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 The concentration and distribution of matrix-bound
growth factors is critical during cellular differentiation and
for appropriate tissue patterning in embryogenesis [1]. For
instance, in the developing eye, retinal differentiation and
growth is dependent on signals emanating in a temporally re-
stricted pattern from the primitive lens. Ocular morphology
is, therefore, intimately associated with the rapid expansion
of the lens, which throughout embryogenesis, is supported by
a tightly adherent circulation system termed the hyaloid vas-
culature (HV) [1]. During this rapid phase of growth, the lens
produces a variety of peptide growth factors that serve to sup-
port localized tissue expansion and the temporally restricted
maintenance of the HV [1]. Among these factors are FGF2,
PDGF-β, and VEGF-A [1-3]. In the case of the vascular en-
dothelium, VEGF-A levels and the cellular expression pattern
is normally tightly regulated, with modest alterations, result-

ing in embryonic lethal phenotypes [4-7]. These studies rein-
force the critical nature of VEGF-A expression in the devel-
opment and maintenance of the vascular system. However,
tissue-restricted expression of VEGF-A and its major isoforms
in the eye, due to the nonlethal nature of resultant phenotypes,
allows a fuller appreciation of the consequences of
misexpression of isoforms of this critical growth factor, par-
ticularly in the pathogenesis of ocular diseases.

During normal murine HV development, VEGF-A is prin-
cipally secreted by lens epithelial cells located at the lens equa-
tor, and transcripts of the gene are downregulated perinatally
[8]. VEGF-A

188
, one specific isoform of VEGF-A, is tran-

scribed from all eight exons of the gene and strongly binds
heparin-associated residues [9-11]. VEGF-A

188
 is immediately

matrix-bound following secretion [12] and is most highly ex-
pressed in the lung [13]. During embryonic development, the
soluble isoforms of VEGF-A

120
 and VEGF-A

164
 are the major

isoforms expressed [13] with lens capsule heparin-sulphate
proteoglycans (HSPG) potentially acting as a VEGF-A reser-
voir [14]. A number of ocular pathologies are characterized
by deregulated neovascularization, and these conditions cor-
relate with increased levels of total VEGF-A [15-17] - most
specifically the VEGF-A

165
 isoform [1,18]. However, the role

of VEGF-A
188

, the most tightly bound VEGF-A isoform, dur-
ing development and in the pathophysiology of ocular disease
remains to be determined.
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Purpose: During growth of the embryonic eye, dose- and site-specific expression of heparin-binding growth factors is
critical for the formation of an appropriate vascular supply. Overexpression of vascular endothelial growth factor-A

188

(VEGF-A
188

), a strongly heparin-binding, endothelial-specific mitogen, leads to severe disturbance of vascular and over-
all ocular morphology. This study aimed to evaluate the effects of VEGF-A

188
 overexpression on growth of ocular tissue

components.
Methods: Stereological and immunohistochemical methods were employed to identify the vascular profiles, ocular tissue
proportions, and cell types in VEGF-A

188
 transgenic mice and compare them with wild-type mice.

Results: In VEGF-A
188

 transgenic mice, both lens tissue and total ocular volume were reduced, whereas cross-sectional
areas of hyaloid blood vessels, retina, iris, and optic stalk tissues were significantly increased compared to wild-type mice.
Endothelial and pericyte cell numbers in the hyaloid vasculature of transgenic mice were increased three fold, with pericytes
assuming their characteristic extraluminal position.
Conclusions: Overexpression of VEGF-A

188
 in the murine lens results in microphthalmia, in addition to hypertrophy and

persistence of the hyaloid vasculature. This is similar to the human disorder persistent hyperplastic primary vitreous
(PHPV). The murine model is a useful, experimental paradigm for investigation of this condition.
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In this study, we analyze and interpret an ocular pheno-
type in transgenic mice resulting from lens-specific
overexpression of VEGF-A

188
. The evidence from this study

supports the hypothesis that the microphthalmia and lens
anomalies are a direct result of perturbations in the vascular
morphology of the HV, while the retinal hypertrophy may be
a direct consequence of the retinal ganglion cell responses to
this growth factor. These results have particular relevance for
human fetal conditions characterized by ocular vascular ab-
normalities, such as retinopathy of prematurity (ROP) and
persistent hyperplastic primary vitreous (PHPV), establishing
the experimental paradigm that vascular malformation can
result in the gross ocular pathologies characteristic of these
conditions.

