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Abstract: Turmeric (Curcuma longa L.), a widely used spice, has anti-inflammatory properties and
other health benefits, but the detailed mechanisms of these effects are still poorly understood.
Recent advances in assessment of cellular energy metabolism have revealed that macrophage
mitochondrial respiration is critical in inflammatory responses. In an effort to enhance the
anti-inflammatory function of turmeric with a simple processing method, extract of puffed turmeric
was investigated for effect on macrophage energy metabolism. The high-performance liquid
chromatography analysis revealed that puffing of turmeric significantly induced the degradation
of curcumin to smaller active compounds including vanillic acid, vanillin and 4-vinylguaiacol.
The in vitro consumption of oxygen as expressed by the oxygen consumption rate (OCR) was
significantly downregulated following lipopolysaccharides stimulation in RAW 264.7 macrophages.
Puffed turmeric extract, but not the non-puffed control, reversed the LPS-induced decrease in OCR,
resulting in downregulated transcription of the pro-inflammatory genes cyclooxygenase-2 and
inducible nitric oxide synthase. Dietary intervention in high-fat diet-induced obese mice revealed
that both control and puffed turmeric have anti-obesity effects in vivo, but only puffed turmeric
exhibited reciprocal downregulation of the inflammatory marker cluster of differentiation (CD)11c
and upregulation of the anti-inflammatory marker CD206 in bone marrow-derived macrophages.
Puffed turmeric extract further modulated the low-density lipoprotein/high-density lipoprotein
cholesterol ratio toward that of the normal diet group, indicating that puffing is a simple, advantageous
processing method for turmeric as an anti-inflammatory food ingredient.
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1. Introduction

The etiology of inflammation is ambiguous, but many different immune cells are involved
and macrophages have been shown to play a key role [1,2]. Macrophages recognize bacterial
molecular epitopes, termed pathogen-associated molecular patterns (PAMPs), through plasma
membrane-anchored receptors such as toll-like receptors (TLRs) and nucleotide-binding oligomerization
domain-like receptors (NLRs). In particular, lipopolysaccharides (LPS), components of Gram-negative
bacterial outer membranes, evoke inflammatory responses by binding to TLR4 on macrophage
cellular surfaces. A well-defined signaling of LPS-induced macrophage inflammatory response
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involves a myeloid differentiation primary response 88 and nuclrear factor-κB cascade, resulting in the
transcription of signature genes, including inducible nitric oxide synthase (iNOS) and cyclooxygenase
(COX)-2. For the molecular pathways recognized, the LPS-induced macrophage inflammatory response
model is widely used for in vitro assessment of the anti-inflammatory effects of food ingredients,
cosmetics and drugs.

Nobel laureate Dr. Warburg proved that “urgent cells,” including tumor cells, utilize glycolysis and
lactate fermentation even with oxygen excess in the cellular microenvironment, a phenomenon termed
the Warburg effect [3]. Of interest, it was recently discovered that “urgent cells” include immune
cells in an inflammatory state, and LPS-induced macrophages were experimentally determined
to switch on lactate fermentation as assessed by decreased oxygen consumption rate (OCR) [4].
Furthermore, the reprogramming of macrophage energy metabolism toward the Krebs cycle, which in
turn increases OCR by oxidative phosphorylation, reverses their inflammatory status [5]. In this
context, dietary approaches to modulate the Warburg effect for the amelioration of chronic diseases
have been proposed [6,7].

The spice turmeric (Curcuma longa L.) has been reported to possess multiple health-promoting
effects, including anti-inflammatory properties [8,9]. Of interest, it was recently demonstrated that
curcumin, a major active compound in turmeric, downregulates the Warburg effect in cancer cells [7].
However, it should also be highlighted that curcumin, due to its hydrophobic structure, is insoluble in
water, resulting in the low bioavailability and efficacy [10]. In an effort to enhance its beneficial effects
with a simple processing method, it was previously demonstrated that puffing significantly increases
turmeric’s antioxidant and anti-inflammatory properties [11], yet the detailed mechanisms remain
uncovered. Therefore, the current study investigated the chemical changes of curcuminoids in the
turmeric during a puffing process and the effect of puffed turmeric on macrophage energy metabolism
using a state-of-the-art technique to quantify cellular consumption of oxygen in a micromilieu.
In addition, in an effort to translate the beneficial effect of puffed turmeric in a dietary intervention,
a high-fat diet-induced low-grade chronic inflammatory mouse model was adopted in the current
study. Here, we report that puffing of turmeric contributes to the degradation of curcumin to more
bioavailable active components, resulting in enhancement of macrophage oxidative phosphorylation
and the suppression of inflammatory status both in vitro and in vivo.

