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We propose methods for directly analyzing structural 
compliance (SC) properties of elastic network models of 
proteins, and we also propose methods for extracting 
information about motion properties from the SC prop­
erties. The analysis of SC properties involves describing 
the relationships between the applied forces and the 
deformations. When decomposing the motion according 
to the magnitude of SC (SC mode decomposition), we can 
obtain information about the motion properties under 
the assumption that the lower SC mode motions or the 
softer motions occur easily. For practical applications, 
the methods are formulated in a general form. The parts 
where forces are applied and those where deformations 
are evaluated are separated from each other for enabling 
the analyses of allosteric interactions between the speci­
fied parts. The parts are specified not only by the points 
but also by the groups of points (the groups are treated  
as flexible bodies). In addition, we propose methods for 
quantitatively evaluating the properties based on the 
screw theory and the considerations of the algebraic 
structures of the basic equations expressing the SC prop­
erties. These methods enable quantitative discussions 
about the relationships between the SC mode motions 
and the motions estimated from two different confor­

mations; they also help identify the key parts that play 
important roles for the motions by comparing the SC 
properties with those of partially constrained models.  
As application examples, lactoferrin and ATCase are 
analyzed. The results show that we can understand their 
motion properties through their lower SC mode motions 
or the softer motions.
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All organisms are continuously exposed to various forces. 
At the tissue level, external forces such as touch apply 
pressure on the skin. Bones support weight, lungs undergo 
periodic stretching, and blood vessels experience the force 
of blood flows. At the cell level, each cell experiences forces 
from the neighboring cells and extra-cellular matrices. Inten-
sive studies in mechanobiology have revealed that forces 
play important roles in life not only at the tissue or the  
cell level but also at the molecular level; these studies have 
also clarified the functions of many proteins (e.g., Integrin, 
Cadherin, Tarin, MscL) related to the response to mechani-
cal forces [1–6]. Forces play important roles not only for the 
proteins related to the response to the mechanical forces. 
Studies based on normal mode analysis (NMA) clarified that 
the functional protein motions can be approximated by 
combining lower normal mode motions [7–22]. In general, 

We propose methods for directly analyzing structural compliance (SC) properties of the elastic network models of proteins, methods for extracting 
information about the motion properties from the SC properties, and methods for quantitatively evaluating the motion properties. Under the 
assumption that the softer motions occur easily, we can obtain information about the motion properties, including the allosteric interactions 
between the specified parts, by decomposing the motion according to the magnitude of SC (SC mode decomposition). As application examples, 
we have analyzed lactoferrin and ATCase. The results show that we can understand their motion properties using their softer motions.
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be possible to obtain information about motion properties  
by analyzing structural compliance properties of ENMs with 
less computational cost.

Related to the NMA by using ENM, it is know that we can 
analyze ENM behavior when an external force is applied by 
adding external force terms to the formulation of NMA. By 
using the methods, the structural mechanisms that enable the 
allosteric effect were investigated [21], and roles of forces 
were investigated from the view point of mechanobiology 
[25]. In contrast to the methods, we directly analyze the 
structural compliance properties of ENMs and extract infor-
mation about motion properties without calculating the 
normal modes. An ENM is a type of system with multiple 
degrees of freedom (DOF). The methods used in robotics are 
extremely useful for analyzing such systems. In particular, 
when the ENM is constructed by using dihedral angles, the 
model can be treated as an assembly of robotic arms; the 
dihedral angles of ENM correspond to the joint angles of 
robotic arms. The following examples show that various 
techniques in robotics have been applied for the analyses of 
protein motions [26–37]. The method for solving the inverse 
kinematics problem (i.e., the problem of calculating joint 
displacements from the specified hand configurations) is 
applicable for solving the loop closure problems in proteins 
(i.e., the problem of moving the localized part of the proteins 
without affecting the surrounding parts) [26,27,36]. Statics 
and path planning of robotic arms are applicable for describ-
ing the folding process of proteins [30]. The methods used 
for robot kinematics are effective for generating the trajec-
tory between two conformations of proteins [35].

We have, so far, derived the basic formula for directly 
analyzing structural compliance properties of the ENM of 
proteins and extracting the information of motion properties 
by making the best use of the methods in robotics [37]. For 
more practical applications, we formulate the method in a 
more general form and present some methods for quantita-
tively evaluating the properties. In the general formulation, 
the forces are assumed to apply to the points and the groups 
of points (the groups are not treated as rigid but as flexible 
bodies). The methods for quantitatively evaluating the prop-
erties are formulated based on the screw theory and the 
considerations of the algebraic structures of the basic equa-
tions expressing structural compliance properties. As the 
application examples of the methods, we will show the 
results of the analyses of lactoferrin and aspartate trans
carbamoylase.

Methods
Protein Model

Figure 1 illustrates the approximate protein model 
employed in this research. The model is main-chain-based 
ENM. The conformation of the model is expressed by the 
dihedral angles around the N-Cα bond axes (ϕ) and the Cα-C 
bond axes (ψ) (The side chain structures are not modeled in 

natural frequencies of soft objects are low and the flexibility 
of objects depends on the directions of the applied forces. 
Moreover, Ikeguchi et al. showed that the conformation 
changes of proteins when bound to ligands can be well pre-
dicted from their ligand-free forms using linear response 
theory (LRT) [23]. In their method, the proteins’ responses 
to perturbations are assumed to be proportional to the fluctu-
ations of their ligand-free forms, and the perturbations are 
expressed as forces between the ligands and proteins. From 
these facts, we can understand that motion properties of pro-
teins have a close relationship with the responses to the 
forces.

The force response properties of an object can be charac-
terized by the structural compliance properties of the object. 
For a particle connected to a wall by a linear spring, the 
structural compliance relates the displacement of the particle 
to the force applied on the particle. In this system, the struc-
tural compliance corresponds to the inverse of the spring 
constant of the spring; in this sense, it expresses the flexibil-
ity of the spring. When a force is applied to a 3D object, the 
structural compliance relates the deformation to the applied 
force. The structural compliance is generally represented as 
a matrix that connects the deformation vector and the force 
vector. The flexibility depends on the direction of the applied 
force. The structural compliance matrix contains informa-
tion of the structural compliance properties, which mainly 
describe the directional dependence of the flexibility. There-
fore, if we can directly analyze the structural compliance 
properties of proteins from their 3D structural data or PDB 
data [24],we will be able to obtain information about motion 
properties. The objective of this research is to formulate the 
method and understand the motion properties of proteins 
through their structural compliance properties.

As a protein model, we focus on the elastic network model 
(ENM). Tirion compared the simulation results of NMA 
calculated by using a complex semiempirical potential field 
with those using a simple potential field constructed by lin-
ear springs; she showed that the results for the lower normal 
mode motions were similar [9]. Tama et al. investigated 20 
proteins whose 3D structural data of open and close forms 
are archived in the PDB. They compared the simulation 
results of NMA using Cα based ENM with the motions esti-
mated from the difference between the open and close forms. 
They revealed that information on the nature of the confor-
mation change of a protein is often contained in a single 
lower normal mode motion of its open form [12]. Various 
types of ENMs that are different at the coarse grain level and 
in the setting of the spring constant have been proposed. The 
results of the studies based on NMA by using ENM show 
that the essential information about functional motion is pre-
served in ENM in spite of the simplicity of the model. Owing 
to the reduction of computational load, it becomes possible 
to comprehend the essential motion properties of large pro-
teins and even comprehensively analyze the proteins stored 
in PDB [11–15,17,20–22]. Therefore, we expect that it will 
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directions. Mathematically, the deformation vector ΔX and 
the force vector F are related through ΔX = CF. The matrix 
C is called the structural compliance matrix. The magnitude 
of structural compliance is given by |ΔX |/|F |; note that the 
larger magnitude of structural compliance means that the 
protein model is softer for the applied force direction. By 
analyzing the properties of C, we can obtain the motion 
modes called the SC mode. The lower SC mode motions 
align with the directions of larger magnitude of structural 
compliance (softer motions). From the decomposed SC mode 
motions, we can extract the motion properties of proteins. To 
improve the practicality of the method we define the struc-
tural compliance in a more general form and constrain the 
forces and the protein model (as shown below). Through 
these modifications, we can obtain much information related 
to the protein motions.

