH-NMR (400 MHz,
CDCl;): & 8.19 (m, 1H), 7.81 (ddd, ] = 9.4, 7.4, 2.0 Hz, 1H), 7.20 (ddd, ] = 6.5, 4.8, 1.6 Hz, 1H), 6.81
(s, 1H), 6.50 (s, 1H), 5.92 (s, 1H), 4.18 (q, ] = 7.1 Hz, 2H), 2.14 (s, 3H), 1.24 (t, ] = 7.1 Hz, 3H); '3C-NMR
(101 MHz, CDCl3): 6 169.1,164.4,161.0 (d, ] = 241.9 Hz), 147.6 (d, ] = 14.9 Hz), 140.1 (d, ] = 4.3 Hz),
137.5,127.2(d, ] =1.2Hz), 121.4 (d, ] = 4.4 Hz), 120.5 (d, ] = 27.9 Hz), 67.8, 61.2, 20.8, 14.0; MS: m/z 267
[M]*; Anal. Calcd for C13H4FNOy: C, 58.42; H, 5.28; N, 5.24. Found: C, 58.33; H, 5.25; N, 5.16.

3.5. Representative Procedure for the Synthesis of Naphthalene and Quinoline Analogs Using MBH Acetates
and Active Methylene Compounds

A 50 mL, round-bottomed flask equipped with a condenser, stir bar, and N, inlet, was charged with
an MBH acetate (1 mmol) in DMF (2 mL). The corresponding active methylene compound (1.5 mmol)
in DMF (1 mL) and K;CO3 (207 mg, 1.5 mmol) were added at room temperature with continued
stirring. For naphthalenes 15-18, the reaction was complete in 1 h. For quinolines 19, the reaction was
stirred at room temperature for 1 h and gradually heated to 90 °C with stirring for 6 h. In each case,
TLC analysis (30% EtOAc in hexane) indicated the reaction was complete. The solution was poured
into de-ionized water (15 mL), and the mixture was extracted with EtOAc (3 X 25 mL). The combined
organic layers were washed with saturated NaCl and dried (Na;SO4). Removal of the solvent under
vacuum gave the crude product, which was purified by silica gel column chromatography to afford
the pure naphthalene/quinoline derivatives.

3.5.1. Ethyl 4-cyano-7-nitro-2-naphthoate (15a) from 5 and ethyl cyanoacetate (10)

Yield: 243 mg (0.90 mmol, 90%) as an off-white solid, m.p. 77-79 °C; IR: 1716, 1536, 1349 cm™L;
'H-NMR (400 MHz, CDCl3): § 8.91 (d, ] = 2.3 Hz, 2H), 8.60 (d, ] = 1.6 Hz, 1H), 8.48 (dd, ] = 9.2, 2.3 Hz,
1H), 8.36 (d,] =9.2 Hz, 1H), 4.42 (q,] = 7.1 Hz, 2H), 1.39 (t, ] = 7.1 Hz, 3H); I3C-NMR: 6 163.9, 147.1,
136.8,136.2,135.2,131.5,129.7, 127.4, 126.2, 124.0, 116.1, 111.6, 62.4, 14.3; MS (EI): m/z 270; Anal. Calcd
for C14H19N»Oy4: C, 62.22; H, 3.73; N, 10.37. Found: C, 62.26; H, 3.76; N, 10.28.

3.5.2. 3-Ethyl 1-methyl 6-nitronaphthalene-1,3-dicarboxylate (15b) from 5 and methyl
phenylsulfonylacetate (11)

Yield: 276 mg (0.91 mmol, 91%) as an off-white solid, m.p. 203-204 °C; IR: 1707, 1527, 1350 cm~ L
'H-NMR (400 MHz, CDCl3): $ 9.20 (d, ] = 9.5 Hz, 1H), 8.95-8.90 (complex, 3H), 8.45 (dd, ] = 9.5,2.5 Hz,
1H), 4.51 (q, ] = 7.1 Hz, 2H), 4.07 (s, 3H), 1.49 (t, ] = 7.1 Hz, 3H); *C-NMR (101 MHz, CDCl3): § 166.5,
164.9, 146.0, 137.0, 135.7, 133.0, 132.3, 129.0, 128.2, 127.9, 125.9, 122.9, 62.0, 52.8, 14.4; MS (EI): m/z 303
[M]*'; Anal. Calcd for C;5H3NOg: C,59.41; H, 4.32; N, 4.62. Found: C, 59.48; H, 4.30; N, 4.51.