METHODS
Animal model:  The transgene construction, genotyping, and
analysis of VEGF-A

120
, VEGF-A

164
, and VEGF-A

188
 mice is

described elsewhere [19]. In brief, the open reading frame
cDNA of murine VEGF-A

188
 was cloned in frame into a CPV2

construct [1], and transgenic mice were derived according to
standard methodologies. The mice generated by these meth-
ods demonstrated lens-specific expression of the VEGF-A

188

protein from the αA-crystallin promoter. In our study, adult
female C57Bl6J mice (8 weeks old) and heterozygous αA-
crystallin-VEGF-A

188
 transgenic males were housed in a 12

h:12 h light-dark schedule and were allowed to mate. T fe-
males were examined and the presence of a vaginal plug was
defined as embryonic day 0.5 (E0.5; n=19 pregnant dams).
The females were euthanized and their gravid uteri were care-
fully dissected free. After amnionectomy, the fetuses were
delivered, euthanized, and eyes were enucleated. One eye from
each embryo was fixed in 10% buffered formal saline (BFS;
pH 7.4) overnight, subsequently embedded in araldite, and
sectioned for stereological analysis. The contralateral eye was
fixed in 4% paraformaldehyde for 30 min, embedded in par-
affin, sectioned (5 µm) and prepared for either immunohis-
tochemical or TUNEL staining or fixed in 2.5% glutaralde-
hyde in cacodylate buffer for ultrastructural studies. All ex-
periments adhered to Home Office (National) and institutional
guidelines (comparable to those published by the Institute for
Laboratory Animal Research, Guide for the Care and Use of
Laboratory Animals).

Ocular stereology:  A total of five wild-type mice and six
transgenic littermates were randomly selected from the total
population of collected fetuses. Following fixation, eyes were
processed, critically orientated in a mold, and embedded in
araldite. Serial sections (0.5 µm thick) were cut at 50 µm in-
tervals through the eye, sections placed onto slides and subse-
quently stained with 2% toluidine blue. A three-stage stereo-
logical analysis was performed to determine (1) ocular vol-
ume, (2) tissue and vascular fractions, and (3) vascular mor-
phometry using systematic random sampling [20,21]. Light
microscopic images were obtained using an Olympus micro-
scope and electronic images were captured with the aid of an
Olympus T4040 digital camera. Each section was visualized
and stereological analysis performed with the aid of the

“QProdit” computer imaging software (Leica Imaging Sys-
tems, Cambridge, UK).

Ocular volume:  The perimeter of each eye section was
traced and the area calculated. Cross-sectional areas from in-
dividual sections were multiplied by 50 (to take into account
that sections were cut at 50 µm intervals) and subsequently
summed to determine fetal ocular volume.

Tissue fraction:  Two systematically random views [21]
of each eye section were collected, stored, and analyzed with
the aid of a 96-point grid layout. The ocular tissues were as-
signed to one of 11 tissue-type groups based on their location
and histological phenotype: retina, lens stroma, cornea, vitre-
ous humor, aqueous humor, iris, lens hemorrhage, lenticular
hyaloid vasculature, retinal hyaloid vasculature, optic stalk,
and nonocular tissue (includes the sclera and eyelid).

Vascular morphometry:  A photomicrograph of each sec-
tion containing HV was analyzed by tracing around each blood
vessel. Vessels within the “broken lines” were included within
the count, whereas vessels crossing the solid lines were ex-
cluded. Blood vessel lengths, cross-sectional areas, diameters,
and volumes were calculated using the tissue fraction and ocu-
lar volume data based on the following formulas:

Measurement of corneal thickness in neonatal mice: Het-
erozygous male transgenic mice were crossed with wild-type
female mice, and the eyes from resulting litters (P2) were
enucleated, fixed in formalin overnight, and embedded in
araldite. Sections were cut (5 µm thick) through the geomet-
ric center of the eye (containing the optic nerve; located using
light-microscopy), placed onto microscope slides, and stained
with hematoxylin and eosin. The phenotype of each pup was
identified from its ocular morphology as either transgenic or
wild-type. The number of cell layers in the cornea was counted
manually under a final magnification of 200X. A nonparamet-
ric Friedman test was utilized to ensure that there were no
significant differences between wild-type embryos selected
from litters containing VEGF-A

188
 mice, and one-way analy-

sis of variance (ANOVA) with post-hoc testing (SPSS v11.0)
was used to compare wild-type and transgenic mouse corneas.

