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Abstract

Based on the androgen receptor (AR) expression, triple-negative breast cancer (TNBC) can be subdivided into AR-
positive TNBC and AR-negative TNBC, also known as quadruple-negative breast cancer (QNBC). QNBC
characterization and treatment is fraught with many challenges. In QNBC, there is a greater paucity of prognostic
biomarkers and therapeutic targets than AR-positive TNBC. Although the prognostic role of AR in TNBC remains
controversial, many studies revealed that a lack of AR expression confers a more aggressive disease course.
Literature characterizing QNBC tumor biology and uncovering novel biomarkers for improved management of the
disease remains scarce. In this comprehensive review, we summarize the current QNBC landscape and propose
avenues for future research, suggesting potential biomarkers and therapeutic strategies that warrant investigation.
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Introduction
Triple-negative breast cancer (TNBC) is defined by the
lack of the estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2
(HER2) expression [1]. Compared to other breast cancer
(BC) subtypes, patients with TNBC have a more aggres-
sive clinical course and poorer prognosis, with higher
rates of local recurrence and distant metastasis within
5 years of diagnosis [2]. The disease disproportionately
affects women of African ancestry and pre-menopausal
women [2–5]. Mounting evidence suggests that non-
biological and epidemiological factors play a substantial
role in the etiology of TNBC. Factors associated with in-
creased risk of TNBC include African ancestry, younger
age, obesity, BMI, shorter breastfeeding duration, higher
parity, oral contraceptive usage for ≥ 1 year, low socio-
economic status, a diet high in animal fat, and low phys-
ical activity. Some of these, including obesity,

breastfeeding, and physical inactivity, have been linked
to androgen secretion dysregulation.
The stark inter-patient and intra-tumoral heterogen-

eity render TNBC challenging to cure [6, 7]. Based on
gene expression profiling, TNBCs have been sub-
classified, raising the potential for more precise thera-
peutic intervention.
An updated version by Lehmann and colleagues classi-

fies TNBC into four distinct molecular subtypes includ-
ing two basal-like subtypes, i.e., (BL1 and BL2),
mesenchymal (M), and luminal androgen receptor
(LAR) [8]. Retrospective analysis of these TNBC sub-
types demonstrated significant differences in response to
neoadjuvant chemotherapy between subtypes, with LAR
displaying worse response and BL1 responding more fa-
vorably [9]. Additionally, Burstein et al. categorize TNBC
into luminal androgen receptor (LAR), mesenchymal
(MES), basal-like immunosuppressed (BLIS), and basal-
like immune activated (BLIA) [10].
Although TNBCs exhibit greater chemosensitivity

compared to non-TNBCs, many TNBC patients diag-
nosed with advanced-stage disease relapse following
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treatment with conventional anthracycline/taxane-based
chemotherapy [3–5]. Hence, the identification of robust
prognostic biomarkers and novel therapeutic targets is
of high clinical importance.
Androgen receptor (AR) is expressed in approximately

10–43% of TNBCs depending on the AR positivity cutoff
used; therefore, it has emerged as a promising thera-
peutic target for TNBC patients [11]. AR antagonists,
such as enzalutamide and bicalutamide, currently in
clinical trials, are showing promising results in AR-
positive TNBC patients [12–16]. However, the remaining
67%–90% of TNBCs that lack AR expression, also re-
ferred to as quadruple-negative breast cancers (QNBCs),
do not benefit from AR antagonists, and some studies
have reported a worse prognosis for QNBC patients
[17–22] compared to those with AR-positive TNBC. Re-
cent evidence suggests that QNBC differs from TNBC in
its molecular and genetic make-up. This calls for exten-
sive identification and annotation of key AR-dependent
proteins and a delineation of the mechanistic action of
AR. Herein, we summarize the current landscape of
QNBC, implications of AR absence or presence, and ra-
tionally designed therapeutic strategies for QNBCs, as
well as suggest avenues for future research in disease
management.