3.5.3. Diethyl 6-nitronaphthalene-1,3-dicarboxylate (15¢) from 5 and ethyl nitroacetate (12)

Yield: 298 mg (0.94 mmol, 94%) as an off-white solid, m.p. 181-182 °C; IR: 1708, 1526, 1350 cm~ L
TH-NMR (400 MHz, CDCl3): §9.19 (d, ] = 9.5 Hz, 1H), 8.95-8.90 (complex, 3H), 8.44 (dd, ] =9.5,2.4 Hy,
1H), 4.53 (q, ] = 7.1 Hz, 2H), 4.51 (q, ] = 7.1 Hz, 2H), 1.50 (t, ] = 7.1 Hz, 3H), 1.49 (t, ] = 7.1 Hz, 3H);
13C-NMR (101 MHz, CDCl5): 5 166.1, 165.0, 145.9, 136.8, 135.7, 132.8, 132.3, 129.0, 128.4, 128.2, 125.9,
122.8, 62.0, 61.9, 14.4, 14.35; MS (EI): m/z 317 [M]*"; Anal. Calcd for C14H15NOq: C, 60.57; H, 4.77; N,
4.41. Found: C, 60.63; H, 4.73; N, 4.31.

3.5.4. Ethyl 4-benzoyl-7-nitro-2-naphthoate (15d) from 5 and 1-phenyl-2-(phenylsulfonyl)
ethan-1-one (13)

Yield: 335 mg (0.96 mmol, 96%) as a white solid, m.p. 160-161 °C; IR: 1724, 1657, 1530, 1350 cm~L;
TH-NMR (400 MHz, CDCl5): 6 8.99 (d, ] = 2.4 Hz, 1H), 8.93 (s, 1H), 8.36 (m, 2H), 8.27 (d, ] = 9.3 Hz,
1H),7.86 (d, ] =7.4Hz, 2H), 7.67 (t, ] = 7.5 Hz, 1H), 7.51 (t, ] = 7.7 Hz, 2H), 448 (q, ] = 7.1 Hz, 2H), 1.45
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(t, ] = 7.1 Hz, 3H); 13C-NMR (101 MHz, CDCl;): 5 196.1, 165.0, 146.2, 137.2, 137.18, 135.3, 135.0, 134.1,
132.1,130.5, 130.0, 128.9, 128.8, 127.8, 126.0, 122.5, 62.0, 14.3; MS (EI): m/z 349 [M]*; Anal. Calcd for
CaoH15NOs: C, 68.76; H, 4.33; N, 4.01. Found: C, 68.67; H, 4.35; N, 3.95.

3.5.5. Ethyl 4-acetyl-7-nitro-2-naphthoate (15e) from 5 and 1-(phenylsulfonyl)propan-2-one (14)

Yield: 262 mg (0.92 mmol, 92%) as a white flaky solid, m.p. 152-153 °C; IR: 1714, 1690, 1526,
1351 cm™!; 'H-NMR (400 MHz, CDCl3): § 9.01 (br t, ] = 8.2 Hz, 1H), 8.90 (m, 2H), 8.73 (br s, 1H), 8.42
(brt,J = 8.4 Hz, 1H), 452 (q,] = 7.1 Hz, 2H), 2.84 (s, 3H), 1.49 (t, ] = 7.1 Hz, 3H); 3C-NMR (101 MHz,
CDCl3): 6 200.3, 165.0, 146.1, 136.6, 135.6, 134.6, 132.5, 131.3, 128.7,128.5, 125.7, 123.2, 62.1, 29.8, 14.4;
MS (EI): m/z 287 [M]*; Anal. Calcd for C15H13NOs: C, 62.72; H, 4.56; N, 4.88. Found: C, 62.68; H, 4.55;
N, 4.79.