2. Materials and Methods

2.1. Puffing and Extraction of Turmeric

Dried turmeric slices, cultivated in Jindo-gun, Korea, were purchased from Bibong Herb Co.
(Yangju-si, Korea). Turmeric was puffed at a pressure of 980 kPa using a customized gun puffing
machine in the presence of 4×weighed dried rice for the prevention of carbonization, as previously
reported [11,12]. Food grade 70% ethanol purchased from Ethanol Supplies World Co. (Jeonju-si,
Korea) was used for puffed turmeric extraction (PTE) as well as non-puffed control turmeric extraction
(TE). In brief, 5 g of the ground turmeric was added to 200 mL of 70% ethanol. Subsequently, the mixture
was stirred with a magnet at room temperature for 30 min and the vacuum filtrate was stored at −20 ◦C
for subsequent investigations.

2.2. Quantitative Analysis of Active Compounds in the Extracts

High-performance liquid chromatography (HPLC) was performed to quantify major curcuminoids,
including curcumin (CUR), demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), as well
as their degradation products such as ferulic acid (FA), 4-vinylguaiacol (4VG), vanillin (VN) and
vanillic acid (VA) in extracts. Briefly, extracts were filtrated using a Millipore filter (pore size 0.45 µm)
prior to HPLC analysis. The HPLC system (Agilent 1260 Infinity II, Agilent Technologies, Santa Clara,
CA, USA) was equipped with Zorbax SB-C18 column (4.6 × 250 mm, 5 µm) at a flow rate of 1.0 mL/min.
The mobile phase consisted of distilled water containing 0.4% acetic acid (A) and acetonitrile (B) in the
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gradient system using the following conditions: 0–30 min, 8–91% B; 30–39 min, 91–100% B; 39–44 min,
100% B; 44–47 min, 100-8% B; 47-50 min, 8% B. Sample detection was acquired at 260 nm and the
injection volume of samples was 10 µL. The seven reference compounds of the curcuminoids and
their degradation products with above 98% purity or suitable for HPLC analysis were purchased
from Sigma-Aldrich Co. (St. Louis, MO, USA). All the compounds in the samples were identified by
comparison of their retention time and spectra with the reference compounds. Quantification was
performed using calibration curves of each reference substance.

2.3. RAW 264.7 Macrophage Culture

Murine macrophage RAW 264.7 cells were purchased from Korean Cell Line Bank (Seoul, Korea).
The cells were cultured on 24-well plates at the density of 1× 105 cells/mL in Dulbecco’s Modified Eagle’s
Medium (DMEM; Welgene, Gyeongsan, Korea) supplemented with 10% fetal bovine serum (FBS;
Welgene) and 1% antibiotic/antimycotic solution (10,000 U/mL penicillin G, 10,000 µg/mL streptomycin,
and 25 µg/mL amphotericin B; Welgene) at 37 ◦C in a 5% CO2 incubator (Model BB15; Thermo Scientific,
Waltham, MA, USA) with either TE, PTE or medium for 24 h. Thereafter, to induce RAW 264.7 cells
into an inflammatory status, macrophages were stimulated by LPS (Sigma-Aldrich Co.) at 500 ng/mL
for 12 h. Subsequently, the culture media were collected by centrifugation at 300× g for 5 min and cell
pellets were deep-frozen (SmartCryo® SWUF Ultra-Low-Temperature Freezer; DAIHAN Scientific,
Wonju, Korea) at −80 ◦C for further analyses.