Transmission electron microscopy:  Ocular samples were
embedded in Epon Araldite (TAAB, Aldermaston, Berks, UK),
and semithin sections (about 0.8 µm thickness) were cut from
blocks on a Reichert-Jung Ultracut-E microtome (Leica
Microsystems, Nussloch, Germany), stained with 2% tolui-
dine blue, and examined prior to further ultrastructural analy-
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sis. Ultrathin sections of gold interference color (about 80 nm
thickness) were cut, and contrasted with uranyl acetate and
lead citrate. Sections were viewed using a JEOL JEM-1010
transmission electron microscope (JEOL, Tokyo, Japan) at an
accelerating voltage of 80 kV. Electronic images were cap-
tured on a Kodak Megaplus camera model 1.6i (Kodak, San
Diego, CA).

Scanning Electron Microscopy:  Specimens were fixed
in Karnovsky’s fixative solution (2% paraformaldehyde/2%
glutaraldehyde in 0.1 M phosphate buffer; pH 7.4) for 1 h,
washed several times with PBS for 15 min each, followed by
post fixation with 1% osmium tetroxide in 0.1 M phosphate
buffer for 1 h. After rinsing with PBS for a minimum of 15
min, the specimens were dehydrated with a series of graded
ethyl alcohols (70% for 15 min, 95% for 15 min. and three
changes of 100% for 10 min each). The samples were then
dried using hexamethyldisilazane (HMDS; Sigma-Aldrich,
UK). After drying, the specimens were mounted on aluminium
stubs with adhesive tabs and coated with gold for 3 min using
a Polaron (Energy Beam Sciences, Agawam, MA) sputter
coater. The specimens were examined on an AMRAY 1000A
(Bedford, MA) scanning electron microscope.

Immunohistochemistry:  Immunohistochemical detection
of VEGF-A (1:100 dilution in PBS; Santa Cruz Biotechnol-
ogy, Inc, Santa Cruz, CA), heparan sulfate proteoglycan
(HSPG, 1:100 dilution in PBS; Upstate Biotechnology,
Charlottesville, VA), macrophage cell surface marker F4/80

(1:150 dilution in PBS; Southern Biotechnology, Birmingham,
AL) or α-smooth muscle actin antibodies (1:400 dilution in
PBS; Sigma) was carried out according to the manufacturer’s
instructions using the Vectastain (Burlingame, CA), ABC stain-
ing method.

Statistical Analysis:  Statistical comparisons between
groups were assessed using a one-way ANOVA with post-hoc
testing, with a p<0.05 considered as significant.

RESULTS
 The gross anatomical features in adult VEGF-A

188
 transgenic

mice include microphthalmia and bilateral cataracts (Figure
1A,B; insets). The characteristic feature of sections from eyes
of late fetal (E18.5) transgenic mice are fused clusters of vas-
cular channels that are closely apposed to the posterior sur-
face of the lens, retinal dysplasia, and corneal thickening (Fig-
ure 1B,D). Lens epithelial cells encircled the lens, the charac-
teristic bowing of lens fiber cells was lost (Figure 1D), and
vascular invasion frequently led to intralenticular hemorrhage.
Ultrastructural investigations (E15.5) revealed that both en-
dothelial cells and pericytes contributed to a hyperplastic hya-
loid vasculature on the posterior pole of the lens, with numer-
ous attendant macrophages (Figure 1E-H).

Ocular volume and tissue fraction stereology:  Absolute
ocular volumes in VEGF-A

188
 transgenic mice were an aver-

age of 33% smaller than their control littermates
(mean±SEM=1.1791±0.0287 mm3, transgenic=0.7849±0.1180
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Figure 1. Gross anatomical and microscopic features of VEGF-A
188

 transgenic mice.  Representative photomicrographs of toluidine blue-
stained sections from E18.5 wild-type (A,C) and VEGF-A188 transgenic (B,D) mice. Gross ocular phenotypes of adult wild-type (A; inset)
and a VEGF-A188 transgenic mouse (B; inset), showing conspicuous cataract formation. In VEGF-A188 transgenic mice (B, D), a hyper-
trophic hyaloid vasculature surrounds a small lens. There is evidence of retinal hypertrophy, particularly in the ganglion cell layer at the top of
these micrographs. Scanning electron micrographs of wild-type (E) and VEGF-A

188
 transgenic (F) mice are shown. The thickened hyper-

trophic hyaloid vasculature with numerous adherent mononuclear cells in the VEGF-A
188

 transgenic lens (F) contrasts with the organized
plexus in wild-type mice. Transmission electron micrographs of hyaloid blood vessels in E18.5, wild-type (G), and VEGF-A