3.5.6. 6-Nitronaphthalene-1,3-dicarbonitrile (16a) from 6 and 10

Yield: 178 mg (0.80 mmol, 80%) as a white solid, m.p. 224 °C (dec); IR: 2250, 1541, 1354 cm~L;
'H-NMR (400 MHz, CDCl3): § 8.97 (d, ] = 2.2 Hz, 1H), 8.67 (s, 1H), 8.65 (dd, ] = 9.1, 2.2 Hz, 1H), 8.51
(d,7=9.2Hz, 1H), 8.26 (d, ] = 1.6 Hz, 1H); 13C-NMR (101 MHz, CDCl3): & 147.6, 139.7, 135.7, 135.5,
131.4,127.9,125.3,125.0, 116.0, 114.9, 113.2, 112.0; MS (EI): m/z 223 [M]*’; Anal. Calcd for C1,HsN3O5:
C, 64.58; H, 2.26; N, 18.83. Found: C, 64.52; H, 2.29; N, 18.74.

3.5.7. Methyl 3-cyano-6-nitro-1-naphthoate (16b) from 6 and 11

Yield: 220 mg (0.86 mmol, 86%) as a white solid, m.p. 219-220 °C; IR: 2254, 1708, 1534, 1350 cm™L;
H-NMR (400 MHz, CDCls): § 9.26 (d, ] = 9.5 Hz, 1H), 8.89 (d, ] = 2.4 Hz, 1H), 8.58 (s, 1H), 8.54
(d,] = 1.7 Hz, 1H), 8.51 (dd, ] = 9.5, 2.4 Hz, 1H), 4.08 (s, 3H); 3C-NMR (101 MHz, CDCl3): 5 165.3,
146.5,139.8, 135.0, 133.8, 132.2, 129.1, 128.6, 125.0, 123.8, 117.1, 111.3, 53.1; MS (EI): m/z 256 [M]*"; Anal.
Calcd for C13HgN,Oy4: C, 60.94; H, 3.15; N, 10.93. Found: C, 60.87; H, 3.13; N, 10.87.

3.5.8. Ethyl 3-cyano-6-nitro-1-naphthoate (16¢) from 6 and 12

Yield: 238 mg (0.88 mmol, 88%) as a white solid, m.p. 156-157 °C; IR: 2254, 1722, 1629, 1535,
1350 cm™!; 'TH-NMR (400 MHz, CDCl3): 5 9.26 (d, ] = 9.5 Hz, 1H), 8.89 (d, ] = 2.4 Hz, 1H), 8.58 (s, 1H),
8.53 (s, 1H), 8.51 (dd, ] =9.5,2.4 Hz, 1H), 454 (q, ] = 7.1 Hz, 2H), 1.50 (t, ] = 7.1 Hz, 3H); 13C-NMR
(101 MHz, CDCl3): 6 164.9, 146.5,139.6, 135.0, 133.7, 132.1, 129.5, 128.7, 125.0, 123.7, 117.2, 111.3, 62.4,
14.3; MS (EI): m/z 270 [M]*"; Anal. Calcd for C14HoN>Oy: C, 62.22; H, 3.73; N, 10.37. Found: C, 62.18;
H, 3.72; N, 10.31.

3.5.9. 4-Benzoyl-7-nitro-2-naphthonitrile (16d) from 6 and 13

Yield: 272 mg (0.90 mmol, 90%) as a white solid, m.p. 152-154 °C; IR: 2234, 1663, 1530, 1348 cm~L;
TH-NMR (400 MHz, CDCl3): § 8.94 (d, ] = 2.3 Hz, 1H), 8.58 (s, 1H), 8.42 (dd, ] = 9.3, 2.3 Hz, 1H), 8.29
(d,]=9.3Hz,1H),790(d,] =1.6 Hz,1H),7.84 (dd, ] =8.4,1.7 Hz, 2H), 7.71 (tt, | = 7.5, 1.4 Hz, 1H), 7.54
(t, ] = 7.5 Hz, 2H); 13C-NMR (101 MHz, CDCl3): § 194.7, 146.8, 138.5, 137.8, 136.6, 134.61, 134.55, 132.0,
130.5, 130.4, 129.1, 128.2, 125.0, 123.4, 117.3, 111.1; MS (EI): m/z 302 [M]*"; Anal. Calcd for C1gH19N,Os:
C,71.52; H, 3.33; N, 9.27. Found: C, 71.47; H, 3.31; N, 9.37.