Cutting both ways: the role of AR in TNBC
AR is a transcription factor (TF) belonging to the nu-
clear steroid hormone receptor family. AR-mediated sig-
naling plays a critical role in the development of breast
tissue [23]. There is also accumulating evidence support-
ing the role of AR in BC development and progression
[24, 25]. Nonetheless, the role of AR signaling in TNBC
remains unclear. In TNBC, AR is reported to interact
with androgen response elements (AREs) and stimulate
tumor cell growth in an androgen-dependent manner. In
TNBC patients, clinical trial focused on testing the anti-
androgen therapies (e.g., bicalutamide, abiraterone acet-
ate + prednisone, and enzalutamide) in combination
with chemotherapy in TNBC patients have yielded posi-
tive results [15, 16, 26]. Currently, the efficacy of various
drug combinations such as pembrolizumab and enobo-
sarm, palbociclib and avelumab, and taselisib and enza-
lutamide is being evaluated in patients with metastatic
TNBC [27–30]. In addition, the ongoing MDACC ARTE
MIS trial is a neoadjuvant study that is focused on
women with stage I–III TNBC and modifies therapy
based on molecular profiling. For example, if AR is
expressed, then enzalutamide along with paclitaxel is ad-
ministered [31].
There have been conflicting reports regarding AR ex-

pression levels in TNBC, ranging from 7 to 75% [32–36].
In contrast to non-LAR subtypes, the TNBC LAR sub-
type is enriched in AR expression and exhibits sensitivity

to AR-targeted therapies [37]. However, the prognostic
role of AR in TNBC is ambiguous, with several studies as-
sociating loss of AR expression with worse prognosis in
TNBC patients, and others attributing worse outcomes to
increased AR signaling [14, 19–21, 33–35, 38–48]. These
discrepancies are largely attributed to variability in sample
procuring methods, antibodies, staining, scoring methods,
and AR positivity cutoff values. The confounding effects
of patient selection in prospective studies could also be a
plausible factor underlying this variability [49]. We have
recently conducted a multi-institutional study evaluating
AR expression among different cohorts and observed that,
even after accounting for these factors, the discrepancy in
prognostic value persisted [50].
Additionally, AR splice variants (AR-Vs), which are

produced due to structural rearrangement or alterna-
tive splicing of the AR transcript, have been suggested
to underlie the variability in findings regarding the
prognostic role of AR in TNBC [51]. These variants
lack the entire or a part of the ligand-binding domain
(LBD; the target of enzalutamide) yet remain constitu-
tively active and activate target genes [51, 52]. Thus
far, 15 different AR-Vs have been identified [53, 54].
In prostate cancer, the expression of AR-Vs has been
shown to confer resistance to androgen deprivation
therapy [55, 56]. In a recent study, Hickey et al. [57]
reported the expression of active AR-Vs in ER-
negative breast tumors, suggesting their potential in-
fluence in the response of TNBCs to androgen
deprivation therapies. The study also highlighted the
role of the well-studied AR-V7 in inducing in vitro
cell proliferation in the absence of enzalutamide. AR
and AR-V7 differentially regulate target gene expres-
sion depending on the preferential recruitment of AR
or its splice variant to specific cis-regulatory DNA se-
quences [58]. AR-V7 expression has recently been re-
ported to be associated with unfavorable BC patient
prognosis, which has increased interest in investigat-
ing this AR-V as a potential therapeutic target [11,
59]. Limited data on AR-V7 and other AR-Vs exists
in BC; thus, further investigation into the different
AR-Vs may help resolve the controversial prognostic
role of AR in TNBC patients.
AR can drive tumor growth even in TNBC subtypes