The structural compliance for this study is more general 
than normal. Normally, the structural compliance of an object 
is defined based on the relationship between the applied 
forces and the deformation of the part where the forces are 
applied. In contrast, as shown in Figure 2, we separate the 
parts where the deformations are evaluated (Deformation 
Part in Fig. 2) from the parts where forces are applied (Appli-
cation Part in Fig. 2). The separation enables the analyses of 
the motion interactions between the parts distant from one 
another.

this protein model). For multisubunit proteins, the relative 
position and orientation (6DOF) between the main chains 
are added, where the reference subunit can be specified arbi-
trarily. Linear springs are placed between the Cα whose dis-
tances are less than the threshold value or the cutoff value 
Lth. Their natural lengths are set as the distance between Cα 
in the PDB data.

The variables that are required to represent the conforma-
tion of the model are called conformation variables. Let n  
be the number of conformation variables (i.e., the DOF of 
the model), and θ = (θ1

...θn)T be the vector assembling all  
the conformation variables. The change of the vector Δθ 
expresses the internal motion of the model. The exemplified 
protein model shown in Figure 1 is created by using the PDB 
data of hemoglobin (PDB-ID:4HHB), where Lth is set as 8 Å. 
The number of conformation variable is n = 574, and the 
number of springs is 2,817.

Definition of Structural Compliance
The basic concept of the proposed method is simple. We 

consider the deformations of the protein model under applied 
forces. Even under forces of the same magnitude, the defor-
mation magnitude will depend on the force direction. The 
protein model is softer for the force directions which cause 
larger deformation magnitude. The basic concept of the 
method is that protein motions occur easily in the softer 

Figure 1 Protein model. The model is a main-chain-based ENM. The conformation of the model is expressed by the dihedral angles around the 
N-Cα bond axes (ϕ) and the Cα-C bond axes (ψ). For multisubunit proteins, the relative position and orientation (6DOF) between the main chains are 
added. Linear springs are placed between Cα whose distances are less than the threshold value. Their natural lengths are set as the distance between 
Cα in the PDB data.
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deflections Δls and Δθ (Δls = JsΔθ). The relationship Wf = Es 
gives the following equation.

FTJf Δθ = ΔθTJs
TKJsΔθ	 (1)

Solving this equation about Δθ, we obtain Eq. (2), which 
expresses the deformation of the model or the changes in the 
conformation variables Δθ when the force F is applied.

Δθ = (Js
TKJs)

–1Jf
TF = DF	 (2)

where D is defined as D = (Js
TKJs)

–1Jf
T.

As explained in the previous section, we assume that  
the external forces are in static equilibrium (∑ fi = 0 and  
∑ xi × fi = 0 are established). The equilibrium condition is 
linear about F; therefore, it can be expressed in the form  
BF = 0. Using B⊥ (the columns form the orthonormal basis 
of the kernel space of B), all F satisfying the condition are 
expressed as:

F = B⊥Fb	 (3)

where Fb is an arbitrary vector. We regard Fb as the force 
vector instead of F. FTΔX = Fb

TB⊥TΔX has the dimension of 
work. Therefore, the displacement ΔXb compatible with Fb 
should be defined by Eq. (4) so that FTΔX equals Fb

TΔXb.

ΔXb = B⊥TΔX	 (4)

We regard ΔXb as the displacement vector of the application 
points instead of ΔX.

Besides expressing static equilibrium, the matrix B plays 
another important role. The displacements expressed as  
ΔX = BTw (where w is an arbitrarily vector) are mapped to 
zero by B⊥T (ΔXb = B⊥TBTw = 0). Thus, regardless of F and 
Fb, the work done by the displacements expressed as  
ΔX = BTw becomes zero. Considering the fact that the work 
done by the forces in static equilibrium is zero when the 
application points are displaced rigidly (i.e., displaced with-
out changing mutual distances), we can conclude that the 

We assume that no part of the protein model is fixed to the 
external environment. To realize this condition in statics, the 
applied forces are restricted to those in static equilibrium.  
In addition, we constrain the deformation of the parts in the 
protein model as required (Constrained Part in Fig. 2). By 
this constraint, we can express the constraints by ligand 
bindings, disulfide bonds, and so on. Moreover, the con-
straint to the model is effective for identifying the key parts 
that govern the motion properties. If the motion property 
changes greatly when a part is constrained, it can be inferred 
that the constrained part is the key part. It should be noted 
that the no part of the protein model including the con-
strained part is fixed to the external environment.

Structural Compliance Analysis
In this section, we summarize the basic formula for calcu-

lating the structural compliance of the protein model. As 
described earlier, we derived the formula by making the best 
use of the methods used in robotics. The details of the deri-
vation of the formula are shown in our previous paper [37].

As shown in Figure 3, we assume that the external forces 
f1, ..., fnf

 are applied at nf application points, and the points 
displaced Δx1, ..., Δxnf

. By assembling these vectors, we 
define the force vector F as F = ( f1

T...fnf

T)T and the dis
placement vector ΔX as ΔX = (Δx1

T...Δxnf

T)T. The work Wf  
done by the external forces is expressed as Wf = FTΔX/2  
= FTJf Δθ/2, where Jf is the Jacobian matrix that relates the 
displacements of the application points ΔX and the changes 
of the conformation variables Δθ (ΔX = Jf Δθ). Let Δls be  
the vector assembling all the spring deflections in this defor-
mation. The energy Es stored in the springs is expressed  
as Es = ΔlT

s KΔls/2 = ΔθTJs
TKJsΔθ/2, where K is the diagonal 

matrix that contains spring constants as its diagonal ele-
ments, and Js is the Jacobian matrix that relates the spring 

Figure 2 Definition of structural compliance. Normally, the struc-
tural compliance of an object is defined based on the relationships 
between the applied forces and the deformation of the part where the 
forces are applied. In contrast, in the general definition of the structural 
compliance, the parts where the deformations are evaluated (labeled as 
Deformation Part) are separated from the parts where forces are applied 
(labeled as Application Part). We assumed that no part of the protein 
model is fixed to the external environment. To realize this condition in 
statics, the applied forces are restricted to those in static equilibrium.  
In addition, the deformation of the specified parts in the protein model 
are constrained as required (labeled as Constrained Part).

Figure 3 Calculation of structural compliance. External forces  
f1, ..., fnf

 are assumed to be applied at the specified nf application points 
and the points displaced Δx1,...,Δxnf

 , where the forces are in static equi
librium (∑ fi = 0 and ∑ xi × fi = 0 are established). By the forces appli-
cation, it is assumed that the specified nt deformation points displaced 
Δxt1,...,Δxt nt

. In the deformation, the vector lc assembling the parameters 
constrained in the constrained parts (e.g., the distances between the 
specified points in the model) is kept unchanged (i.e., Δlc = 0).
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Combining Eq. (9) with Eq. (6), we obtain the following 
equation.

