
Original Article

Dose-Response:
An International Journal
April-June 2022:1–7
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/15593258221099281
journals.sagepub.com/home/dos

Highly Diluted Antibodies to eNOS Restore
Endothelium Function in Aortic Rings From
Hypertensive Rats

Nataliya V. Petrova1,2, Sergey A. Tarasov1,2, Oleg I. Epstein1,2, Caroline Dubroca3, and
Thierry Sulpice3

Abstract

Background: Nitric oxide (NO) as a vaso- and cardio-protective agent could reduce vasomotor dysfunction in different
cardiovascular diseases. One of the current therapeutics targeted at NO availability in the vascular wall are highly diluted
antibodies to endothelial NO-synthase (eNOS). This drug has previously shown its endothelium-protective effect and ef-
fectiveness in reducing hypertension. Current study was dedicated to evaluate the direct impact of highly diluted antibodies to
eNOS on the vessel constriction and dilation ex vivo.

Methods: For that purpose, we used thoracic aortas dissected from spontaneously hypertensive (SHR) rats. Endothelium-
dependent relaxation in the presence of highly diluted antibodies to eNOS (1 mL) was examined after phenylephrine-induced
pre-constriction of the aorta rings in response to gradually increased acetylcholine concentration (1 nM to 10 µM).

Results: Highly diluted antibodies to eNOS enhanced acetylcholine-induced relaxation in a statistically significant manner.
Moreover, it was demonstrated that observed effect was similar to perindopril, a well-known angiotensin-converting-enzyme
inhibitor, which works through relaxing and widening blood vessels.

Conclusions: Our findings indicate that highly diluted antibodies to eNOS restored impaired endothelium function, as
demonstrated by increased relaxation of SHR rats aorta rings. The revealed results suggest beneficial effect of highly diluted
antibodies to eNOS to ameliorate hypertension and related diseases.
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Introduction

Vascular endothelium is known as an active paracrine, en-
docrine, and autocrine organ that plays crucial role in the
regulation of vascular tone1 and the maintenance of vascular
homeostasis.2 Under physiological conditions, several re-
laxing and contracting factors are maintaining endothelial
equilibrium. However, in pathological conditions such as
hypertension, atherosclerosis, and diabetes balance of these
factors is upset resulting in endothelial dysfunction and
vascular damage.3 One of the most studied relaxing factors is
nitric oxide (NO), generated by endothelial NO synthase
(eNOS). Nitric oxide plays a pivotal role in the maintenance of

vascular tone and reactivity.4 Disruption of NO production
results in the intracellular energy deficit, vascular inflamma-
tion, and atherogenesis.5 Therefore, targeting vascular
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(endothelial) dysfunction still represents attractive pharma-
cological approach due to its central involvement in the
progression of most cardiovascular diseases.6

Currently, there are several drugs for treatment of endothelial
dysfunction. The main purpose of this therapy is the elimination
of paradoxical vasoconstriction and creation of a protective
environment in relation to pathological factors through the
increased availability of NO in the vascular wall. The most
commonly usedmedications with suchmechanism of action are
angiotensin-converting-enzyme (ACE) inhibitors and statins.6

In addition to these classical drugs, new therapeutics that
are based on the direct targeting of the NO-cGMP signaling
cascade have been successfully used for years. For example, it
was shown that phosphodiesterase (PDE) inhibitors prevent
the enzymatic degradation of cGMP and are used in a wide
range of diseases including the use of PDE 5 inhibitors to treat
sexual dysfunction in females, cardiovascular disease, and
pulmonary hypertension.7 Activators and stimulators of the
soluble guanylate cyclase (sGC) represent a novel class of
“repair” drugs of a (oxidatively) damaged sGC enzyme. It has
been demonstrated that they may fulfill a similar role for
uncoupled/dysfunctional eNOS and only activate the dam-
aged, oxidatively inactivated form of eNOS,8,9 which would
represent a safe way to treat endothelial dysfunction without
the risk of overdosing. These drugs are mostly intended to be
used for the therapy of pulmonary hypertension and heart
failure, but also in other indications, such as arterial hyper-
tension, renal fibrosis/failure etc.10