2.4. Mitochondrial Oxidative Phosphorylation Assessment

RAW 264.7 cells were aliquoted at 1 × 104 cells/well in Seahorse™ XFp assay plates (Agilent
Technologies) followed by treatment with either TE, PTE or medium for 24 h at 37 ◦C in a 5% CO2

incubator. Following extract intervention, LPS (500 ng/mL) was added to the cells for stimulation for
12 h. The stimulated RAW 264.7 cells were further incubated at 37 ◦C in a non-CO2 chamber for 1
h in the presence of DMEM with D-glucose (4500 mg/L), L-glutamine and sodium pyruvate at pH
7.4. The mitochondrial oxidative phosphorylation complex inhibitors oligomycin, carbonyl cyanide
4-(trifluoromethoxy)phenylhydrazone(FCCP) and rotenone/antimycin A (Agilent Technologies) were
sequentially added to the cells as previously reported [5]. The oxygen consumption rate (OCR),
the indicator of oxidative phosphorylation in mitochondria, was automatically measured by a
Seahorse™ XFp analyzer and numerically quantified by dedicated SeahorseTM Wave software (Agilent
Technologies) for the assessment of OCR for basal respiration, maximal respiration and ATP production
by the following equations:

(1) Basal respiration = OCR before oligomycin—OCR after rotenone/antimycin A
(2) Maximal respiration = Maximum OCR after FCCP—OCR after rotenone/antimycin A
(3) ATP production = OCR before oligomycin—OCR after oligomycin

2.5. qRT-PCR Quantification of Pro-Inflammatory mRNA

Total RNA was isolated from harvested RAW 264.7 cells using an MG Total RNA Extraction Kit
(MGmed, Seoul, Korea) following the manufacturer’s instructions. The concentration and purity of
RNA extract were determined by a spectrophotometer (Nanodrop 2000, Thermo Scientific). The relative
quantification for transcription of the pro-inflammatory genes interleukin (IL)-6, tumor necrosis factor
(TNF)-α, COX-2, and iNOS was measured by quantitative reverse-transcriptase polymerization chain
reaction (qRT-PCR) using the primers shown in Table 1 in the presence of an MG One-step RT-PCR
MasterMix (SYBR Green) (MGmed). CFX ConnectTM Real-Time System (Bio-Rad, Hercules, CA,
USA) was set at the following conditions for amplification of the mRNA: 42 ◦C for 10 min, 95 ◦C
for 10 min, followed by 39 amplification cycles at 95 ◦C for 5 s and 55 ◦C for 30 s. Subsequently,
the relative mRNA transcription of target genes was calculated by using 2−∆Ct method for which
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) served as the internal control gene with Bio-Rad CFX
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manager software. Specifically, ∆Ct was calculated as Cttarget gene−CtGAPDH, where Ct represents the
amplification detection cycle number of an arbitrary threshold.

Table 1. Primer sequences for quantitative real-time polymerase chain reaction quantification of
pro-inflammatory mRNA.

mRNA Sequence (5′ → 3′) References

interleukin-6
Forward GTACTCCAGAAGACCAGAGG [13]
Reverse TGCTGGTGACAACCACGGCC

tumor necrosis factor- α
Forward CCTGTAGCCCACGTCGTAGC [13]
Reverse CTCAGCACCCACCCGCTCA

cyclooxygenase-2 Forward TCTCAGCACCCACCCGCTCA [14]
Reverse TTTGACCTCAGCGCTGAGTTG

inducible nitric oxide synthase Forward CCCTTCCGAAGTTTCTGGCAGCAGC [15]
Reverse GGCTGTCAGAGCCTCGTGGCTTTGG

glyceraldehyde-3-phosphate dehydrogenase Forward CACTCACGGCAAATTCAACGGC [11]
Reverse CCTTGGCAGCACCAGTGGATGCAGG

2.6. Animal Study

To investigate the modulation of obesity-induced disorders by either puffed or non-puffed control
turmeric, mice were fed a high-fat diet (HFD) in accordance with guidelines approved by the Kyung
Hee University Institutional Animal Care and Use Committee (approval number KHGASP-19-135).
Briefly, 40 male C57BL/6 mice at 4 weeks of age were purchased from Raon Bio (Yongin, Korea).
The mice were allocated to 4 groups (n = 10) and fed a rodent chow diet for 1 week for acclimation.
Each experimental diet was modified from the AIN-76A semi-purified diet, and the HFD contained
45% kcal fat from corn oil and lard (Table 2). Ground powder of either non-puffed control turmeric
(HFD + T) or puffed turmeric (HFD + PT) replaced the dietary fiber cellulose. After the adaptation
period, mice were fed with respective diets for 12 weeks ad libitum under a climate-controlled
12:12 h light:dark cycle, and body weights of individual mice were recorded weekly. Following the
dietary intervention, the mice were euthanized by CO2 inhalation and the blood was collected by
a cardiac puncture. Subsequently, the blood glucose levels were quantified using an Accu-Chek®