ΔXbt = B⊥
t 

T J *
t Δθc = B⊥

t 
T J *

t D*B⊥Fb = Cbt Fb	 (10)

where Cbt = B⊥
t 

T J *
t D*B⊥ is the structural compliance matrix. 

Equation (10) is the basic equation for directly calculating 
the structural compliance when application and deformation 
parts are specified by points.

SC Mode Decomposition
As illustrated in Figure 4 (the application and deformation 

points are assumed to be the same in this illustration), the 
structural compliance will differ depending on the force 
directions. By applying singular value decomposition (SVD) 
to the structural compliance matrix Cbt, we can decompose 
the motion according to the magnitude of structural compli-
ance. Let Cbt = USV T be the SVD of Cbt, where U and V are 
the orthonormal matrices and S is a diagonal matrix that has 
singular values σi for the diagonal elements in decreasing 
order (σ1 ≥ σ2 ≥ ...). When Fb = [V]i (the i th column of  
V, |[V]i| = 1) is substituted in Eq. (10), the magnitude of 
deformation |ΔXbt| is expressed as |ΔXbt| = |Cbt[V]i| = σi. In 
other words, when the value of i decreases, the structural 
compliance increases. To calculate the changes of the con-
formation variables Δθmode i under forces applied in the 
direction [V]i, we substitute Fb = α[V]i (α is a scalar value) 
into Eq. (7). Δθmode i is expressed as:

Δθmode i = αJ⊥
c D*B⊥[V]i	 (11)

We call this decomposition of motion according to the mag-
nitude of the structural compliance as the SC mode decom-
position, and Δθmode i in Eq. (11) expresses the i th SC mode 
motion. In the calculation of SC mode motions, we have to 
specify the application and deformation points (both can be 
specified to the same points); however, we do not have to 
specify the force directions. The force directions are calcu-

displacements expressed as ΔX = BTw are a type of rigid  
displacement of the application points. Therefore, the dis-
placements ΔXb compatible with Fb express the type of rela-
tive displacements between the application points. Equation 
(4) implies that the linear mapping B⊥T has the effect of 
eliminating the rigid displacements contained in ΔX.

Moreover, according to the need (see Fig. 2), we constrain 
the deformation of the parts in the protein model (no part is 
fixed to the external environment). Let lc be the vector 
assembling the parameters that must be constrained (e.g., 
distances between the specified points in the model), and Jc 
be the Jacobian matrix that relates Δlc with the changes of the 
conformation variables Δθ (Δlc = JcΔθ). The conformation 
variables θ must be changed without changing lc.The set of 
Δθ that maintains Δlc = 0 is expressed as:

Δθ = Jc
⊥Δθc	 (5)

where Jc
⊥ is the matrix whose columns are the orthonormal 

basis of the kernel space of Jc, and Δθc is an arbitrary vector.
Substituting Eq. (3) (the condition of static equilibrium of 

the forces) and Eq. (5) (the constraint to the protein model) 
into Eq. (2), we obtain the following equations.

Δθc = (J *
s
TKJ *

s)
–1J *

f
TF = D*F = D*B⊥Fb	 (6)

Δθ = Jc
⊥Δθc = Jc

⊥D*F = Jc
⊥D*B⊥Fb	 (7)

where J *
f = Jf Jc

⊥, J *
s = JsJc

⊥, and D* = (J *
s
TKJ *

s)
–1J *

f
T. It is 

possible to calculate the changes in the conformation vari-
ables Δθ using Eq. (7) when the balanced external forces 
expressed by Fb are applied to the partially constrained 
model. In addition, we often encounter the problem in calcu-
lating the inverse of J *

s
TKJ *

s because of the ill condition of 
the matrix. The details about the method to deal with the 
problem are given in [37].

In the general definition of the structural compliance in 
this study, the deformation of the part specified separately 
from the application points must be evaluated (see Fig. 2). 
As shown in Figure 3, we specify the part by specifying nt 
deformation points; the volume surrounded by the points 
forms the part. Let Δxt1, ..., Δxt nt

 be the displacement vectors 
of the deformation points, and ΔXt = (Δxt1

T...Δxt nt

T)T be the 
vector assembling them. Defining the Jacobian matrix Jt that 
relates ΔXt and Δθ, we can express ΔXt as:

ΔXt = Jt Δθ = Jt Jc
⊥Δθc = J *

t Δθc	 (8)

where J *
t = Jt Jc

⊥ (see Eq. (5)). ΔXt contains the rigid dis-
placement of the deformation points. Based on the effect of 
the matrix B explained in Eq. (4), the matrix Bt, which 
expresses the condition of the static equilibrium when forces 
are virtually applied at the specified nt deformation points, 
can be used for eliminating the rigid displacement contained 
in ΔXt. The deformation of the deformation part ΔXbt is 
expressed as:

ΔXbt = B⊥
t 

T ΔXt = B⊥
t 

T J *
t Δθc	 (9)

Figure 4 Force direction and structural compliance. The structural 
compliance will differ depending on the directions of the forces (the 
application and deformation points are assumed to be the same in this 
illustration). Although the magnitudes of the forces applied to the pro-
tein models are the same for both the cases, the deformation of the left 
case is larger than that of the right case.
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SVD of Cbt, the covariance matrix can be rewritten as  
CbtCbt

T = USVTVSUT = US2UT. Thus, the covariance matrix 
is expressed as the products of the orthonormal matrix U and 
the diagonal matrix S2. According to the theory of PCA,  
[U]i (the i th column of U) corresponds to the direction of 
the i th principal component. In the calculation of the i th  
SC mode motion, α[V]i is substituted in Fb (force vector 
acting on the application part) in Eq. (7). If α[V]i is substi-
tuted in Fb in Eq. (10), we find that the deformation vector  
of the deformation part ΔXbt is expressed as ΔXbt = αCbt[V]i  
= αUSVT[V]i = ασi[U]i (ΔXbt directs in the direction of [U]i). 
Therefore, we can understand that ΔXbt caused by the i th  
SC mode motion directs in the direction of the i th principal 
component of the deformation vectors of the deformation 
part achieved by various forces of equal magnitude acting on 
the application part.

Structural Compliance Analysis Focusing on Flexible 
Groups

To calculate the structural compliance shown above, we 
assumed to apply forces to the points (i.e., application points) 
and evaluate the deformations at the points (i.e., deformation 
points). For the practical application of the analysis, it will 
be convenient if forces were not only applied to the points 
but also to the groups of points (e.g., secondary structures, 
domains, and subunits). Similarly, it will be convenient if 
deformation were not only evaluated between the points but 
also between the groups of points. If groups are treated as 
rigid bodies, the computational cost will be dramatically 
reduced because of the reduction of conformation variables 
(all of the conformation variables in the groups are fixed) 
[15,40]. However, the specification of groups has to be done 
carefully. If the specified groups include key parts, the 
structural compliance properties will completely change. 
For avoiding this problem, in the formulation given below, 
we do not treat the groups as rigid bodies but as flexible 
bodies.

As shown in Figure 5, in the structural compliance analy-
sis focusing on the flexible group motions, we specify nfg 
groups where forces and moments are applied (Application 
Groups in Fig. 5); we also specify ntg groups whose relative 
motions are evaluated (Deformation Groups in Fig. 5) in the 
protein models. It should be noted that both the forces and 
the moments must be applied. In addition, according to the 
need, we specify the parts whose deformations are con-
strained (Constrained Part in Fig. 5). Similar to the cases that 
focus on the points (see Fig. 3), no part is fixed to the 
external environment.