188
 transgenic

mice (H). Large diameter vessels(LDBV), with several attendant macrophages (M), are conspicuous in VEGF-A
188

 transgenics. In the images,
C=cornea, HV=hyaloid vasculature, R=retina, and L=lens.
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mm3; p<0.008; Figure 2A). In late fetal mice, there are two
distinct anatomical regions of the hyaloid vasculature: that
surrounding the lens (tunica vascular lentis, TVL, which in-
corporates the papillary membrane anteriorly), and a retinal
component (arteria hyaloidea propria, AHP) on the vitreal sur-
face of the inner limiting membrane [22]. Lenticular vessel
proportions (TVL) were increased four fold and retinal ves-
sels (AHP) two fold when compared with wild-type eyes (Table
1), with lens hemorrhage only ever being observed in VEGF-
A

188
 transgenic mice (6/6 transgenics; 0/5 controls).
The total proportion of lens tissue (stroma plus hemor-

rhagic tissue) decreased by 39%, whereas lens stromal tissue
alone was reduced by 62% in VEGF-A

188
 transgenic mice in

comparison to littermate controls. In addition to these con-
spicuous changes in lens morphology, the fraction of retina,
iris, and optic stalk tissue were all significantly increased (Table
1). The fractional proportion of vessels in VEGF-A

188

transgenic eyes increased in comparison to controls in the AHP
(p=0.003), iris (p=0.02), and optic stalk (p=0.01); however,
the absolute ocular volumes of these tissue types were not
significantly different (Table 1). This indicates that these tis-
sue types were relatively unaffected by the overexpression of
VEGF-A

188
, but they occupied a greater volume in a smaller

eye. Additionally, despite having a smaller retinal volume, the
proportion of AHP and TVL vessels increases (Table 1), par-
ticularly in regions around the lens equator (Figure 1).
Perilenticular retinal hypertrophy was a consistent feature of
VEGF-A

188
 transgenic mice, and general retinal thickening was

a consistent finding (both features observed in five out of six
transgenic eyes at E18.5; Table 1). To determine whether this

vascular and retinal hypertrophy is associated with conspicu-
ous HSPG-bound VEGF-A

188
 in the lens capsule and adjacent

retinal surface, we performed immunohistochemical analysis
on critically oriented specimens from E18.5 mice.

Ocular blood vessel stereology:  Although blood vessel
length was not significantly altered (p<0.58; Figure 2B), the
hyaloid vascular cross-sectional area increased two fold
(p<0.0001; Figure 2C) in E18.5 VEGF-A

188
 transgenic mice,

resulting in a doubling of total vascular volume (p<0.002; Fig-
ure 2D). This increase in cross-sectional area of hyaloid vas-
culature surrounding the lenses of E18.5 VEGF-A

188
 transgenic

mice is particularly conspicuous on the posterior and lateral
surfaces of the lens (Figure 1B,D,F,H).

Measurement of corneal thickness in neonatal mice:  The
non-parametric Friedman test showed that there were no sig-
nificant differences between wild-type embryos selected from
different litters containing VEGF-A

188
 mice (p<0.704; n=45).

The number of layers comprising the cornea was significantly
increased in the VEGF-A

188
 transgenic mice (15.7±0.99,

mean±SEM endothelial cells thick, n=10) in comparison with
wild-type mice (12.93±0.50 layers thick, mean±SEM,
p<0.033). Despite an increase in the number of corneal lay-
ers, the VEGF-A

188
 transgenic eyes did not have an increased

corneal thickness in comparison with wild-type mice (p>0.05).
VEGF immunohistochemistry:  Specific immunohis-

tochemical staining for VEGF-A was observed in sections from
the eyes of E15.5, P1 and adult mice (Figure 3). Weak cyto-
plasmic staining of the retina, lens stroma, and outer lens cap-
sule was observed in wild-type eyes (Figure 3B,D,F). Strong
VEGF-A specific immunostaining was observed in the lens,
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Figure 2. Ocular and hyaloid vas-
cular dimensions in wild-type and
VEGF-A

188
 transgenic mice.  To-

tal ocular volume (A), hyaloid
blood vessel length (B), cross-sec-
tional area (C), and total blood
vessel volume (D; blood vessel
volume=length times cross-sec-
tional area) in E18.5 fetuses from
wild-type (n=6) and transgenic
(n=5) littermates. Systematic ran-
dom sampling and stereological
methods were used to determine
the dimensions of each parameter
(see Methods). Statistical analy-
sis was performed using one-way
ANOVA with post-hoc testing
(SPSS v11.0). The asterisk indi-
cates a p<0.008, the double aster-
isk indicates a p<0.002, and the
sharp (hash mark) indicates a
p<0.0001 (wild-type compared to
transgenic mice at E18.5). The er-
ror bars represent the mean±SEM.
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retina, lens capsule, and surrounding the aberrant hyaloid vas-
culature of E15.5, P1 and adult VEGF-A