expressing low levels of AR. Although the precise mech-
anisms remain unclear, the AR-positive tumor cell sub-
population can support the growth of a cancer stem cell
(CSC)-like cells, which promote chemotherapy resist-
ance and tumor recurrence. Thus, AR-targeting agents
may still be beneficial for TNBC patients exhibiting low
(≤ 1%) AR expression [60]. Compared with paclitaxel
alone, the combination of enzalutamide and paclitaxel is
believed to be more effective in preventing recurrence
by targeting CSC-like cells.
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Augmenting the complexity of the subject further,
prognostic implications of AR expression appear to vary
by ancestry. A recent AR assessment study [61] found
that TNBC in women of African ancestry (AA) was as-
sociated with a higher frequency of AR expression loss.
Furthermore, AAs with AR-negative TNBC had worse
overall survival than women of European ancestry (EA).
AA women with AR-negative TNBC were found to ex-
press a unique molecular signature and were enriched
for BL1, BL2, and IM subtypes.
In contrast to ER, PR, and HER2 testing, which is

standard clinical practice, AR testing has not been stan-
dardized due to the lack of consensus regarding its prog-
nostic value. However, given expanding data revealing
that QNBC tumors have a more aggressive disease
course and worse outcomes than AR-positive tumors,
standardizing AR testing is critical. QNBC has a distinct
molecular profile and should be considered a separate
entity from TNBC. TNBC heterogeneity is associated
with AR expression, suggesting that QNBC is a distinct,
clinically relevant subtype [62]. Differences in tumor
biology between QNBC and TNBC can be exploited to
yield novel therapies for targeted management of AR-
negative and AR-positive TNBCs. Table 1 captures these
distinctions and corresponding potential therapeutic in-
terventions for AR-negative TNBC patients (also see
Fig. 1).
Although the prognostic value of AR is ambiguous,

there is better agreement on its predictive value. A study
by Masuda et al. [100] demonstrated that among TNBC
subtypes, BL1 had the highest pathological complete re-
sponse (pCR) rate (52%) after neoadjuvant chemother-
apy (NAC), while BL2 and LAR had the lowest. Low AR
levels were associated with higher pCR rates in a clinical
trial evaluating neoadjuvant cisplatin plus paclitaxel with
or without everolimus in a TNBC cohort [101]. Another
study found that AR could predict tamoxifen treatment
benefit in TNBC patients, where AR-positive patients
benefited from the treatment, whereas patients with AR-
negative tumors progressed after tamoxifen treatment
[102]. Altogether, AR status testing can aid in neoadju-
vant treatment decision-making.

In-depth mapping of the QNBC terrain:
unearthing novel targets
Protein expression analysis, gene copy number analysis,
and gene sequencing have yielded promising therapeutic
targets for TNBC (Fig. 1). A recent integrated network
analysis and machine learning approach identified key
genes and pathways to help distinguish TNBCs from
non-TNBCs [103]. In contrast, genome wide studies
examining differences between AR-positive TNBCs and
AR-negative QNBCs are extremely scarce. QNBCs are
not yet explicitly classified as a separate BC subtype and

are overshadowed by the greater focus that TNBC re-
search receives. In addition, within TNBCs, more AA
women tend to be AR-negative/QNBC, a demographic
that is persistently under-represented in clinical studies
and public datasets such as TCGA. In this section, we
review the limited available data exploring potential bio-
markers in QNBC that may serve as therapeutic targets.
Further study of whether druggable targets overex-
pressed in TNBC are also overexpressed in QNBC is
warranted. Results from the Caris Research Institute cor-
roborated higher expression of EGFR and TOPO2A in
QNBC compared to AR-positive TNBCs, as well as indi-
cated significantly higher expression of c-KIT and thy-
midylate synthase (TS) [104]. C-Kit is a receptor
tyrosine kinase (RTK), and an increased gene copy num-
ber has been linked to an aggressive phenotype and un-
favorable prognosis in TNBC [105]. Jansson et al. [106]
also observed higher protein levels of c-KIT and two
other RTKs, vascular endothelial growth factor receptor-
2 (VEGFR2), and platelet-derived growth factor receptor
alpha (PDGFRα), in TNBC compared to non-TNBC
[107–110]. Specimens obtained in trials targeting these
markers in TNBC should be interrogated for AR status
and whether response varies by AR status. Small mol-
ecule inhibitors and monoclonal antibodies are the main
RTK-targeting therapeutic approaches under develop-
ment in TNBC. Both FDA-approved and investigational
drugs such as imatinib, cabozantinib, dasatinib, lucitanib,
and sunitinib (inhibits kinases and/or VEGFR, FGFR,
PDGFR) are being evaluated in TNBC patients [107–
111] and could be of value in QNBCs as well. TS cata-
lyzes the conversion of deoxyuridine monophosphate
(dUMP) to deoxythymidine monophosphate (dTMP) and
is involved in nucleotide metabolism, which is often
boosted in cancer cells to sustain increased proliferation. A
2019 study reported significantly high levels of TS in TNBC
compared to luminal BC subtypes, which correlated with
worse prognosis and could prove to be a valuable prognos-
tic biomarker and therapeutic target in QNBC [112].
Davis et al. [61] identified gene expression differences