We assume that the forces and moments are applied at the 
centroids of Cα in flexible groups. Let xc i be the position vec-
tor of the centroid of the group i; fc i and τc i be the force and 
moment vectors applied at the centroid, respectively; Δxc i be 
the translational displacement vector of the centroid, and 
Δac i be the angular displacement vector around the centroid. 
If we define the force vector F as F = (fc1

Tτc1
Tfc2

Tτc2
T...)T  

lated by the SVD of the structural compliance matrix Cbt 
([V]i in Eq. (11) corresponds to the force directions).

As described earlier, the studies based on NMA clarified 
that the functional protein motions can be approximated by 
the combinations of lower normal mode motions. Combin-
ing this with the fact that the natural frequencies of soft 
objects are low in general, we can infer that the lower SC 
mode motions or the softer motions will occur easily.

SC Mode, Normal Mode, and Principal Component
The normal mode is based on vibration theory, and the 

lower normal mode motions express the motions associated 
with the lower natural frequencies. In contrast, the SC mode 
is based on structural mechanics, and the lower SC mode 
motions align with the higher structural compliance (the 
softer motions). As mentioned above, combining this with 
the fact that the natural frequencies of soft objects are low in 
general, we can understand that normal mode and SC mode 
motions are interrelated, but are not the same. When calcu-
lating the SC mode, we explicitly specify the application and 
deformation parts in the protein model. This procedure is not 
needed in NMA (which calculates the normal modes of the 
whole structure), so the calculation of the SC mode might 
appear more troublesome than that of the normal mode. 
However, by implementing this procedure, we can obtain 
direct information about the motion properties of the parts, 
even of small regions of the localized parts, by specifying 
the parts as application or deformation parts (we can also 
specify the parts for each residue). Moreover, by separately 
specifying the application and deformation parts, we can 
obtain direct information about the motion interaction among 
the different parts.

We mention the relationships between the SC mode 
decomposition and the principal component analysis (PCA). 
Given an ensemble of conformational data of a protein, PCA 
is effective to extract the collective motions contained in the 
conformations [19,20,38,39]. The principal components are 
calculated from the diagonalization of the covariance matrix 
constructed from the assembly of the displacement vectors 
of the points in the protein. In NMA, we focus on the change 
in energy of various conformations around the equilibrium 
state. In this sense, NMA can be understood from the view-
point of PCA [20]. The structural compliance matrix Cbt does 
not directly express the covariance matrix; however, we can 
find the relationships between the SC mode decomposition 
and PCA as follows. The i th column of the structural com-
pliance matrix Cbt expresses the deformation vector of the 
deformation part when the i th element of the force vector is 
one and the other elements are zero. Namely, the structural 
compliance matrix Cbt can be regarded as the assembly of the 
deformation vectors of the deformation part achieved by 
various forces of equal magnitude acting on the application 
part. We understand that CbtCT

bt expresses the covariance 
matrix of these deformation vectors. In the SC mode 
decomposition, we applied SVD to Cbt (= USVT). Using the 
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(Δxc i = Jxc i Δθ), and Jac i is the Jacobian matrix that relates 
Δac i and Δθ (Δac i = Jac i Δθ). Figure 6 illustrates the motion 
of the flexible group i. Let nca i be the number of Cα in  
the group i, Δpij be the displacement vector of the j th Cα  
in the group i, ΔPi be the vector assembling Δpij or  
ΔPi = (Δpi1

T...Δpinca i

T)T, and Jp i be the Jacobian matrix that 
relates ΔPi and Δθ (ΔPi = Jp i Δθ).

First, we consider the calculation of Jxc i in Eq. (12). The 
translational displacement vector of the centroid Δxc i can be 
expressed as:

Δxc i = 1
nca i

 ∑
j 
Δpij = 1

nca i
 E′i ΔPi = 1

nca i
 E′i Jp i Δθ	 (13)

where E′i = {E ...E} is 3 × 3nca i matrix containing 3 × 3 iden-
tity matrix E as blocks. Comparing Eqs. (12) and (13), we 
obtain:

Jxc i = 1
nca i

 E′i Jp i	 (14)

Then, we consider the calculation of Jac i in Eq. (12). If the 
group i is perfectly rigid, Δpij is expressed as:

Δpij = Δxc i + Δac i × qij	 (15)

Here, qij = pij – xc i. Δpij and Δxc i are already expressed by Δθ 
using the Jacobian matrices Jp i and Jxc i, respectively. The 
group is not perfectly rigid; therefore, it is impossible to 
determine Δac i such that Eq. (15) holds strictly for every Cα. 
Thus, we consider the least square error solution. Equation 
(15) can be rewritten as qij × Δac i = Δxc i – Δpij. By stacking 
this equation for all Cα in the group i, we obtain the follow-
ing equation.

and define the displacement vector ΔX as  
ΔX = (Δxc1

TΔac1
TΔxc2

TΔac2
T...)T so that FT ΔX has the work 

dimension, then Eq. (2) is still valid for the case focusing on 
flexible group motions. However, the calculation of the 
Jacobian matrix Jf is not so straightforward because of the 
flexibility of the groups themselves.

We must define the Jacobian matrix Jf so that it expresses 
the relationship between the displacements of the flexible 
groups ΔX and the changes of the conformation variables Δθ 
(ΔX = Jf Δθ). Jf can be divided into blocks Jxc i and Jac i as 
shown below.

ΔX(6nfg×1) Jf (6nfg×n)

⎧
�
�
�
�
⎩

Δxc1 ⎫
�
�
�
�
⎭

=

⎧
�
�
�
�
⎩

Jxc1 ⎫
�
�
�
�
⎭

Δθ(n×1)

Δac1 Jac1
Δxc2 Jxc2
Δac2 Jac2

⋮ ⋮

	
(12)

Here, Jxc i is the Jacobian matrix that relates Δxc i and Δθ  

Figure 6 Translational and angular displacement of a flexible 
group. Here, group i moved with the deformation. It is necessary to 
calculate the translational displacement vector Δxc i and the angular dis-
placement vector Δac i, which approximate the motion of the group i. 
We can calculate Δxc i as the displacement vector of the centroid of the 
group i; however, the calculation of Δac i is not so straightforward. Δpij 
shows the displacement vector of the j th Cα in the group i. If the group 
i is perfectly rigid, Δpij is expressed as Δpij = Δxc i + Δac i × qij (qij is the 
vector directed from the centroid to the j th Cα ). The group is not per-
fectly rigid; therefore, we cannot determine Δac i such that this relation-
ship holds strictly for every Cα. Δac i is determined as the least square 
error solution.

Figure 5 Calculation of structural compliance focusing on flexible 
groups. External forces fc i and moments τc i are assumed to be applied 
at the centroids of the specified application groups and the groups dis-
placed Δxc i in translation and Δaci in orientation, where the forces and 
moments are in static equilibrium (∑ fc i = 0 and ∑(xc i × fc i + τc i) = 0  
are established). By the forces and moments application, it is assumed 
that the specified deformation groups displaced Δxtc i in translation and  
Δatc i in orientation. It should be noted that, both the application and 
deformation groups are treated not as rigid but as flexible bodies. In the 
deformation, the vector lc assembling the parameters that must be 
constrained in the constrained parts is kept unchanged (i.e., Δlc = 0).
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elements in the vectors. For evaluating the magnitude of 
structural compliance, we need to define the magnitudes of 
Fb and ΔXbt. In flexible group motions, it is not appropriate 
to directly take the magnitude of Fb because F = B⊥Fb con-
tains elements with different dimensions (force and moment). 
For the same reason, directly taking the magnitude of  
ΔXbt = Bt

⊥TΔXt is also not appropriate.
To deal with this problem of mixed dimensions, we define 

a new vector F′ containing the same dimensional elements, 
and we assume that F′ is related to F through a weighting 
matrix W.