188
 transgenic eyes

(Figure 3C,E,G, respectively).
HSPG imunohistochemistry:  Immunohistochemical stain-

ing for HSPG revealed antibody-specific staining in the lens
capsules from the eyes of E15.5 wild-type (Figure 3H,I) and
VEGF-A

188
 (Figure 3J) transgenic mice. Lens capsules from

E15.5 and adult wild-type mice (Figure 3I,K) were consider-
ably thicker and showed a laminar pattern of HSPG
immunostaining in comparison to VEGF-A

188
 mice (Figure

3J,L), where lens capsules were attenuated and intensely HSPG
immunoreactive. Staining was also conspicuous around the
hyaloid vasculature of transgenic mice (Figure 3J,L).

α-smooth muscle actin immunohistochemistry:  Specific
staining for α-smooth muscle actin (α-SMA) was observed in
periendothelial cells located on the ablumenal vascular sur-
faces of capillaries from both wild-type (Figure 3M,N) and
transgenic (Figure 3O) mice. In addition, the numbers of
pericytes per vessel, as identified by ultrastructural features,
was greater in transgenic than littermate controls (Figure 4).

F4/80 immunohistochemistry:  Cells immunostained with
the F4/80 antibody, which detects cells from the monocyte/
macrophage lineage [23], were observed adhering to the hya-
loid vasculatures in both wild-type and VEGF-A

188
 transgenic

mice (Figure 3P,Q, respectively).
Cell types comprising the hyaloid vasculature:  The hya-

loid vasculature is comprised of three primary cell types: en-
dothelium, specialized macrophages (hyalocytes), and
pericytes [24]. Ultrastructural features were used to identify
these cell types in representative median sagittal sections from
both wild-type and VEGF-A

188
 transgenic eyes. There is an

increase in the number of endothelial cells and pericytes in

transgenic mice compared with littermate controls at E13.5,
E15.5, and E17.5 (P<0.0001, Figure 4). Although there is a 2/
3 fold increase in both ECs and pericytes, the ratios of these
cell types remained relatively constant throughout fetal de-
velopment. At E13.5 the ratio of EC:pericytes was 3.88:1 (wild-
type) and 4.02:1 (transgenic), compared to E15.5 at 5.08:1
(wild-type) and 3.33:1 (transgenic) and E17.5, where the ratio
was 3.89:1 (wild-type) and 3.19:1 (transgenic). Although the
trend was toward greater numbers of F4/80 positive cells in
transgenic mice, we observed no statistical difference com-
pared to littermate controls (p=0.051).

DISCUSSION
 Microphthalmia in humans is associated with a range of in-
herited genetic abnormalities, including microphthalmia with
linear skin defects (MLS) syndrome [25], Lenz microphthalmia
[26,27], and Norrie’s disease [28]. Microphthalmia is fre-
quently observed in infants affected with PHPV [29] and this
disorder is also commonly associated with premature birth. In
the present study, the characteristic ocular phenotype of VEGF-
A

188
 transgenic mice is microphthalmia, cataracts, persistent

hyperplastic hyaloid vasculature, lens defects, and retinal hy-
perplasia. The microphthalmia and cataract formation is also
a characteristic specifically observed in VEGF-A

188
 mice. This

phenotype was not previously reported in mice overexpressing
the more labile VEGF-A

165
 isoform when it was overexpressed

from the αA-crystalline promoter [1]. In addition, the HV and
lens abnormalities are morphologically distinct when either
of these two isoforms (i.e., VEGF-A

165
 [1] or VEGF-A

188
 [this

study]) is overexpressed - for example, the reduction in lens
size is in contrast to observations made when VEGF-A

165
 was

overexpressed from the lens [1], where the lens had expanded
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TABLE 1. PROPORTIONS AND TISSUE VOLUMES OF TISSUE TYPES IN WILD-TYPE AND VEGF-A
188