Performa Kit (Roche Diabetes Care, Mannheim, Germany). Tibias and femurs of the mice were
collected for the isolation of bone marrow cells in an aseptic environment, followed by staining
with anti-CD11c-R-phycoerythrin (eBiosciences, San Diego, CA, USA) and anti-CD206-fluorescein
isothiocyanate (eBiosciences) monoclonal antibodies and flow cytometric analysis using AccuriTM

C6 (BD Biosciences, Franklin Lakes, NJ, USA). Collected blood was further stored at 4 ◦C for 3–4 h
in order to isolate serum by centrifugation at 300× g for 5 min. Serum insulin was assessed by using
the Ultra-Sensitive Mouse Insulin enzyme-linked immunosorbent assay (ELISA) Kit (Crystal Chem
Inc., Chicago, IL, USA) and total, high-density lipoprotein (HDL) and low-density lipoprotein (LDL)
cholesterol were analyzed with the Cholesterol Assay Kit—HDL and LDL/very low-density lipoprotein
(VLDL) (Abcam, Cambridge, MA, USA), according to the manufacturer’s instructions.

Table 2. Experimental diet composition.

Ingredients
Composition (g/kg)

AIN-76A (1) HFD HFD + T HFD + PT

Casein 200 200 200 200
DL-methionine 3 3 3 3

Corn starch 150 111 111 111
Sucrose 500 370 370 370
Corn oil 50 30 30 30

Lard - 170 170 170
Mineral mix S10001 35 35 35 35
Vitamin mix V10001 10 10 10 10
Choline bitartarate 2 2 2 2

Cellulose 50 50 - -
Turmeric - - 50 -

Puffed turmeric - - - 50

(1) Experimental diets were modified from the AIN-76A diet. The cellulose in the HFD was replaced by turmeric or
puffed turmeric in HFD + T or HFD + PT respectively, for an isocaloric equivalence.
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2.7. Statistical Analysis

Data are representative of repeated experiments and are presented as mean ± standard error of
the mean (SEM). Statistical significance at p < 0.05 was determined by one-way analysis of variance
(ANOVA) followed by Tukey’s post-hoc multiple comparisons test using GraphPad Prism 8 software
(La Jolla, CA, USA).

3. Results

3.1. Degradation of Curcuminoids in Turmeric by Puffing

The HPLC analysis (Figure 1) of TE revealed that CUR and its analogues BDMC and DMC are
the major active compounds of non-puffed control turmeric (Table 3). In contrast, puffing process
significantly decreased the quantity of those curcuminoids in the extracts, while their degradation
compounds VA, VN and 4VG were drastically increased (Figure 1).
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Figure 1. Representative high-performance liquid chromatograms of (A) seven reference compounds
including curcuminoids and their degradation products, (B) turmeric extract, TE, and (C) puffed
turmeric extract, PTE for the quantitative analysis. VA, vanillic acid; VN, vanillin; FA, ferulic acid; 4VG,
4-vinylguaiacol; BDMC, bisdemethoxycurcumin; DMC, demethoxycurcumin; CUR, curcumin.
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Table 3. Chemical changes in turmeric by puffing (µg/g dried turmeric).

VA (1) VN FA 4VG BDMC DMC CUR

TE 6.00 ± 1.30 21.49 ± 0.63 23.34 ± 0.19 N/D (2) 23.13 ± 0.61 91.66 ± 2.14 397.42 ± 3.75
PTE 9.87 ± 0.55 * 90.65 ± 3.83 * 5.67 ± 0.80 * 99.57 ± 8.77 * 10.07 ± 0.87 * 60.86 ± 5.83 * 300.57 ± 26.06 *

(1) VA, vanillic acid; FA, ferulic acid; VN, vanillin; 4VG, 4-vinylguaiacol; BDMC, bisdemethoxycurcumin; DMC,
demethoxycurcumin; CUR, curcumin. (2) N/D, not detected. * Significantly different from TE at p < 0.05 (n = 3)

3.2. Puffing of Turmeric Enhances Mitochondrial Respiration in Macrophages

The cellular oxygen consumption rate (OCR), which represents mitochondrial respiration,
was sensitively measured in a 96-well plate in real time by an extracellular flux analyzer, as shown
in Figure 2. At a basal level prior to treatment of any cellular modulator, OCR of unstimulated cells
exhibited the highest values, over 200 pmoles/min (Figure 2A, black circles). LPS treatment of the cells
dramatically reduced OCR to around 100 pmoles/min (Figure 2A, white circles), which was reversed
by the addition of TE (Figure 2A, light grey circles). Of interest, the treatment of cells with PTE
further recovered the LPS-induced downregulation of OCR toward non-stimulated status (Figure 2A,
dark grey circles).