F = WF′	 (20)

Then the static equilibrium condition BF = 0 can be rewrit-
ten as B′F′ = 0, where B′ = BW. All the F′ and F satisfying 
the condition are expressed as:

F′ = B′⊥F′b	 (21)

F = WB′⊥F′b	 (22)

where F′b is the arbitrary vector. We regard F′b as the force 
vector instead of Fb. Based on the considerations similar to 
Eq. (3), the displacement ΔX′b compatible to the force F′b  
(see Eq. (4)) is expressed as:

ΔX′b = (WB′⊥)TΔX = B′⊥TW TΔX	 (23)

ΔX′b expresses the relative displacement between the appli-
cation groups. Moreover, in a similar manner, the relative 
displacement between the deformation groups ΔX′bt is 
expressed as:

ΔX′bt = B′t⊥TWt
TΔXt	 (24)

where B′t = BtWt and Wt is the weighting matrix for the defor-
mation groups. Combining Eqs. (6), (8), (22) and (24), we 
can express the relationship between ΔX′bt and F′b as follows.

ΔX′bt = B′t⊥TWt
TJt

*D*WB′⊥F′b = C′bt F′b	 (25)

where C′bt = B′t⊥TWt
TJt

*D*WB′⊥. In the SC mode decomposi-
tion, it becomes possible to avoid the problem of mixed 
dimension by using C′bt instead of Cbt as a compliance matrix. 
From the SVD of the compliance matrix C′bt = USVT, the 
direction of the force vector corresponding to the i th SC 
mode motion is obtained as [V]i. Combining F′b = α[V]i (α is 
a scalar value), Eqs. (7) and (22), we can express the i th SC 
mode motion focusing on the flexible group motions as:

Δθmode i = αJc
⊥D*WB′⊥[V]i	 (26)

In calculating the SC mode motions, it should be noted that 
we have to specify the application and deformation groups 
(both can be specified to the same); however, we do not have 
to specify F′b or its direction.

For example, as shown in Figure 7, we may define F′ and 
W by using a couple. In Figure 7, τ is a moment vector, and 
uτ is the unit vector directed to τ. The moment can be 
replaced by a couple consisting of two forces of magnitude 

⎧
�
�
⎩

q~ i 1 ⎫
�
�
⎭

Δac i =
⎧
�
�
⎩

Δxc i – Δpi 1 ⎫
�
�
⎭

⋮ ⋮
q~ i nca i

Δxc i – Δpi nca i

	 (16)

where q~ ij is a 3 × 3 skew symmetric matrix expressing  
the operation qij ×. By defining Q~

i = (q~T
i 1

...q~T
i nca i

)T and  
Jr

xc i = (JT
xc i

...JT
xc i)T, we obtain the following equation.

Q~
i Δac i = (J r

xc i – Jp i)Δθ	 (17)

Here, Eq. (17) is a linear equation containing an unknown 
variable Δac i. The least square error solution is expressed as:

Δac i = Q~ #
i (Jr

xc i – Jp i)Δθ	 (18)

where Q~ #
i is the pseudo inverse of Q~

i. Comparing Eqs. (12) 
and (18) we obtain:

Jac i = Q~ #
i (J r

xc i – Jp i)	 (19)

Substituting Eqs. (14) and (19) into Eq. (12), we obtain Jf 
for the flexible group motions. It becomes possible to calcu-
late the deformation when forces and moments are applied 
to the flexible groups by using Eq. (2).

When forces are applied to the points, the forces are 
assumed to be in static equilibrium. In a similar manner, forces 
and moments are assumed to be in static equilibrium. This 
condition is expressed by ∑ fc i = 0 and ∑(xc i × fc i + τc i) = 0. 
These equations are linear about F; therefore, the condition 
can be expressed in the form BF = 0. All the forces and 
moments in static equilibrium are expressed by Eq. (3). We 
regard Fb as force vector instead of F. The displacement 
ΔXb, which is compatible with Fb, is expressed by Eq. (4). 
ΔXb expresses the relative displacement between the flexi-
ble groups, and we can eliminate the rigid motions contained 
in ΔX by Eq. (4). Moreover, the effect of the constraint on 
the protein model is expressed by Eq. (5). As a result, the 
deformation of the protein model is expressed in the form of 
Eq. (7).

The structural compliance of the flexible group motions 
can be expressed in the form shown in Eq. (10). In this case, 
the Jacobian matrix Jt must be defined so that it expresses 
the relationship between the displacements of the deforma-
tion groups ΔXt = (Δxtc1

TΔatc1
TΔxtc2

TΔatc2
T...)T and the changes 

of conformation variables Δθ, where Δxtc i is the translational 
displacement vector, and Δatc i is the angular displacement 
vector of the deformation group i (see Fig. 5). The Jacobian 
matrix Jt can be calculated in a manner similar to the calcu-
lation used for Jf for the flexible group motion. Moreover, in 
this case, Bt expresses the condition of the static equilibrium 
when forces and moments are virtually applied at specified 
ntg deformation groups (Bt is used to extract the relative 
motion from ΔXt).

SC Mode Decomposition Focusing on Flexible Groups
When decomposing motion according to the magnitude  

of structural compliance (i.e., SC mode decomposition),  
we should be careful about the mixed dimensions of the 
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can understand that the motion is the hinge-bending motion 
and the residues are hinge residues. For the proteins whose 
3D structural data for different conformations are stored in 
PDB, it is possible to estimate the real protein motion, which 
we call the PDB motion, and to identify the screw between 
the specified groups.

For finite motions, such as PDB motions, the screws 
between the specified groups can be derived by applying the 
alignment algorithm for the two different conformations 
[43,44]. However, the formulations for analyzing structural 
compliance properties described above are based on instan-
taneous kinematics; therefore, the method for finite motion 
is not appropriate. We present a method for identifying the 
screws approximating the instantaneous motions expressed 
by Δθ. Here, Δθ is treated as an infinitesimal change of con-
formation variables. As shown in Figure 9, we assume that 
two flexible groups A and B are specified in the protein 
model (the groups can be specified independently from the 
application and the deformation groups in Fig. 5). Let xc i  
(i = A or B) be the positions of the centroids of the specified 
flexible groups, and let Δxc i and Δac i be the instantaneous 
translational and angular displacements approximating the 
motion of the groups, respectively. Here, we can express 
Δxc i and Δac i as functions of Δθ in a manner similar to the 
formulation in the structural compliance analysis focusing 
on flexible groups (see Eqs. (13) and (18)). The approxi-
mated instantaneous translational and angular displacement 
of the flexible group B with respect to A (ΔxcAB and ΔacAB, 
respectively) are expressed as:

ΔxcAB = (ΔxcB – ΔxcA) – ΔacA × (xcB – xcA)	 (28)

ΔacAB = ΔacB – ΔacA	 (29)

According to the screw theory, the screw parameters  
that approximate the instantaneous relative motions between 
the flexible groups A and B, a point on the axis x0 scw, the 

f/2, f = |τ|/r, where r is the perpendicular distance between 
the force vector and the moment vector. We define the force 
dimensional vector fτ = fuτ whose magnitude and direction 
are expressed as f and uτ, respectively. Based on this defini-
tion, we define fcτ i corresponding to the moment vectors τc i 
acting on the application group i (see Fig. 5). Here, we  
may use the average radius rav i = (∑j|qij|)/nca i (see Fig. 6) for 
the perpendicular distance r. Then, F′ can be defined as  
F′ = (fc1

Tfcτ1Tfc2
Tfcτ2T...)T. The corresponding weighting matrix 

W can be defined by the next diagonal matrix.