 TRANSGENIC MICE

                          Proportion of   Proportion of                         Volume of       Volume of
                             tissue          tissue                                tissue          tissue
                           (wild-type;    (transgenic;    Increase/              (wild-type;     (transgenic;    Increase/
     Tissue                   n=5)            n=6)        decrease    p value       n=5)            n=6)        decrease    p-value
-----------------   ---   -------------   -------------   ---------   -------   -------------   -------------   ---------   -------
Retina               A    0.3635±0.0185   0.4903±0.0529   1.35 fold   0.03*     0.4386±0.0236   0.3572±0.0203      19%      0.04*
                                                          increase                                              decrease
Cornea               B    0.0370±0.0064   0.0454±0.0040       -       0.2       0.0430±0.0064   0.0346±0.0047       -       0.3
Optic Stalk          C    0.0066±0.0010   0.0109±0.0013   1.65 fold   0.01*     0.0077±0.0012   0.0080±0.0011       -       0.8
                                                          increase
Aqueous              D    0.0026±0.0012   0.0085±0.0044       -       0.1       0.4243±0.0292   0.2215±0.0582      48%      0.01*
                                                                                                                decrease
Vitreous             E    0.3599±0.0240   0.2611±0.0336       -       0.1       0.0031±0.0013   0.0087±0.0046               0.3
Hyaloid blood        F    0.0037±0.0005   0.0148±0.0019   4 fold      0.0001*   0.0043±0.0005   0.0110±0.0013   2.56 fold   0.001*
vessels (TVL)                                             increase                                              increase
Anteria hyaloidea    G    0.0052±0.0015   0.0115±0.0020   2.2 fold    0.003*    0.0061±0.0016   0.0084±0.0013       -       0.3
propria (AHP)                                             increase
Iris                 H    0.0193±0.0071   0.0336±0.0152   1.7 fold    0.02*     0.0229±0.0047   0.0252±0.0031       -       0.6
                                                          increase
Lens stroma          I    0.2023±0.0037   0.0779±0.0041      62%      0.004*    0.2387±0.0113   0.0691±0.0212      71%      0.001*
                                                          decrease                                              Decrease
Lens hemorrhage      J    0±0             0.0460±0.0085      Not      0.0001*   0±0             0.0406±0.0126      Not      0.01*
                                                          observed                                              observed
                                                              in                                                   in
                                                          wild-type                                             wild-type

Total Lens          I+J   0.2023±0.0071   0.1239±0.0029      39%      0.01*     0.2387±0.0113   0.1098±0.0337      54%      0.008*
                                                          decrease                                              decrease
Total Blood         F+G   0.0089±0.0017   0.0263±0.0027   2.96 fold   0.0001*   0.0104±0.0019   0.0194±0.0019   1.87 fold   0.009*
Vessels                                                   dncrease                                              increase

Proportion of total ocular tissue types in wild-type (n=5) and VEGF-A
188

 transgenic (n=6) mice. Values represent mean±SEM. Statistical
comparisons between groups were performed using one-way ANOVA, with significant differences designated by an asterisk. Significance
was accepted as p<0.05.
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to fill the space within the vitreal and aqueous compartments.
Ash and Overbeek [1] suggest that the enlarged lens observed
in the VEGF-A

165
 mice may be due to fluid accumulation in

the center of the lens. It is possible that reduction in lens size
in the VEGF-A

188
 mice resulted from a lack of nutrients and

oxygen obtained from the abnormal TVL and that the disrupted
lens fiber cell formation also added to the delayed develop-
ment of the lens.

A significant reduction in lens size, coupled with cataract
formation in VEGF-A

188
 transgenic mice, is similar to the phe-

notype described in rats that are administered with monoso-
dium-L-glutamate on the 9th and 10th day after birth [30].

Small, cataractous lenses are also associated with the “small
eyes” (Sey) phenotype, a semidominant, homozygous-lethal
mutation in the mouse [31]. The lenticular hemorrhaging ob-
served in the present study parallels that observed in a patient
with congenital cataracts. In the aforementioned study, the
authors concluded that the cause of the blood clot was a rup-
ture of the anterior end of the hyaloid artery [32] (attached to
the posterior lens surface) and that leakage from hyaloid ves-
sels invading the lens nucleus may be responsible for
intralenticular bleeding in such eyes [33].