3.5.10. 4-Acetyl-7-nitro-2-naphthonitrile (16e) from 6 and 14

Yield: 211 mg (0.88 mmol, 88%) as a white solid, m.p. 202-204 °C; IR: 2228, 1670, 1518, 1344 cm™L;
'H-NMR (400 MHz, CDCl5): 5 8.99 (d, ] = 9.5 Hz, 1H), 8.88 (d, ] = 2.4 Hz, 1H), 8.56 (s, 1H), 8.50 (dd,
] =9.5,2.4Hz,1H), 8.25 (d, ] = 1.7 Hz, 1H), 2.82 (s, 3H); >*C-NMR (101 MHz, CDCls): 5 198.9, 146.6,
139.4, 136.8, 133.8, 132.3, 131.7, 128.8, 124.8, 124.0, 117.2, 111.1, 29.8; MS (EI): m/z 240 [M]*"; Anal. Calcd
for C13HgN,O3: C, 65.00; H, 3.36; N, 11.66. Found: C, 64.93; H, 3.33; N, 11.59.
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3.5.11. Ethyl 4,7-dicyano-2-naphthoate (17a) from 7 and 10

Yield: 200 mg (0.80 mmol, 80%) as a white solid, m.p. 209-210 °C; IR: 2229, 1720 cm~L; TH-NMR
(400 MHz, CDCl3): 6 8.87 (s, 1H), 8.66 (d, ] = 1.5 Hz, 1H), 8.45 (s, 1H), 8.41 (d, ] = 8.7 Hz, 1H), 7.96 (dd,
] =8.7,1.5 Hz, 1H), 451 (q, ] = 7.1 Hz, 2H), 1.48 (t, ] = 7.1 Hz, 3H); 3C-NMR (101 MHz, CDCl3): &
164.0,135.7, 135.6, 135.2, 134.8, 131.5, 131.2, 129.4, 126.8, 117.7,116.1, 112.5, 111.5, 62.4, 14.3; MS (EI): m/z
250 [M]*; Anal. Calcd for C;5H;0N,O,: C,71.99; H, 4.03; N, 11.19. Found: C, 72.04; H, 4.06; N, 11.12.

3.5.12. 3-Ethyl 1-methyl 6-cyanonaphthalene-1,3-dicarboxylate (17b) from 7 and 11

Yield: 232 mg (0.82 mmol, 82%) as a white solid, m.p. 181-182 °C; IR: 2224, 1707 cm~ L TH-NMR
(400 MHz, CDCl3): $9.13(d, ] =9.0 Hz, 1H), 8.89 (d, ] = 1.8 Hz, 1H), 8.77 (s, 1H), 8.38 (d, ] = 0.9 Hz,
1H), 7.83 (dd, ] = 9.0, 1.6 Hz, 1H), 4.50 (q, ] = 7.1 Hz, 2H), 4.05 (s, 3H), 1.48 (t, ] = 7.1 Hz, 3H); *C-NMR
(101 MHz, CDCl3): 6 166.5, 165.0, 135.62, 135.55, 134.5, 132.4, 132.2, 130.1, 128.6, 127.8, 127.6, 118.3,
111.0, 61.9, 52.7, 14.4; MS (EI): m/z 283 [M]*"; Anal. Calcd for C1H13NOy4: C, 67.84; H, 4.63; N, 4.94.
Found: C, 67.76; H, 4.62; N, 4.97.

3.5.13. Diethyl 6-cyanonaphthalene-1,3-dicarboxylate (17c) from 7 and 12

Yield: 247 mg (0.82 mmol, 83%) as a white solid, m.p. 159-160 °C; IR: 2223, 1714 cm™~!; "H-NMR
(400 MHz, CDCl3): $9.12 (d, ] = 9.1 Hz, 1H), 8.88 (d, ] = 1.9 Hz, 1H), 8.77 (s, 1H), 8.37 (s, 1H), 7.83
(dd, J =9.0, 1.5 Hz, 1H), 4.52 (q, ] = 7.1 Hz, 2H), 450 (q, ] = 7.1 Hz, 2H), 1.49 (t, ] = 7.1 Hz, 3H),
148 (t, ] = 7.1 Hz, 3H); 3C-NMR (101 MHz, CDCl3): § 166.1, 165.1, 135.6, 135.4, 134.5, 132.21, 132.18,
130.1, 128.6, 128.3, 127.6, 118.3, 110.9, 61.9, 61.8, 14.36, 14.35; MS (EI): m/z 297 [M]*'; Anal. Calcd for
Ci7H15NOy4: C, 68.68; H, 5.09; N, 4.71. Found: C, 68.62; H, 5.09; N, 4.63.