W = diag(E, rav 1 E, E, rav 2 E, 
...)	 (27)

Here, E is the 3 × 3 identity matrix. Similarly, the weighting 
matrix for the deformation group Wt can also be defined.

Screw Approximation of Relative Motion Between 
Flexible Groups

When the change of conformation variables are obtained, 
it is easy to graphically express the motion. For example, we 
can easily draw the main chain structure of each SC mode 
motion by using Δθmode i in Eq. (11) or (26). The value α in 
these equations should be modulated so that the motions are 
not large because the analyses are formulated based on instan-
taneous kinematics. For more quantitatively comprehend-
ing the characteristic of motions, it is effective to identify the 
screw approximating the relative motion between two flexi-
ble groups specified in the protein model [16,41–44]. An 
arbitrary relative motion between two rigid bodies can be 
expressed as a rotation around a unique axis and a translation 
along the same axis [45]. The axis is called the screw axis 
and the ratio between the translation and the rotation is 
called the pitch. After identifying the screw (i.e., the axis and 
the pitch) that approximates the relative motion between two 
specified flexible groups (see Fig. 8), we can regard the 
groups as virtually connected by the screw joint (The flexi-
bility of the groups makes it impossible to identify the screw 
that strictly expresses the motions of all the points in the 
groups). For example, if the pitch of the identified screw is 
small enough and the axis passes through some residues, we 

Figure 7 Weighting of the moment vector by using a couple. For 
example, the weighting of the moment vector can be defined through a 
couple. τ is a moment vector, and uτ is the unit vector directed to τ. The 
moment can be replaced by a couple consisting of two forces of magni-
tude f/2, f = |τ|/r, where r is the perpendicular distance between the 
force vector and the moment vector. We define the force dimensional 
vector fτ = fuτ whose magnitude and direction are expressed as f and uτ, 
respectively. By using fτ instead of τ, it becomes possible to avoid the 
problem of mixed dimension.

Figure 8 Screw approximation of relative motion between flexible 
groups. An arbitrary relative motion between two rigid bodies can be 
expressed as a rotation around a unique axis and a translation along the 
same axis. The axis is called the screw axis and the ratio between the 
translation and the rotation is called the pitch. If the screw (i.e., the axis 
and the pitch) approximating the relative motion between two flexible 
groups A and B is identified, it becomes possible to regard the groups 
as virtually connected by the screw joint (The flexibility of the groups 
makes it impossible to identify the screw that strictly expresses the 
motions of all the points in the groups).
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mation. We term this analysis as SC mode expansion. One of 
the most practical application of SC mode expansion is the 
comparison of the SC mode motions and PDB motions. This 
comparison can be made by giving the reference deforma-
tion from the PDB data of different conformations. Here, in 
the following formulation, we use the superscript “(′)” for 
the symbols (e.g., X (′)bt ) for convenience. This means that  
the equations are valid for both the cases that the parts are 
specified by using points and flexible groups (e.g., ΔXbt and 
ΔX′bt).

As explained for Eqs. (11) and (26), the column vectors  
of V (in the SVD of the structural compliance matrix  
C (′)bt = USV T) correspond to the force vectors of SC mode 
motions. Let VM be the matrix whose columns are selected 
from the columns of V. The force vectors spanned by the 
selected column vectors can be expressed as F (′)b = VM fM, 
where the elements of the vector fM express the coefficients 
for the column vectors. Substituting this into Eq. (10) or 
(25), we obtain:

ΔX (′)bt = C (′)bt VM fM	 (33)

When ΔX (′)bt is given as the reference deformation, fM that 
approximate the given ΔX (′)bt can be calculated by using the 
following equation.

fM = (C (′)bt VM)#ΔX (′)bt	 (34)

The force vector corresponding to the j th selected SC mode 
can be expressed as F (′)b = fM j[VM]j (i.e., the product of j th 
element of fM and j th column of VM). The deformation 
caused by this force is expressed as:

ΔX (′)bt j = fM jC
(′)bt [VM]j	 (35)

We use |ΔX (′)bt j| as the measure of intensity for evaluating the 
contribution of the selected j th SC mode needed to approx-
imate the given reference deformation, and we call |ΔX (′)bt j| 
the mode intensity of the j th mode.

As mentioned above, in one of the most practical applica-
tions of SC mode expansion, the reference deformations are 
given from the PDB motions or from the difference between 
the two PDB data of different conformations. Where, PDB 
motions are finite; however, SC mode motions expressed by 
Eqs. (11) and (26) are instantaneous. We use the directions 
of the PDB motions as the reference deformation. When 
specifying the relative displacement between the points, ΔXt 
(the displacements of the specified points) can be obtained 
from the difference of the positions between the two PDB 
data of different conformations. The deformation ΔXbt can 
be expressed as ΔXbt = Bt

⊥TΔXt (see Eq. (9)). When specify-
ing the relative displacement between the flexible groups, 
ΔXt can be obtained by using the alignment algorithm such 
as the Kabsch method [46,47]. The relative displacement 
with the weight for translation and rotation ΔX′bt is expressed 
as ΔX′bt = B′t⊥TW t

TΔXt (see Eq. (24)). We use the direction  
of ΔX (′)bt (or ΔX (′)bt /|ΔX (′)bt |) calculated from two PDB data of 
different conformations as the reference deformation.

direction of the axis uscw, and the pitch pscw (the translation 
along the axis occurred in one radian rotation around the axis) 
are expressed as follows [45].

x0 scw = xcB + 
ΔacAB × ΔxcAB

|ΔacAB|2 	 (30)

uscw = ΔacAB	 (31)

pscw = 
ΔacAB·ΔxcAB

|ΔacAB|2 	 (32)

When we consider the instantaneous screws of the SC mode 
motions, these screw parameters do not depend on α in  
Eqs. (11) and (26).

SC Mode Expansion
We formulated methods for calculating the structural com-

pliance matrix that relates the deformation of the deforma-
tion part and the force acting on the application part, and for 
calculating the SC mode motions from the matrix (SC mode 
decomposition) for both the cases in which the deformation 
and the application parts are expressed by using the points 
and the flexible groups. The essential part in the formulation 
is the derivation of the deformation of the deformation part 
from the force applied to the application part. It is assumed 
that the deformation and application parts are specified 
(these can be specified to the same part) in the formulation; 
however, the values need not be specified for the deforma-
tion and force. In this section, in contrast, we consider the 
situation that the value of deformation of the deformation 
part, or the reference deformation, is given. We formulate a 
method for approximating the given reference deformation 
by the selected mode motions in the SC mode motions and 
for evaluating the contribution of each mode in the approxi-

Figure 9 Calculation of the screw approximating instantaneous 
relative motion between flexible groups. The instantaneous transla-
tional and angular displacements approximating the motion of flexible 
groups (Δxc i and Δac i, respectively) can be expressed as a function of 
infinitesimal changes of conformation variables Δθ in a manner similar 
to the formulation in the structural compliance analysis focusing on 
flexible groups. From Δxc i and Δac i, the screw approximating the 
instantaneous relative motion between the flexible groups can be calcu-
lated based on the screw theory.
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Results and Discussion
Conditions of Analyses

We provide two application examples by using the PDB 
data of lactoferrin and aspartate transcarbamoylase (ATCase). 
All the parameters for creating protein models and calcu
lating the compliance matrix are the same as those in the 
application examples reported in our previous study [37]. 
The protein models are created by setting the threshold dis-
tance or the cutoff distance Lth for spanning springs as 8 Å 
and setting the spring constants as the inverse of the distance 
between the Cα in the PDB data. Moreover, as the parameters 
specified in the analyses focus on the flexible group motions, 
the weighting matrices W and Wt in Eq. (25) are defined by 
using Eq. (27). To calculate the screw approximating the 
relative motion between the specified flexible groups, we 
use the positions of Cα. For the alignment algorithm required 
to express the PDB motions, the Kabsch method is applied 
for the positions of Cα in the specified flexible groups.