in AR-deficient versus AR-expressing BC patients by
race, providing a template to advance QNBC research. A
comprehensive assessment of AR expression within all
BC subtypes from The Cancer Genome Atlas (TCGA)
revealed that women of AA were more likely to lack AR
expression than White women. The association between
AR expression and race was strongest in TNBC. These
findings highlight the need for extensive race-specific
annotation of genes associated with AR-negative BC.
Further examination of AR-negative BCs for a distinctive
gene expression profile has uncovered differential ex-
pression of several immune-related genes by race, in-
cluding E2F1, PDK1, CCL2, CEBPB, NFKBIL2, TGFB3,
IL12RB2, IL2RA, and SOS1 (Fig. 1).
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E2F1 and angiogenesis markers
E2F1 belongs to a class of TFs involved in G1/S transi-
tion and is being touted as a master regulator of BC me-
tastasis [113]. Non-steroidal anti-inflammatory drugs
such as diclofenac and indomethacin were found to
downregulate E2F1, among other genes, and inhibit cell
growth in ovarian cancer cell lines [114]. E2F1 affects
the activity of several key signaling pathways, including
hypoxia and angiogenesis, both of which are considered
hallmarks of cancer [113]. E2F1 modulates angiogenesis
via vascular endothelial growth factor (VEGF), its key fa-
cilitator [115, 116]. A significantly higher expression of
VEGF has been observed in TNBCs compared to non-
TNBCs [117]. Nevertheless, the role of angiogenesis in
QNBC remains elusive. VEGF signaling is reportedly up-
regulated by EGFR expression, which is also significantly
higher among QNBCs compared to AR+ TNBCs [118].

Clinical trials testing VEGF inhibitors, such as bevacizu-
mab, in combination with cytotoxic chemotherapy or
other antiangiogenic agents in metastatic BC and TNBC
patients, have shown an improved patient response
[119]. Extensive studies assessing the role of other key
angiogenesis markers in addition to VEGF, such as
mTOR, fibroblast growth factor (FGF), Notch, hypoxic-
inducible factor (HIF), and insulin growth factor (IGF),
as potential novel therapeutic targets in QNBC are
required.

Mediators of hypoxia
Interestingly, mediators of hypoxia, such as HIF TFs
(HIF-1α and HIF2α) and carbonic anhydrase IX (CAIX),
are highly upregulated in TNBCs compared to non-
TNBCs [120, 121]. Moreover, high CAIX expression has
been associated with poor disease-free survival (DFS)

Table 1 QNBC biomarkers and therapeutic targets, based upon differences in tumor biology between AR-negative and AR-positive
TNBCs, and suggested therapeutic interventions

QNBC biomarkers and
therapeutic targets

Genomic and molecular features (relative
expression to AR+)

Prospective therapy

Cell growth and proliferation

EGFR (epidermal growth factor
receptor)