3.5.14. Ethyl 4-benzoyl-7-cyano-2-naphthoate (17d) from 7 and 13

Yield: 280 mg (0.85 mmol, 85%) as a white solid, m.p. 144-145 °C; IR: 2227, 1722, 1656 cm~L;
H-NMR (400 MHz, CDCl3): 5 8.79 (s, 1H), 8.43 (s, 1H), 8.31 (s, 1H), 8.21 (d, ] = 8.8 Hz, 1H), 7.85
(d,] =7.7Hz, 2H), 7.74 (d, | = 8.8 Hz, 1H), 7.66 (t, | = 7.5 Hz, 1H), 7.51 (t, | = 7.6 Hz, 2H), 4.47 (q,
] =7.1Hz,2H), 1.44 (t, ] = 7.1 Hz, 3H); 13C-NMR (101 MHz, CDCls): 5 196.1, 165.1, 137.24, 137.15, 135.6,
134.2,134.1, 133.6, 132.1, 130.4, 129.7, 129.4, 128.8, 128.5, 127.3, 118.3, 111.2, 61.9, 14.3; MS (EI): m/z 329
[M]*; Anal. Calcd for Cp1Hy5NO;3: C, 76.58; H, 4.59; N, 4.25. Found: C, 76.60; H, 4.63; N, 4.17.

3.5.15. Ethyl 4-acetyl-7-cyano-2-naphthoate (17e) from 7 and 14

Yield: 224 mg (0.84 mmol, 84%) as a white solid, m.p. 134-135 °C; IR: 2229, 1717, 1678 cm~L;
TH-NMR (400 MHz, CDCl3): § 8.95 (d, ] = 9.0 Hz, 1H), 8.76 (s, 1H), 8.68 (t, ] = 1.6 Hz, 1H), 8.37 (s, 1H),
7.83 (dt, ] = 8.9, 1.8 Hz, 1H), 4.51 (q, ] = 7.1 Hz, 2H), 2.82 (s, 3H), 1.49 (t, ] = 7.1 Hz, 3H); 3C-NMR
(101 MHz, CDCl3): 6 200.4, 165.1, 135.5, 135.4, 135.3, 133.5, 132.4, 130.7, 130.5, 128.4, 127.9, 118.2, 111.2,
62.0,29.8, 14.4; MS (EI): m/z 267 [M]*’; Anal. Calcd for C14H13NO3: C, 71.90; H, 4.90; N, 5.24. Found:
C,71.84;, H,4.93; N, 5.28.

3.5.16. Naphthalene-1,3,6-tricarbonitrile (18a) from 8 and 10

Yield: 152 mg (0.75 mmol, 75%) as a white solid, m.p. 206-207 °C; IR: 2232 cm~!; TH-NMR: § 8.53
(brs, 1H), 8.45 (d, ] = 8.7 Hz, 1H), 8.42 (br s, 1H), 8.22 (d, ] = 1.6 Hz, 1H), 8.04 (dd, | = 8.7, 1.6 Hz, 1H);
13C-NMR (101 MHz, CDCl3): § 138.5,135.2, 134.8, 134.4, 132.2, 131.3,127.2,117.1, 116.2, 114.8, 113.8,
113.1, 111.7; MS (EI): m/z 203 [M]*’; Anal. Calcd for C13HsN3: C, 76.84; H, 2.48; N, 20.68. Found: C,
76.89; H, 2.51; N, 20.57.

3.5.17. Methyl 3,6-dicyano-1-naphthoate (18b) from 8 and 11

Yield: 184 mg (0.78 mmol, 78%) as an off-white solid, m.p. 235-236 °C; IR: 2228, 1719 cm~L;
IH-NMR (400 MHz, CDCl3): § 9.18 (d, ] = 9.0 Hz, 1H), 8.49 (s, 1H), 8.45 (s, 1H), 8.34 (s, 1H), 7.91
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(d, ] = 8.9 Hz, 1H), 4.10 (s, 3H); 13C-NMR (101 MHz, CDCl;): 5 165.3, 138.5, 134.6, 133.8, 133.3, 132.0,
131.1,129.0, 127.9, 117.7, 117.2, 112.2, 110.9, 53.1; MS (EI): m/z 236 [M]*; Anal. Calcd for C14HgN,O5:
C,71.18; H, 3.41; N, 11.86. Found: C, 71.09; H, 3.43; N, 11.79.