The proposed methods were implemented in an original 
computer program coded in the C++ language. Singular 
valued decompositions and matrix multiplications of large 
matrices were performed in Intel Math Kernel Library (Intel 
Corporation). The results were graphically expressed in the 
viewer software Molfeat (FiatLux Corporation).

Lactoferrin
Figure 11 illustrates the 3D structure of lactoferrin. It 

consists of 691 amino residues. As shown in the conforma-
tion PDB-ID:1LFH, it has a large cavity between the N1 
domain (residues 1–91, 252–333) and the N2 domain (resi-
dues 92–251). Comparing conformations PDB-ID:1LFH 
and 1LFG, we find that lactoferrin opens and closes the 
cavity. We reported that first SC mode motion of the protein 
model created using PDB-ID:1LFH (the distances between 
the Cα in the residues forming disulfide bonds were con-
strained) agreed with the PDB motion [37]. In the analysis, 
both the application and deformation points were specified 
for Cα in the seven residues related to the ligand binding.

We analyzed the protein model of lactoferrin in more 
detail focusing on the structural compliance properties 
between the N1 and N2 domains. The two application groups 
were specified for all the Cα in the N1 and N2 domains, and 
the two deformation groups were specified to be the same as 
the application groups. Calculating the structural compliance 
matrix C′bt (Eq. (25)) and applying SVD to C′bt, we obtained 
six SC mode motions (Eq. (26)). Figure 12 illustrates the 
first three SC mode motions. In this figure, the screws approx-
imating the SC mode motions (see Fig. 9) and those approx-
imating the PDB motions (between the conformations of 
PDB-ID:1LFH and 1LFG) are shown; here the pitch value is 
expressed as the translation along the screw axis in one rota-
tion around the axis (Å/rev). The cavity closing motion is 
observed in the first SC mode motion.

Using SC mode expansion, the intensities of six SC mode 

Comparison of Structural Compliance Properties
If the structural compliance property largely changes 

when a part in the protein model is constrained to be made 
rigid, we can infer that the constrained part plays an import-
ant role. Moreover, it is interesting to examine how the 
structural compliance properties change by ligand binding. 
For these applications, we show a method for quantitatively 
comparing the structural compliance properties.

The vector [V]i in Eqs. (11) and (26) expresses the direc-
tion of the force vector corresponding to the i th SC mode 
motion. For comparing the structural compliance properties, 
we focus on the subspace spanned by [V]1,2,...,ns

, where ns is  
a number smaller than the dimension of [V]i. Let [Va]i and 
[Vb]i be the force direction vectors corresponding to the i th 
SC mode motions of a protein model in the different states; 
for example, one state does not include the constrained part 
whereas the other state does. Between the subspaces spanned 
by [Va]1,2,...,ns

 and [Vb]1,2,...,ns
, ns principal angles γ1,2,...,ns

 can be 
defined. Figure 10 illustrates the examples of the principal 
angles when dim([V]i) = 2, ns = 1 and dim([V]i) = 3, ns = 2. 
To evaluate the difference between the subspaces, we define 
the index Γ expressed by the following equation.

Γ = 1
ns

 ∑ γi	 (36)

Here, Γ is the average of the principal angles, which takes 
the values from 0 to π/2. The larger the value is, the larger 
the difference of the structural compliance property is.

Figure 10 Principal angles between subspaces. For quantitatively 
evaluating the difference between the subspaces spanned by [Va]1,2,...,ns

 
and [Vb]1,2,...,ns

 (the force vectors corresponding to the first ns SC mode 
motions of two different states), we focus on the principal angles 
between them. The figures illustrate the examples of principal angles. 
For the case of dim([V]i) = 2, ns = 1, one principal angle γ1 is defined 
(left figure). For the case of dim([V]i) = 3, ns = 2 , two principal angles 
γ1 (= 0) and γ2 are defined (right figure).
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placement between the deformation groups calculated from 
the difference between PDB-ID:1LFH and 1LFG (direction 
of the PDB motion). We can observe that contribution of the 
first SC mode motion is the highest and that the direction of 

motions (the magnitude of ΔX′bt j for each j in Eq. (35)) were 
calculated for approximating the reference deformation. The 
result is shown in Figure 13. The reference deformation 
(ΔX′bt in Eq. (34)) expresses the direction of the relative dis-

Figure 11 Structure and motion of lactoferrin. Lactoferrin consists of 691 amino residues. As shown in the conformation PDB-ID:1LFH, 
lactoferrin has a large cavity between the N1 and the N2 domains. Comparing conformations PDB-ID:1LFH and 1LFG, we find that lactoferrin 
opens and closes the cavity.

Figure 12 SC mode motions of lactoferrin. The motions were obtained by analyzing the protein model created from PDB-ID:1LFH. Among 
the six SC mode motions, the first three motions are shown (only the N1 and N2 domains are shown). In the analysis, the two application groups 
were specified for all the Cα in the N1 and N2 domains, and the two deformation groups were specified to be the same as the application groups  
(see Fig. 5). In each illustration, the screws approximatingthe (instantaneous) relative motion between the N1 and N2 domains calculated from the 
SC mode motions and the PDB motion (between the conformations of PDB-ID:1LFH and 1LFG) are shown. The cavity closing motion is observed 
in the first SC mode motion.
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sition between the R and T states (PDB-ID:1D09 and 1ZA1, 
respectively), C1,2,3 and C4,5,6 move relative to each other like 
a screw. It is known that the ligand binding to the regulatory 
units cause the screw-like motion between the two groups of 
catalytic units [48–50]. ATCase is a typical example of a 
protein that shows the allosterc effect.

For analyzing the motion interaction between the regu-
latory units and the catalytic units based on the structural 
compliance properties, we specified three application groups 
R1,2, R3,4, and R5,6 and two deformation groups C1,2,3 and C4,5,6 
to the protein model created from the PDB data of the R state 
(PDB-ID:1D09). We obtained 12 SC mode motions. Among 
the 12 SC mode motions, the last six mode motions corre-
sponded to the motions of the regulatory units (i.e., the appli-
cation groups) that do not affect the relative motion between 
the catalytic units (i.e., the deformation groups).

the PDB motion is approximated by the lower mode motions. 
Here, note that the SC mode motions were calculated from 
the model created using PDB-ID:1LFH; however, the pat-
tern of the mode intensity shown in Figure 13 depends not 
only on PDB-ID:1LFH but also on 1LFG.

Next, we calculated the index Γ (Eq. (36)) when the 
mutual distances between the Cα in the part in the protein 
model were constrained. The part was specified by the 
sphere whose radius was 8 Å, and the calculation of Γ was 
repeated by scanning the center for all Cα. Figure 14 shows 
the result of this analysis when ns = 1, 2, and 3. The values of 
the index Γ corresponding to the center of the constrained 
spheres are represented by the graphs and the shade mapped 
to the main chain structure (the lighter color expresses a 
larger value of Γ). It is known that the hinge axis between the 
N1 and N2 domains passes through 91 and 251 [42]; there-
fore, these residues play important roles in the internal 
motion of lactoferrin. In Figure 14, we can observe that the 
index Γ indicates large values when the parts around the Cα 
near the real hinge residues 91 and 251 are constrained.