Following the sequential treatments of cells with well-defined inhibitors or uncouplers of
mitochondrial functions, OCR for basal respiration, maximal respiration, and adenosine triphosphate
(ATP) production were calculated as shown in Figure 2B–D. Unstimulated cells exhibited the highest
OCR for basal respiration (166.20 ± 42.71 pmoles/min, Figure 2B, black bar), which was significantly
decreased (60.00 ± 12.60 pmoles/min, white bar) by LPS stimulation. TE treatment to LPS-stimulated
cells (85.74± 19.76 pmoles/min, light grey bar) did not demonstrate any difference to LPS-only activated
cells, yet a statistical difference with unstimulated cells was observed (p < 0.05). In contrast, PTE-treated
cells in the presence of LPS presented OCR for basal respiration at a value of 110.63 ± 19.77 pmoles/min
(dark grey bar), without any statistical significance to both unstimulated cells and LPS-only-treated
cells (p > 0.05). OCR analysis for maximal respiration (Figure 2C) revealed that unstimulated
macrophages required the most oxygen molecules at 242.0 ± 75.85 pmoles/min (black bar), and LPS
treatment significantly lowered that value to 50.24 ± 11.05 pmoles/min (white bar) (p < 0.05). Maximal
respiration OCR following treatment by either TE (87.68 ± 18.77 pmoles/min, light grey bar) or PTE
(119.2 ± 26.07 pmoles/min, dark grey bar) tended to reverse the LPS-induced reduction of OCR without
any statistical power to both LPS-only-treated and unstimulated cells. The cellular oxygen requirement
for ATP production of unstimulated macrophages dropped from 124.6 ± 32.03 pmoles/min (Figure 2D,
black bar) for unstimulated cells to 44.39 ± 9.21 pmoles/min for LPS-treated cells (white bar). Following
TE intervention to the cells, OCR required for ATP production (63.80 pmoles/min for LPS + TE,
light grey bar) exhibited a comparable rate to the LPS-only-treated group, yet a significant difference to
unstimulated cells was retained. Following PTE treatment (84.49 ± 14.54 pmoles/min, dark grey bar),
however, ATP production OCR exhibited an identical pattern to that of basal respiration, indicating
the differential modulation of cellular energy metabolism by TE vs. PTE.
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Figure 2. Mitochondrial respiration as assessed by oxygen consumption rate (OCR) of RAW 264.7 cells
was quantified in a real-time manner by an extracellular flux analyzer (A). OCR for basal respiration
(B), maximal respiration (C), and ATP production (D) was further judged by treatment of cells with
specific inhibitors or uncouplers, as described in the Materials and Methods. Different letters indicate
that the means are significantly different at p < 0.05 within the panel.

3.3. Suppressed Transcription of Pro-Inflammatory mRNA by PTE

LPS-stimulated macrophages have been reported to induce transcription of the signature
pro-inflammatory genes COX-2 and iNOS [16], which further mediate the production of prostaglandin
E2 and nitric oxide, respectively. In order to determine if OCR upregulated by PTE further modulates
inflammatory responses, transcription of these genes was assessed by qRT-PCR. As shown in Figure 3A,
transcription of COX-2 was determined by the relative transcription to non-stimulated control cells
(1.00 ± 0.07 arbitrary unit). Following LPS stimulation, COX-2 transcription (1.23 ± 0.28) exhibited an
increased inclination without any statistical significance to control cells (p > 0.05). The addition of
non-puffed turmeric extract (LPS + TE) demonstrated no effect on COX-2 transcription (0.87 ± 0.11),
whereas puffed turmeric extract (LPS + PTE) significantly downregulated COX-2 transcription
(0.60 ± 0.10) compared with LPS-stimulated cells (p < 0.05). iNOS transcription (Figure 3B) was also
significantly increased by LPS treatment (3.03 ± 0.87) compared with non-stimulated control cells
(1.00 ± 0.19, p < 0.05). TE treatment to LPS-activated macrophages (2.11 ± 0.31) did not exhibit any
statistical difference, but PTE drastically downregulated LPS-induced increase of iNOS transcription
(1.57 ± 0.11, p < 0.05), confirming the distinct regulation of macrophages by TE vs. PTE.
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Figure 3. Transcription assessment of pro-inflammatory genes cyclooxygenase (COX)-2 (A) and
inducible nitric oxide synthase (iNOS) (B) by quantitative reverse-transcriptase polymerization chain
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3.4. Inhibition of High-Fat Diet-Induced Weight Gain by TE and PTE