3.5.18. Ethyl 3,6-dicyano-1-naphthoate (18c) from 8 and 12

Yield: 200 mg (0.80 mmol, 80%) as a white solid, m.p. 185-186 °C; IR: 2228, 1704 cm™~!; 'H-NMR
(400 MHz, CDCl3): $9.18 (d, ] = 9.0 Hz, 1H), 8.48 (s, 1H), 8.44 (s, 1H), 8.34 (s, 1H), 7.90 (d, ] = 9.0 Hz, 1H),
4.53(q, ] = 7.1 Hz, 2H), 1.49 (t, ] = 7.1 Hz, 3H); '3C-NMR: 5 164.9, 138.3, 134.6, 133.9, 133.2, 132.0, 131.0,
129.3,127.9,117.8,117.3,112.1, 110.9, 62.3, 14.3; MS (EI): m/z 250 [M]*'; Anal. Calcd for C15H;gN,O,: C,
71.99; H, 4.03; N, 11.19. Found: C, 72.05; H, 4.04; N, 11.07.

3.5.19. 4-Benzoylnaphthalene-2,7-dicarbonitrile (18d) from 8 and 13

Yield: 280 mg (0.80 mmol, 80%) as a white solid, m.p. 170-171 °C; IR: 2232, 1664 cm™~!; 'H-NMR
(400 MHz, CDCl3): b 8.44 (s, 1H), 8.39 (s, 1H), 8.23 (d, ] = 8.8 Hz, 1H), 7.88-7.77 (complex, 4H), 7.70
(t,] = 7.5 Hz, 1H), 7.53 (t, ] = 7.7 Hz, 2H); '3C-NMR (101 MHz, CDCl3): 5 194.7, 138.4, 136.6, 136.5,
134.59, 134.55, 133.4, 131.9, 130.6, 130.4, 130.0, 129.0, 127.6, 117.7, 117.4, 112.4, 110.7; MS (EI): m/z 282
[M]*; Anal. Calcd for C19H71oN,O: C, 80.84; H, 3.57; N, 9.92. Found: C, 80.83; H, 3.54; N, 9.86.

3.5.20. 4-Acetylnaphthalene-2,7-dicarbonitrile (18e) from 8 and 14

Yield: 224 mg (0.79 mmol, 79%) as a white solid, m.p. 215-216 °C; IR: 2227, 1686 cm~ L TH-NMR
(400 MHz, CDCl3): $8.91 (d,] =9.0 Hz, 1H), 8.43 (s, 1H), 8.34 (d,] = 1.7 Hz, 1H), 8.20 (d, ] = 1.6 Hz,
1H), 7.89 (dd, ] = 9.0, 1.7 Hz, 1H), 2.82 (s, 3H); '*C-NMR (101 MHz, CDCl3): 5 199.0, 138.1, 136.7, 134.4,
132.7,132.2,131.3,131.2,128.1, 117.7,117.3, 112.4, 110.7, 29.8; MS (EI): m/z 220 [M]*"; Anal. Calcd for
C14HgN,O: C, 76.35; H, 3.66; N, 12.72. Found: C, 76.30; H, 3.63; N, 12.67.

3.5.21. Ethyl 8-cyanoquinoline-6-carboxylate (19a) from 9 and 10

Yield: 170 mg (0.75 mmol, 75%) as a yellow solid, m.p. 142-144 °C; IR: 2233, 1722 cm~!; TH-NMR
(400 MHz, CDCl3): 5 9.20 (m, 1H), 8.81 (s, 1H), 8.73 (d, ] = 1.7 Hz, 1H), 8.38 (dd, | = 8.3, 1.7 Hz, 1H),
7.65 (dd, ] = 8.3, 4.3 Hz, 1H), 4.50 (q, ] = 7.1 Hz, 2H), 1.48 (q, ] = 7.1 Hz, 3H); 3C-NMR) (101 MHz,
CDCl): 6 164.3,154.4,149.0,137.8, 135.3, 135.2, 128.3, 127.5, 123.5, 116.5, 113.8, 62.2, 14.3; MS (EI): m/z
226 [M]*; Anal. Calcd for C13H;9N>Oy: C, 69.02; H, 4.46; N, 12.38. Found: C, 69.07; H, 4.49; N, 12.27.