It is known that VEGF-A is vital to fetal ocular
neovascularization [34], particularly during the formation of
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Figure 3. Immunohistochemical detection of VEGF, HSPG, α-SMA, and F4/80 in eyes from wild-type and VEGF-A transgenic mice.  Immu-
nohistochemical detection of VEGF-A in wild-type and transgenic mouse eyes at E15.5 (A-C), P1 (D+E), and adult (F-G). A; Non-specific
IgG serum (control), no discernible background staining is observed. B: VEGF-A immunostaining is observed in the wild-type lens (L) and
superficial layers of the retina (black arrow) at E15.5. However specific VEGF-A staining was not detected at P1 in the retina, lens, or hyaloid
vasculature (D). In the adult wild-type eye (F), specific staining of the surface of the lens capsule is seen (arrows). Specific staining for VEGF-
A is observed in the lens (L), retina (black arrows) and adjacent to the hyaloid vasculature (black arrowheads) at both E15.5 (C) and at P1 (E)
in VEGF-A188 transgenics. In adult VEGF-A188 mice (G), prominent staining is observed in the lens capsule (arrows) which appears thinner
and (during processing) has separated from the lens structure. Immunohistochemical detection of HSPG (H-L), α-SMA (M-O), and F4/80
(P,Q) in sections from E15.5 (H-J, M-Q) and adult (K,L) mice are shown. H: No discernible background staining is observed in control
sections (IgG-specific serum). Inset shows an E15.5 mouse brain section, which served as a positive control. I: In wild-type mice, specific
HSPG staining is observed in the lens capsule and hyaloid vasculature (arrow). J: In VEGF-A188 transgenic mice, HSPG staining is observed
in the lens capsule (arrow). K: HSPG staining is also observed in lens capsule of adult wild-type mice (arrow), with a characteristic laminar
pattern. L: In adult VEGF-A188 transgenic mice, HSPG staining is seen in the thin lens capsule (arrow) and around persistent hyaloid
vasculature (open arrows). Conspicuous staining of peri-vascular smooth muscle cells surrounding blood vessels (arrow) in both E15.5 wild-
type (N) and transgenic eyes (O) was noted. F4/80 immunoreactivity in sections from E15.5 wild- type (P) and transgenic mouse eyes (Q)
revealed cells adjacent to the hyaloid vasculature. In the images, L=lens, R=retina, HV=hyaloid vasculature.

52



the HV and retinal vasculatures [1,8,35]. VEGF levels are also
often elevated in ocular disorders, where increased vascular-
ization is observed [15,17]. In addition, overexpression of
human VEGF-A

165
 under the control of the rhodopsin promoter

results in a degenerative phenotype characterized by increased
retinal vascularization [18]. The doubling of the hyaloid vas-
cular volumes and cross-sectional areas in VEGF-A

188
 mice is

consistent with studies in both VEGF-A
165

 overexpressing tu-
mors [36], where vessel fusion resulted in abnormally large
lumen formation and also in normally avascular areas in Japa-
nese quail embryos following injection of nanomolar quanti-
ties of VEGF-A

165
 at the onset of vasculogenesis [37]. In

VEGF-A
188

 transgenic mice (this study), EC number was sig-
nificantly increased over that in controls from E13.5-E18.5,
and these results are consistent with those described for VEGF-
A

165
 mice, where proliferation of presumed endothelial pre-

cursor cells juxtaposed to the lens was high during the late
fetal period and declined thereafter [1]. The concomitant two
to three fold increase of both EC and pericyte numbers during
late fetal ocular vascularization of VEGF-A

188
 transgenic mice

(this study) is consistent with the hypothesis that the prolif-
eration and cell localization of these cell types are intimately
linked. VEGF-A is a known mitogen for pericytes [38], and as
both ECs and pericytes express VEGF-R2 they are able to
respond to this growth factor [39,40]. Previous studies have
also shown that VEGF-A promotes maturation of pericytes
within the developing retina [41], and that melanoma cells
transfected with VEGF-A cDNA promote a strong prolifera-
tive response in both pericytes and ECs [42]. Poor blood ves-
sel development has been suggested to be the result of an in-
sufficient population of mesenchymal cells and pericytes to

interact with the overabundance of endothelial cells [1]. This
study provides an alternative hypothesis, namely that the peri-
cyte population observed, in both control and VEGF-A

188

overexpressing mice, increases in tandem with EC number.
Hyalocyte (F4/80) positive cells are observed as early as E13.5
in both control and VEGF-A

188
 transgenic mice, in contrast to

the low numbers of these cells described in VEGF-A
165

 mice
[1]. Hyalocytes are now well known to play a key role in the
regression of the hyaloid vasculature, particularly via the ex-
pression of Wnt-7b [43]. Our results suggest that the VEGF-
A

188
 isoform promotes an increase in hyalocyte numbers, al-

beit not a statistically significant difference, both within the
hyaloid vessel walls and on the ablumenal surface. The role
of hyalocytes in the ocular pathology remains to be determined,
but the results suggest that as the HV volume increases in
VEGF-A