To investigate if puffing of turmeric affects low-grade chronic inflammatory status in vivo,
obesity in C57BL/6 male mice was induced by a high-fat diet (HFD). In particular, 45% of dietary energy
was supplied in the form of fat with or without turmeric (T) or puffed turmeric (PT) as a replacement
for dietary fiber cellulose. Throughout the 12 weeks of ad libitum feeding, body weight changes of
individual mice were recorded weekly. HFD-fed mice (Figure 4A, open circle) exhibited significant
weight gain starting at 6 weeks of feeding as compared with the normal AIN-76A diet-fed control group
(closed circle, p < 0.05). Of interest, the addition of turmeric as well as puffed turmeric inhibited the
HFD-induced body weight gain (light/dark grey circles). There was no statistical significance between
HFD + T vs. AIN-76A, HFD + PT vs. AIN-76A and HFD + T vs. HFD + PT throughout the dietary
intervention. The food intake of mice was also investigated because body weight change can be affected
not only by caloric density but also the feeding load. Throughout the feeding period, the AIN-76A diet
was consumed at 21.71 ± 0.54 g-diet/week (Figure 4B). Mice consumed a slightly but significantly less
amount of HFD (21.35 ± 0.44 g-diet/week (p < 0.05), an energy-dense diet. Consumption of HFD + T
and HFD + PT was determined to be 24.39 ± 0.77 g-diet/week and 24.12 ± 0.95 g-diet/week, respectively.
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Figure 4. Dietary intervention of turmeric and puffed turmeric in high-fat diet-induced obese mice.
Body weight gain (A) and feed intake (B) were observed. * Significantly different from AIN-76A control
diet group at specific week (p < 0.05). Different letters indicate significantly different means among
diet groups.
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3.5. Reciprocal Regulation of Pro- and Anti-Inflammatory Markers on Bone Marrow-Derived Macrophages
(BMDM) by PT

Following observation of anti-obesity effects of both T and PT, anti-inflammatory markers on bone
marrow-derived macrophages (BMDM) were quantified by specific staining of fluorescence conjugated
mAbs followed by flow cytometric analysis, as expressed by mean fluorescence intensity (MFI, arbitrary
unit). The expression of CD11c, a well-known macrophage surface marker for pro-inflammatory M1
subsets [17], was significantly (p < 0.05) increased in the HFD group (Figure 5A, 12,898 ± 2558) vs.
the AIN-76A diet control (4929 ± 1212). The addition of turmeric (HFD + T, 9011 ± 1501) did not
exhibit a significant difference to HFD only (p > 0.05), where puffed turmeric (HFD + PT, 4656 ± 1498)
significantly suppressed surface display of CD11c comparable to the AIN-76A diet group. Expression
of the anti-inflammatory marker CD206 was further assessed, and a significant decrease in the HFD
group (12,327 ± 517 vs. AIN-76A 18,992 ± 1122, p < 0.05) was observed (Figure 5B). In accordance to
CD11c expression, the turmeric diet (HFD + T, 13,791 ± 974) did not affect HFD-induced alteration of
CD206 expression, but puffed turmeric exhibited a notable impact on CD206 expression (HFD + PT,
18,006 ± 926), comparable to the AIN-76A diet group.
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Figure 5. Surface expression of activation markers on bone marrow-derived macrophages as determined
by fluorescent antibody staining and flow cytometric analysis. Pro-inflammatory marker cluster of
differentiation (CD)11c (A) and anti-inflammatory marker CD206 (B) were reciprocally modulated by
HFD and PT. Different letters indicate significantly different means among diet groups within the panel.