Higher expression; indicates increased cellular
growth and proliferation

Tyrosine kinase inhibitors (gefitinib and erlotinib) and
anti-EGFR monoclonal antibodies (cetuximab) [63–67]

HER4 (human epidermal growth
factor receptor 4)

Lack of expression; may serve as a prognostic
biomarker

Not a therapeutic target; only a prognostic
biomarker [68–70]

Ki-67 Enhanced expression, i.e., high proliferation
index

Anthracycline/taxane-based chemotherapy [12, 71–76]

CK 5/6 (cytokeratin 5/6) Enhanced expression

TOPO2A (topoisomerase IIα) Elevated levels Anthracycline, topoisomerase I/II inhibitors and
PI3K/AKT/mTOR inhibitors [77, 78]

PTEN (phosphatase and tensin) Decreased expression

CDK6 (cyclin-dependent kinase 6) Increased mRNA expression CDK4/6 inhibitors (palbociclib, trilaciclib) [79, 80]

Cell metabolism

ASCL4 (acyl-CoA synthetase 4) - Elevated expression associated with claudin-
low and basal-like BC phenotypes; may
boost arachidonic acid metabolism through
PTGS2, ALOX5, and AKT/mTOR pathways

- Synergistic effect of ACSL4 inhibitor (e.g., rosiglitazone)
and mTOR inhibitor (e.g., rapamycin)

- May serve as a therapeutic biomarker - Downregulation of ASCL4 upregulates ER and AR
expression in vitro; ASCL4 inhibition may create
sensitivity to hormone-targeted therapies such as
tamoxifen and anti-AR agents [81–85]

Tumor immune microenvironment

PD-L1 (programmed death-
ligand 1)

Higher expression Immune checkpoint inhibitors (i.e., pembrolizumab) [86]

TIL (tumor-infiltrating
lymphocytes)

Higher peripheral and stromal levels (suggests
increased anti-tumor immune activity);
positively correlates with EGFR, BRCA1,
β-catenin expression in early-stage QNBC

EGFR-targeted therapies, platinum agents, and
Wnt/β-catenin small molecule inhibitors [87–89]

TNFSF10 (tumor necrosis factor
superfamily member 10)

Lower mRNA expression (suggests decreased
anti-tumor immune activity)

Potential susceptibility to cytokine-based immunotherapy
to stimulate anti-tumoral immunity [68, 90]

Organellular level

CA20 gene set Higher centrosome amplification (CA) and CA20
score

Centrosome declustering drugs (griseofulvin,
noscapine), HSET inhibitors (CW069, AZ82), PARPi
(PJ34, GF-15) [91–99]
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and overall survival (OS) among AR-negative/ER-nega-
tive BC patients [122]. HIF1-α downregulation in TNBC
cells promoted apoptosis and impaired cell invasion and
migration, while CAIX silencing in metastatic BC mouse
models resulted in regression of orthotopic mammary
tumors. Hence, it may be useful to investigate differ-
ences in hypoxia-induced proteins between AR-negative
and AR-positive TNBCs to determine whether targeting
HIF1-α and CAIX will be beneficial in QNBC [123, 124].
HIF-1 and CAIX small molecule inhibitors and mono-
clonal antibodies are currently in preclinical and early
clinical testing [123, 125].

PDK1
One of the differentially expressed genes in QNBC iden-
tified by Davis et al. is 3-phosphoinositide-dependent
protein kinase-1 (PDK1), a downstream effector of PI3K
[61]. The role of PDK in carcinogenesis is suggested to
be PIK3/AKT pathway-dependent; however, in BC,
PDK1 is also believed to be activated in a PIK3/AKT-

independent manner [126, 127]. PDK1 depletion has
been shown to delay tumor initiation, progression, and
metastasis in a BC mouse model [128]. Thus, the PDK1
signaling pathway may represent a viable therapeutic tar-
get in QNBC. 2-O-Bn-InsP5 (M. Falasca Laboratory),
GSK2334470 (GlaxoSmithKline), OXIDs (S. Rapposelli
Laboratory), and MP7 (Merck) are some of the PDK1 in-
hibitors under investigation [129].