188
 mice, the numbers of hyalocytes do not propor-

tionally increase.
Stereological analysis of VEGF-A

188
 transgenic mice re-

vealed a significantly increased proportion of retina in com-
parison to wild-type mice, coupled with conspicuous
immunolabeling for VEGF in the hypertrophic retina, particu-
larly adjacent to the lens equator. Reduced VEGF-A produc-
tion in the eye is a cause of retinal thinning [44] and con-
versely, retinal thickening has been observed in mice with reti-
nal ischemia (associated with increased VEGF-A levels) caused
by a surgically increased intraocular pressure [45]. Our data
cannot definitively differentiate between retinal hypertrophy
resulting from inappropriate neovascularization or as a direct
effect of VEGF-A

188
 overexpression on ganglion cell prolif-

eration and differentiation. Overexpression of VEGF-A
188

 from
the developing lens also resulted in an increased number of
layers in the postnatal cornea of VEGF transgenic mice. One
possible explanation for this increased number of EC layers
in VEGF-A transgenic corneas is that VEGF-A

188
 transgenic

eyes may be subjected to an increased intraocular pressure in
relation to the wild-type eye. Several studies have shown that
increased intraocular pressure can result in a thickening of the
cornea [46-53], however thickening was not observed in our
study despite the increase in corneal ECs. Although corneal
thickening had not occurred, the properties of the cornea such
as protection against noxious agents, biomechanical stability,
and structural resiliency as well as the ability to filter out dam-
aging UV light and to aid light refraction may be altered by an
increase in density of the cornea. VEGF was originally dis-
covered and termed as vascular permeability factor [54]; there-
fore, with an increased number of hyaloid blood vessels which
are more permeable (as evidenced from the histological and
ultrastructural examinations of VEGF-A

188
 transgenic eyes),

leakage of serum proteins is highly likely contribute to the
ocular pathology we describe.

Previous studies in humans [55] and in mice [1] have dem-
onstrated that VEGF-A is expressed within the lens and sup-
ports early fetal lens growth by stimulating the proliferation
and migration of angioblasts. In addition to the developmen-
tal significance of VEGF-A, a range of ocular pathologies are
characterized by inappropriate neovascularization and are co-
incident with increased levels of VEGF-A. These include pro-
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Figure 4. Numbers of ultrastructurally identified cells within the hya-
loid vasculature of wild-type and VEGF-A

188
 transgenic mice.  Ul-

trastructural quantitation of cells in the hyaloid vasculature of VEGF-
A

188
 transgenics and control littermates. Quantitation of median coro-

nal sections from E13.5, E15.5, and E17.5 VEGF-A
188

 transgenics
and control littermates revealed a consistent 3:1 endothelial
cell:pericyte ratio. N=4 per group. WT=wild-type. 188=VEGF-A

188

transgenic mice.
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liferative diabetic retinopathy [15,17], age-related macular de-
generation [56], retinal neovascularization [18], and retinopa-
thy of prematurity [16]. The immunohistochemical data from
this study confirm that VEGF-A is overexpressed within the
lens of the transgenic mice and deposited within the lens cap-
sule, where HSPG co-localizes. VEGF-A

188
 has a strong af-

finity for heparin [12] and the specific lens capsule accumula-
tion of this protein along with HSPG, is consistent with a role
for VEGF-A

188
 (and other VEGF-A heparin binding isoforms)

in response to wounding. In adult mice and humans, the lens
capsule is normally avascular [57], however, following injury
such as lens replacement, intense neovascularization surround-
ing the lens capsule is a common indication for further surgi-
cal intervention [58-60]. The presence of HSPG-bound high
molecular weight VEGF-A isoforms in the lens may thus prove
to be amenable to therapeutic intervention, reducing the inci-
dence of pathological neovascularization.

During normal development of the human eye, the hya-
loid vasculature nurtures the developing lens during intrauter-
ine life; in PHPV however, the hyaloid tissue fails to regress
and forms a fibrovascular mass behind the lens, resulting in
cataracts [29] and bleeding into the vitreous - phenotypes char-
acteristic of the VEGF-A

188
 model. PHPV is a common con-

genital developmental anomaly of the eye [61], affecting
around one in 15,000 live births [62]. Various mammalian
species show morphologic features of PHPV, as the disorder
has also been reported in cats [63], dogs (where the condition
is commonly bilateral [64]), llamas (also bilateral [65]), and
in laboratory rats [63], however the etiology of the disorder
has not been established. In addition to revealing a role for
VEGF-A

188
 in large vessel formation, microphthalmia, lens

anomalies and retinal hypertrophy, the VEGF-A
188

 mice de-
scribed in this study are phenotypically similar to PHPV and
should serve as a useful model for preclinical testing of po-
tential therapeutic treatments of this condition.
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