In the analyses based on SC mode motion, we must cor-
rectly specify the application and deformation parts depend-
ing on the analysis objectives. For example, to understand 
the motion properties between the N1 and N2 domains from 
the structural compliance properties in the above analyses, 
we specified the two application groups for all the Cα in the 
N1 and N2 domains, and specified the two deformation 
groups as identical to the application groups. If the applica-
tion and deformation groups are assigned to regions of the 
N1 domain only, the cavity closing motion will not appear.

Aspartate Transcarbamoylase (ATCase)
Figure 15 illustrates the 3D structure of ATCase. It con-

sists of 2,778 amino residues and symmetrically arranged 12 
subunits. Among the subunits, C1~6 and R1~6 are called the 
catalytic units and the regulatory units, respectively. The 
groups of subunits C1,2,3 and C4,5,6 are mutually connected by 
three limbs consisting of R1,2, R3,4, and R5,6. During the tran-

Figure 13 SC mode expansion of lactoferrin. The graph expresses 
the intensities of SC mode motions, or the magnitude of ΔX′bt j for each 
j in Eq. (35), calculated from PDB-ID:1LFH for approximating the 
motion direction from 1LFH to 1LFG (PDB motion). It can be observed 
that the intensity of the first SC mode motion is the highest and the 
direction of the PDB motion is approximated by the lower mode 
motions.

Figure 14 Constrained part scanning of lactoferrin. The changes 
of structural compliance properties are shown when mutual distances 
between the Cα in the localized part are constrained. For evaluating the 
changes, the index Γ (Eq. (36)) was used. The constrained part was 
specified by the sphere whose radius was 8 Å, and the calculation of Γ 
was repeated by scanning the center for all Cα. The results are shown 
for the case ns = 1, 2, and 3 (see Fig. 10). The values of the index Γ 
corresponding to the center of the constrained spheres are represented 
by the graphs and the shade mapped to the main chain structure (the 
lighter color expresses a larger value of Γ). We can observe that the 
index Γ indicates large values when the parts around the Cα near the real 
hinge residues 91 and 251 are constrained.
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mode decomposition are based on instantaneous kinematics, 
whereas PDB motions are finite. In the conformation of the 
R state shown in Figure 15, the upper and lower catalytic 
units are close to each other. In real protein motion, during 
the first stage of the conformation change from the R state to 
the T state, it can be considered that motion like the sixth SC 
mode motion hardly occurs because of the collision among 
the convex parts of the catalytic units (see Fig. 18A). After 
the rotational motion or the screw motion of the small pitch, 
like the first SC mode motion, the convex parts in the cata-
lytic units separate from each other (see Fig. 16A), and it 
becomes possible for the units to approach each other more 
closely. Therefore, we can infer that motion like the first SC 
mode motion actually occurs at the first stage during the 
conformation change.

As this example shows, we can understand the motion 
properties related to the allosteric interaction to some extent 
from the structural compliance properties. At the same time, 
the results indicate the limitation of the current method for 

Figure 16 illustrates the first SC mode motion. In the illus-
tration, the screws approximating the relative motion between 
the catalytic units C1,2,3 and C4,5,6 calculated from the first SC 
mode motion and the PDB motion (between PDB-ID:1D09 
and 1ZA1) are shown. We can observe the screw-like motion 
between the catalytic units in the first SC mode motion. The 
screw axis is near that of the PDB motion; however, the 
pitch is much smaller than that of the PDB motion (27.1 and 
457 Å/rev). Figure 17 shows the result of SC mode expan-
sion when approximating the direction of the PDB motion 
(from PDB-ID:1D09 to 1ZA1) by SC mode motions. We can 
observe that the intensity of the first mode motion is the sec-
ond highest and that of the sixth mode motion is the highest 
(the magnitudes of ΔX′bt 1 and ΔX′bt 6 in Eq. (35), respectively). 
In other words, the sixth SC mode motion (the hardest 
motion, except the motions that do not affect the relative 
motion between the specified deformation groups) is the one 
required the most to approximate the direction of the PDB 
motion. As shown in Figure 18, in the sixth SC mode motion, 
the upper and lower catalytic units are mutually compressed.

This result might appear to contradict the assumption that 
the lower SC mode motions will occur easily. However, it 
should be remembered that the formulations related to SC 

Figure 15 Structure and motion of aspartate transcarbamoylase 
(ATCase). ATCase consists of 2,778 amino residues and symmetrically 
arranged 12 subunits. Among the subunits, C1~6 and R1~6 are called the 
catalytic units and the regulatory units, respectively. During the transi-
tion between the R and T states (PDB-ID:1D09 and 1ZA1, respec-
tively), C1,2,3 and C4,5,6 move relative to each other like a screw. The 
ligand binding to the regulatory units cause the screw-like motion. 
ATCase is a typical example of a protein that shows the allosteric 
effect.

Figure 16 First SC mode motion of ATCase. The motion was 
obtained by analyzing the protein model created from PDB-ID:1D09. 
For analyzing the motion interaction between the regulatory units and 
the catalytic units based on the structural compliance properties, we 
specified three application groups R1,2(AG1), R3,4(AG2), and R5,6(AG3) 
and two deformation groups C1,2,3(DG1) and C4,5,6(DG2) to the protein 
model. The screws approximating the (instantaneous) relative motion 
between the catalytic units C1,2,3 and C4,5,6 calculated from the first SC 
mode motion and the PDB motion (between the conformations of 
PDB-ID:1D09 and 1ZA1) are shown. We can observe the screw-like 
motion between the catalytic units C1,2,3 and C4,5,6 in the first SC mode 
motion. The screw axis is near that of the PDB motion; however, the 
pitch is much smaller (27.1 and 457 Å/rev). The structural compliance 
for this motion is high (soft), as shown in A, because the collisions 
between the convex parts of the catalytic units are avoided.
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lower SC mode motions or the softer motions occur easily. 
Moreover, for quantitative discussions, we have formulated 
the methods for calculating screws approximating the instan-
taneous relative motions between specified flexible groups, 
methods for approximating the PDB motions by the combi-
nations of the SC mode motions (SC mode expansion), and 
methods for evaluating the changes in the properties by 
using principal angles (index Γ). For application examples, 
we analyzed lactoferrin and ATCase. The results showed that 
we could understand their motion properties including the 
allosteric interactions through their lower SC mode motions 
or the softer motions. The results also showed the limitations 
of the methods used to obtain information about nonlinear 
large conformation changes.

Although within limitations, by applying the presented 
theoretical framework for analyzing the structural compli-
ance properties, we can expect to obtain information related 
to protein motions such as the conformation changes, the 
structures that enable allosteric effects, the effects of ligand 
bindings, and the key parts that govern the motion proper-
ties. In this study, the ENM focusing on the dihedral angles 
of the main chains was employed as a protein model. We can 
apply the methods not only to this type of ENM but also to 
other types of ENMs such as all-atom ENM and Cartesian-
coordinate-based ENM by switching the calculations of the 
Jacobian matrices. In the future, we will include examples  
of the analyses for different types of proteins based on the 
theoretical framework. In addition, the SC mode and normal 
mode motions could be quantitatively compared through the 
SC mode expansion. This comparison is an interesting future 
prospect.
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