Tumor immune landscape
The chemokine CCL2 is involved in tumor development
and progression by promoting the migration and infiltra-
tion of monocytes and tumor-associated macrophages
(TAMs) [130]. CCL2 overexpression has been associated
with poor patient prognosis in various tumor types, in-
cluding BC [131]. TAMs and tumor-associated neutro-
phils (TANs) are significantly more prevalent in TNBC
than in hormone receptor-positive BC [132–134]. Al-
though TAMs and TANs participate in anti-tumor im-
munity, they can also switch from a pro-inflammatory

Fig. 1 Overview of the distinct features of QNBC as well as biomarkers/therapeutic targets and therapies under investigation. QNBC is clustered
with the TNBC subtype despite having a unique molecular landscape. QNBC warrants an in-depth annotation and should be considered a
separate BC subtype
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cell phenotype to a pro-tumoral one. One of the im-
munosuppressive functions of TAMs in TNBC is the in-
duction of the co-inhibitory molecules PD-1 and TIM-3
[135]. While CCL2 is a potential molecular target, thera-
peutic intervention using neutralizing antibodies against
CCL2 has not yielded the desired impact. Using a novel
gene silencing approach, Fang et al. [131] were able to
target CCL2 more effectively, inhibiting TNBC progres-
sion by blocking CSC renewal and M2 macrophage re-
cruitment. Therapeutic strategies to suppress the pro-
tumoral functions of TAMs and TANs are currently
under investigation [136, 137]. Expression of CD4+ and
CD8+ T cell markers along with that of the immune
checkpoint molecules PD-1, PD-L1, and CTLA-4 was
found to be significantly upregulated in QNBC com-
pared with AR-positive TNBC [61]. Therefore, it may be
worthwhile to investigate differential expression of other
immune checkpoint molecules, such as LAG-3 and
TIM-3. In addition to PD-L1 inhibitors, immune check-
point inhibitors targeting CTLA-4 and LAG-3, such as
ipilimumab and IMP321, have reached phase III and I/II
clinical trials, respectively, and have shown promising re-
sults [138]. A comprehensive elucidation of the QNBC
immune landscape could be invaluable for risk prognos-
tication and targeted immunotherapeutic intervention.

Micro-RNAs
Shi et al. [139] identified 153 micro-RNAs (miRNAs)
that were differentially expressed between QNBC and
AR-positive molecular subtypes, affecting several signal-
ing pathways involved in tumor cell proliferation and in-
vasion. Another study using TCGA data identified 40
miRNAs with differential expression in QNBC. Interest-
ingly, these miRNAs were associated with race and BC
subtype [62]. Current efforts are focused on the develop-
ment of therapeutic strategies targeting miRNAs in can-
cer and other diseases, such as miRNA mimics and anti-
miRNAs. The identification of QNBC-specific circulat-
ing miRNAs may also improve detection and prognosis.

Transcription factors: CEBPB and EN1
The CCAAT enhancer-binding protein beta (CEBPB) is
a TF regulating the expression of genes involved in in-
flammatory responses. High CEBPB has been correlated
with expression of the chromosome 19 miRNA cluster
(C19MC), the expression of which has been linked to
TNBC [140]. Due to this association, it may also be
worthwhile to compare C19MC expression in QNBC
versus TNBC. The fact that CEBPB is induced under
hypoxic conditions [141] further emphasizes the need to
determine the role of hypoxia in QNBC.
From analyses in TCGA datasets, Peluffo G et al. [142]

identified 17 TFs that were significantly upregulated in
TNBCs and focused on delineating the role of