3.6. Effects of PT Diet on Obesity-Induced Dyslipidemia

Following dietary intervention, serum markers including fasting glucose, insulin and LDL/HDL
cholesterol were quantified in order to assess the effects of diet on chronic states. As seen in Figure 6A,
diets did not statistically affect fasting glucose in serum, even though a trend in increased glucose was
observed in the HFD group (354.5 ± 41.5 mg/dash (d)L) vs. the AIN-76A group (252 ± 37.8 mg/dL).
Serum glucose from HFD + T and HFD + PT mice was determined to be 250 ± 21.4 mg/dL and
292.5 ± 27.1 mg/dL, respectively. On the other hand, serum insulin (Figure 6B) was significantly
increased by feeding of HFD (1.04 ± 0.16 ng/mL) vs. AIN-76A (0.31 ± 0.08 ng/mL), for which the
addition of turmeric (HFD + T, 1.44 ± 0.35 ng/mL) and puffed turmeric (HFD + PT, 1.12 ± 0.12 ng/mL)
exhibited no effect. The ratio of LDL/HDL cholesterol, a well-defined hyperlipidemia marker for
obesity-related chronic diseases [18], was subsequently determined in sera. Serum from AIN-76A
mice exhibited an LDL/HDL ratio of 0.93 ± 0.16 (Figure 6C, black), which was significantly increased
by HFD to 1.37 ± 0.14 (white). Following the dietary intervention with puffed turmeric, however,
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the LDL/HDL ratio was decreased to be 1.07 ± 0.06 (dark grey), comparable to the AIN-76A group,
but non-puffed turmeric (HFD + T, 1.26 ± 0.11) did not affect the HFD-induced increase.
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4. Discussion

Turmeric has long been used as a spice as well as a medicinal herb in Asian countries [19].
The major active compounds of turmeric are curcuminoids, consisting of CUR, DMC and BDMC [20].
Many studies have shown the beneficial health effects of these chemicals, but bioavailability remains
a concern due to their low solubility in water [21]. In order to enhance their water solubility and
subsequent bioavailability, various approaches including nano-particlization [22], encapsulation [23]
and bioconversion [24] have been introduced. It was also reported that emulsion formation of
curcumin with oils aid in the bioaccessibility through the lipid digestion and absorption system in
the gastrointestinal tract [25]. In an extension to those studies, we previously reported that puffing,
a simple processing method, successfully enhanced turmeric’s antioxidant and anti-inflammatory
effects in vitro, although the detailed mechanisms are still unknown [11]. Puffing is a physical
transformation that increases porosity and causes chemical reactions, including the well-defined
Maillard reaction, the products of which have antioxidant capacities [26]. The current study further
demonstrated that the high heat and pressure during puffing induced degradation of curcuminoids to
smaller compounds including VA, VN and 4VG (Figure 1 and Table 3). In this study, a new HPLC
method has been developed to quantify seven major compounds of TE and PTE by an injection on
HPLC since no simultaneous detection of the three curcuminoids and their four degradation products
has been reported, even though previous studies have performed HPLC analyses of curcuminoids
and volatile compounds [27] or degradation compounds from roasted turmeric [28] at once. In fact,
studies have revealed that those degradation products have higher bioavailability and antioxidant
capacities as compared to the parental curcuminoids [29,30]. Similarly, puffing also increased the
antioxidant properties of coffee beans by increment of phenolic compounds [31,32], indicating that it is
a simple and promising method for functional development of plant-derived food materials.

It is well-known that eukaryotic cells make pyruvate through glycolysis, which is then oxidized
to acetyl-coenzyme A in aerobic conditions. The acetyl- coenzyme A is further oxidized through the
tricarboxylic acid (TCA) cycle and produces nicotinamide adenine dinucleotide (NADH) and flavin
adenine dinucleotide (FADH2). In mitochondrial membranes, a proton gradient produces ATP by
consumption of oxygen, a process called mitochondrial respiration. In anaerobic conditions, the cells
cannot conduct mitochondrial respiration due to insufficient oxygen. Interestingly, however, even when
oxygen is abundant, specific cells, including cancer and inflammatory cells, utilize glycolysis and
lactate fermentation, but not mitochondrial respiration, a process termed the Warburg effect [3,6,33].

Macrophages play a critical function in innate immunity by cueing the inflammatory signals [34].
Murine cell line RAW 264.7 macrophages are widely utilized in the screening of anti-inflammatory
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properties of natural products. Following LPS engagement with TLR4 on the macrophage surface,
intracellular signaling occurs via the MyD88–NFκB axis. These signaling pathways initiate transcription
of inflammatory genes including IL-6, TNF-α, COX-2 and iNOS. Upon classically activated stimulation
of “naïve” macrophages, polarized pro-inflammatory macrophages are prone to utilize glycolysis for
faster production of ATP, while reserving fatty acid synthesis for the production of lipid mediators
for inflammatory cascades [35]. In fact, recent studies indicate that the energy metabolism in
inflammatory macrophages is complicated, and they have potential as a target for dietary amelioration
of inflammation [36].