3.5.22. 6-Ethyl 8-methyl quinoline-6,8-dicarboxylate (19b) from 9 and 11

Yield: 212 mg (0.82 mmol, 82%) as an off-white solid, m.p. 75-77 °C; IR: 1722 cm~!; 'H-NMR
(400 MHz, CDCl3): §9.14 (dd, ] = 4.2, 1.8 Hz, 1H), 8.70 (d, ] = 2.0 Hz, 1H), 8.62 (d, ] = 2.0 Hz, 1H),
8.31(dd, ] = 8.4, 1.8 Hz, 1H), 7.54 (dd, ] = 8.3, 4.2 Hz, 1H), 4.48 (q, ] = 7.1 Hz, 2H), 4.08 (s, 3H), 1.46
(t,] = 7.1 Hz, 3H); '3C-NMR (101 MHz, CDCl3): § 167.6, 165.3, 153.5, 147.2, 137.6, 133.9, 132.0, 129.9,
127.8,127.7,122.3, 61.8, 52.9, 14.4; MS (EI): m/z 259 [M]*; Anal. Calcd for C14H13NOy: C, 64.86; H, 5.05;
N, 5.40. Found: C, 64.80; H, 5.03; N, 5.37.

3.5.23. Ethyl 8-benzoylquinoline-6-carboxylate (19d) from 9 and 13

Yield: 244 mg (0.80 mmol, 80%) as a light yellow solid, m.p. 146-147 °C; IR: 1718, 1671 cm~L;
TH-NMR (400 MHz, CDCl3): 6 8.93 (d, ] = 4.2 Hz, 1H), 8.72 (d, ] = 1.9 Hz, 1H), 8.36-8.30 (complex,
2H),7.84 (d,] =7.3Hz,2H),7.57 (t,] =7.3 Hz, 1H), 7.50 (dd, ] = 8.4, 42 Hz, 1H), 7.42 (t, ] = 7.7 Hz,
2H), 4.46 (q, ] = 7.1 Hz, 2H), 1.44 (t, ] = 7.1 Hz, 3H); >*C-NMR (101 MHz, CDCl3): 6 197.1, 165.5, 152.8,
147.9,139.8,137.4,137.3,133.5,132.4,130.2, 128.5, 128.0, 127.62, 127.55, 122.4, 61.7, 14.4; MS (EI): m/z
305 [M]"; Anal. Calcd for C19H;5NO5: C, 74.74; H, 4.95; N, 4.59. Found: C, 74.71; H, 4.95; N, 4.52.
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3.5.24. Ethyl 8-acetylquinoline-6-carboxylate (19e) from 9 and 14

Yield: 185 mg (0.76 mmol, 76%) as a white crystals, m.p. 103-104 °C; IR: 1704, 1689 cm~ L TH-NMR
(400 MHz, CDCl3): 6 9.06 (dd, J = 4.2, 1.8 Hz, 1H), 8.69 (d, ] = 1.9 Hz, 1H), 8.50 (d, ] = 1.9 Hz, 1H),
8.32(dd, ] =8.4,1.8 Hz, 1H), 7.54 (dd, ] = 8.3, 4.2 Hz, 1H), 447 (q,] = 7.1 Hz, 2H), 2.94 (s, 3H), 1.46
(t, ] = 7.1 Hz, 3H); 13C-NMR (101 MHz, CDCls): 5 203.2, 165.5, 152.4, 147.2, 140.1, 137.6, 133.7, 128.6,
128.1,127.7,122.2, 61.7, 32.6, 14.4; MS (EI): m/z 243 [M]*"; Anal. Calcd for C14H13NO3: C, 69.12; H, 5.39;
N, 5.76. Found: C, 69.06; H, 5.37; N, 5.69.