Engrailed-1 (EN1), a neural-specific TF. They found that
downregulation of EN1 in TNBC cell lines significantly
reduced viability and tumorigenicity, as well as affected
the expression of genes involved in WNT and Hedgehog
signaling pathways [142]. Furthermore, high EN1 expres-
sion levels were associated with brain metastasis and
poor OS. In a different study, EN1 expression was asso-
ciated with unfavorable OS in QNBC patients. It has
been proposed that EN1 may promote the proliferation,
migration, and multinucleation of QNBC cells via the
transcriptional activation of HDAC8, UTP11L, and ZIC3
[143]. In the same study, the ability of actinomycin to in-
hibit EN1 was also shown. Recently, multi-functionalized
nanoparticles have been formulated to specifically target
EN1 with less toxicity; these await further testing in clin-
ical trials [144]. Notably, Peluffo G et al. identified the
TF CEBPB, peroxisome proliferator-activated receptor
delta (PPARD), and thyroid hormone receptor-
interacting protein 13 (TRIP13) as promising potential
biomarkers for QNBC [142].

SKP2
As part of the SCF-SKP2 ubiquitin ligase complex, S-
phase kinase-associated protein 2 (SKP2) is involved in
the degradation of p21, p27 (a CDK inhibitor), and p57,
among other proteins. SKP2 is a known oncoprotein being
involved in DNA replication during the S-phase of the cell
cycle [145]. SKP2 was identified as one of the key genes
upregulated in TNBC compared to non-TNBC samples
[103]. Although the impact of the differential expression
of SKP2 between QNBC and TNBC remains unclear, AR
was identified as an upstream regulator of SKP2 in pros-
tate cancer cells. Additionally, AR expression levels were
negatively correlated with SKP2 expression levels, and
SKP2 overexpression resulted in reduced AR expression
and activity [139, 146–150]. The association between
SKP2 and negative AR status underpins SKP2 as a poten-
tial therapeutic target in QNBC. A small molecular inhibi-
tor is currently being developed to inhibit SKP2-p26
interaction and subsequent p27 degradation [151].

Conclusions: future perspectives and
implementation
QNBC is an aggressive and poorly understood form of
BC. This review presents recent findings that aimed to
improve our understanding of QNBC tumor biology re-
quired to identify prognostic markers and therapeutic
targets. Studies assessing the differential expression of
biomarkers between QNBCs and TNBCs may yield
novel actionable targets unique to QNBC. These discov-
eries may also benefit TNBC patients of African ances-
try, who are predominantly diagnosed with a QNBC
phenotype. Cumulative evidence suggests that QNBC is
highly proliferative and immunogenic, rendering it an
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ideal candidate for cytotoxic chemotherapy and im-
munotherapy. However, QNBCs have worse clinical out-
comes even after treatment with adjuvant chemotherapy.
Besides, acquired resistance to taxanes is also commonly
observed. Thus, combining these approaches with agents
targeting QNBC biomarkers may enhance treatment re-
sponse and improve prognosis.
A vast majority of these markers can be evaluated

through clinically applicable methods such as immuno-
histochemistry (IHC). However, the successful
characterization of QNBC patients and tailored clinical
decision-making required the establishment of robust
AR expression cutoffs. Although nuclear staining indi-
cates active AR signaling, there is currently no standard
scoring method for nuclear AR IHC staining. Often,
CAP/ASCO staining guidelines for ER and PR are ap-
plied for AR since they stain similarly; however, there is
no consensus on the threshold value for AR status as-
sessment. One way to overcome this is to measure AR
levels using a more reliable androgen-driven gene signa-
ture. Determining prior treatment, clinical outcomes,
and key AR-dependent proteins, which may differ ac-
cording to BC subtypes, will shed more light on the
mechanistic action and prognostic value of AR in TNBC
required for its implementation into routine clinical
testing.
It is imperative to treat QNBC as a unique disease and

thoroughly investigate its biology. Examining the role of
epidemiological and non-biological factors in QNBC is
equally important in gaining a holistic understanding of
its etiology and uncovering novel modifiable risk factors.
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