Therefore, in the current study, it was hypothesized that puffed turmeric and its extract increase
macrophage mitochondrial respiration for regulation of inflammatory responses. In an in vitro
inflammatory model of RAW 264.7 cells stimulated with LPS, mitochondrial respiration, as assessed by
cellular OCR, was significantly decreased, confirming the Warburg effect in the model cells (Figure 2A).
Of interest, the addition of non-puffed control turmeric extract (TE) recovered the LPS-induced OCR
decrease, and puffed turmeric extract (PTE) exhibited an even stronger effect (Figure 2A). The detailed
OCRs for basal respiration, maximal respiration capacity and ATP production were dissected by
treatment of oligomycin, FCCP and rotenone/antimycin A, respectively [37]. As shown in Figure 2B,
those specific OCRs were downregulated by LPS treatment, and PTE, but not TE, recovered the
cells from the LPS-induced inflammatory status. Subsequently, the expression of the signature
pro-inflammatory genes COX-2 and iNOS was quantified by qRT-PCR. As compared to LPS-induced
upregulation of transcription of both genes, PTE but not TE suppressed the transcription of those
genes (Figure 3), confirming that increased OCR affects the suppressed inflammatory responses in
macrophages. Together with the previous observations of reduced cytokine secretion (IL-6 and TNF-α)
and surface marker expression (CD80 and CD86) [11], the current study clearly demonstrates that
puffing increases the anti-inflammatory effects of turmeric.

In an extension to our in vitro observations of enhanced anti-inflammatory effects of turmeric
by puffing, dietary in vivo functions were further investigated in HFD-induced obese mice.
Following 12-week feeding of HFD (45% kcal as fat), body weight of the mice drastically increased
compared with AIN-76A control mice (Figure 4A). Interestingly, replacement of dietary fiber cellulose
(50 g/kg diet) with either non-puffed turmeric (T) or puffed turmeric (PT) inhibited HFD-induced
weight gain, resulting in a similar body weight to AIN-76-fed mice (Figure 4A). The quantification
of diet consumption revealed that mice consumed less of the energy-dense HFD than the AIN-76A
diet (Figure 4B). In this regard, it was previously reported that HFD-induced obesity causes
insulin insensitivity and reduced leptin secretion, resulting in decreased appetite in mice [38].
Following addition of T or PT at the expense of cellulose, food consumption was increased (Figure 4B),
indicating that the anti-obese effects of T and PT were not a result of less ingestion. Following
observation of reduced weight gain by T and PT, their effects on macrophage functioning was
determined by assessment of the surface molecules CD11c and CD206 on bone marrow-derived
macrophages. CD11c was previously reported to be a marker of pro-inflammatory M1 macrophages,
whereas CD206 is used for the detection of anti-inflammatory M2 macrophages [39]. The puffed
turmeric reciprocally regulated those markers by reducing CD11c and increasing CD206 as compared
to the HFD group (Figure 5). In comparison, consumption of non-puffed turmeric exhibited a marginal
but nonsignificant effect, confirming the differential regulation of inflammation by non-puffed vs.
puffed turmeric. The etiology of inflammation is very complicated, and it was previously reported that
the mechanisms of dyslipidemia and inflammation are closely relevant [40,41]. Therefore, we further
investigated if PT affects HFD-induced dyslipidemia by assessment of blood glucose, insulin and
cholesterols. Glucose and insulin in fasting blood were not altered by dietary treatment of either T or
PT in the HFD condition (Figure 6A,B). However, the LDL/HDL ratio, which was increased by the
HFD, was significantly downregulated by PT but not T (Figure 6C).

Overall, the current study clearly demonstrates that puffing is a simple and promising processing
method of turmeric for its application in functional foods for prevention and/or amelioration of
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inflammation. However, beyond the curcuminoid degradation, more studies are required to discover
the products generated by puffing of turmeric. It was previously reported that Maillard reaction
products, which should be generated by puffing, aid in ameliorating inflammation in mice [42],
emphasizing the need for detailed studies demonstrating these molecular mechanisms.
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