3.6. Competitive Reaction Control Experiment. Formation of Methyl
(Z)-4-cyano-5-(2-fluorophenyl)-2-(phenylsulfonyl)-4-pentenoate (22)

A 50-mL, round-bottomed flask equipped with a condenser, stir bar, and N, inlet was charged
with a 2-fluoro-5-nitrotoluene (20, 155 mg, 1 mmol) and 2-cyano-1-(2-fluorophenyl)allyl acetate (21,
219 mg, 1 mmol) in DMF (2 mL) under Ny. Methyl phenylsulfonylacetate (321 mg, 1.5 mmol) and
K,COj3 (207 mg, 1.5 mmol) were added at room temperature with stirring. TLC analysis (20% EtOAc
in hexane) indicated that the reaction was complete in 1 h. The solution was poured into de-ionized
water (15 mL), and the mixture was extracted with EtOAc (3 X 25 mL). The combined organic layers
were washed with saturated NaCl and dried (Nap;SO4). Removal of the solvent under vacuum gave
the crude product, which was purified by silica gel column chromatography to afford 20 (144 mg,
93%) and 22 (261 mg, 0.7 mmol, 70%) as a white solid, m.p. 95-97 °C; IR: 2215, 1744, 1637, 1149 cm™L;
'H-NMR (400 MHz, CDCl3): § 7.98 (td, ] = 7.8, 1.7 Hz, 1H), 7.92 (d, ] = 7.8 Hz, 2H), 7.74 (tt, ] = 7.5,
1.9 Hz, 1H), 7.62 (t, ] = 8.2 Hz, 2H), 7.44-7.36 (complex, 1H), 7.31 (s, 1H), 7.20 (t, ] = 7.8 Hz, 1H),
7.10 (t, ] = 9.5 Hz, 1H), 4.34 (dd, ] = 10.7, 4.4 Hz, 1H), 3.67 (s, 3H), 3.20 (dd, ] = 14.3, 44 Hz, 1H),
3.14 (dd, ] = 14.3, 10.7 Hz, 1H); 13C-NMR (101 MHz, CDCl;): § 164.9, 160.4 (d, ] = 253.0 Hz), 139.3
(d, ] =6.5Hz),136.8,134.8,132.6 (d, ] = 8.7 Hz), 1294, 129.2,128.3 (d, | = 1.6 Hz), 124.6 (d, ] = 3.7 Hz),
121.1 (d, ] = 11.7 Hz), 117.0, 115.8 (d, | = 21.7 Hz), 107.2 (d, ] = 2.0 Hz), 68.7, 53.3, 33.0; MS (EI): m/z
373 [M]*; Anal. Calcd for C19H1sFNO4S: C, 61.12; H, 4.32; N, 3.75. Found: C, 61.22; H, 4.25; N,
3.68. The X-ray structure for compound 22 (CCDC 2035022) and the thermal elipsoid plot is shown in
Scheme 2 and the Supplementary Materials.

4. Conclusions

We have investigated the synthesis of naphthalenes and quinolines from Morita—Baylis-Hillman
acetates and active methylene compounds promoted by K;CO3 in DMFE. The formation of naphthalenes
occurs at 23 °C, while quinolines required heating to 90 °C. Substrates for the naphthalenes were MBH
acetates bearing 2-fluoroaromatic rings activated toward SyAr ring closure by C5 NO, or CN groups.
Quinoline precursors were activated only by the electron-withdrawing nitrogen in a 2-fluoropyridine
ring. The transformation most likely involves a domino Sn2’-SyAr process. A control experiment
indicated that the initial reaction occurs by an SN2’-type substitution of the side chain acetate to
yield the alkene having the aromatic ring trans to the aromatic SNyAr acceptor ring. Thus, under the
reaction conditions, a reversible Michael addition or an intramolecular addition—elimination must
occur to equilibrate the geometry of the double bond to yield the alkene isomer needed for ring closure.
The isolation of intermediates from the reaction disputes an earlier report that the reaction directly
delivers the alkene needed for cyclization. Once equilibrated, subsequent deprotonation of the active
methine proton, Sy Ar ring closure, and the elimination of SO,Ph, NO,, or CO,Et then aromatizes the
product. Much of the selectivity appears to be guided by steric considerations. The loss of SO,Ph
or NO; in the aromatization process has good precedent in the literature, but the loss of CO,Et in
preference to CN was unexpected. Good to excellent yields were isolated for all examples.

Supplementary Materials: The following are available online, Copies of 'H-NMR and '3C-NMR spectra for all
compounds and tables of crystal data for compounds 4 and 22.
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