Another approach is the development of eNOS enhancers with
upregulation of eNOS mRNA or protein as the mechanism of
action. AVE3085 being an example of a potent eNOS enhancers
normalized endothelial function in spontaneously hypertensive
(SHR) rats,11 reduced oxidative stress, and endothelial dysfunction
in diabetic db/db mice,12 attenuated cardiac remodeling in vivo,13

and prevented endothelial dysfunction by homocysteine in human
vascular tissue.14 However, the potential of eNOS enhancers re-
quires further exploration in clinical studies,maybe in combination
with antioxidant therapy in order to prevent the uncoupling of
overexpressed eNOS protein which might boost pre-existing
oxidative stress.15

Thus, a drug that would have to meet efficacy and safe
requirements is still needed. The aim of this study was to test
the effect of highly diluted antibodies (HD Abs) to fNOS on
endothelium-dependent relaxation in animal model of hy-
pertension, which exhibit many phenotypic characteristics
observed in humans.

Indeed, HD Abs to eNOS were shown to stimulate the
“eNOS–NO–GC–cGMP” cascade that corrects vasomotor
disturbance through regulation of regional blood flow.16 In
animal models of NO deficiency induced by L-NAME17 or by
lack of estrogen HD Abs to eNOS prevented endothelial
damage.18 In addition, HD Abs to eNOS decreased arterial
pressure in hypertensive rats without affecting main hemo-
dynamic parameters in normotensive rats. Moreover, the
administration of HD Abs to eNOS as a part of complex drug

Divaza® (OOO “NPF “MATERIA MEDICA HOLDING”,
Russian Federation) in patients with chronic cerebrovascular
disease (CBVD, NCT03485495) led to normalization of is-
chemia and inflammation biomarkers, such as fibrinogen and
von Willebrand factor in plasma after 3 months of therapy.
Moreover, statistically significant decreases in C-reactive
protein and the monocyte chemoattractant protein-1 con-
centrations were shown, suggesting the endothelioprotective
effect and the ability of HD Abs to eNOS as a part of this
complex drug to reduce the severity of the inflammatory
process in vessel walls.19 The mechanism of action of HDAbs
to eNOS is determined by the properties inherent in HD
solutions. In particular, it was shown that these solutions
possess a number of features typical for nonlinear system:
solutions obtained during the dilution process acquire special
long-lasting physicochemical and biological properties that
are different both from the properties of the original substance
and the properties of the solvent (water in this case).20-23

Second, despite the high dilution degree, the available data
indicate the possibility of preserving molecules even in the
highly diluted solutions, which may be explained by the
flotation effect.24-27 At the same time, it is likely that spon-
taneously forming nanoassociates are the "carrier" of activity
that determines special physicochemical and biological
properties of HD solutions.28,29 And finally, the most im-
portant properties of HD solutions, in practical terms, are their
ability to modify the activity of the target via conformational
changes,30 affecting to the hydration shells31 which can be
probably be due to the effect of HD solutions on the target
without direct contact with it.32 It is well-known that the
activity of eNOS and consequently production of NO are
regulated at the transcriptional, post-transcriptional, and post-
translational levels; any modifications occurring at these levels
induce changes in the eNOS.33 Most likely that HD Abs to
eNOS affect the conformation and hydration shells of eNOS
and consequently influence target-mediated effects. Therefore,
we suggest that HD Abs to eNOS might be used as a treatment
option against a variety of cardiovascular pathologies.

Nevertheless, more data with regard to the role of HD Abs
to eNOS on the vessel constriction and dilation are needed.
Thus, the aim of this study was to investigate a direct effect of
HD Abs to eNOS on endothelium-dependent vascular re-
laxation of aortic rings dissected from SHR rats ex vivo.

Material and Methods

Experimental Samples

Affinity-purified rabbit polyclonal antibodies to human eNOS
(stock concentration 1.0 mg/mL) were manufactured in ac-
cordance with the current EU requirements for GMP for
starting materials (EU Directive 2001/83/EC as amended by
Directive 2004/27/EC) by Ab Biotechnology Limited (UK).
The HD Abs to eNOS were produced by the GMP
manufacturing facility of OOO “NPF “MATERIA MEDICA
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HOLDING” (Russian Federation) according to the technology
described in the US patent 8 535 664. Briefly, antibodies to
eNOS (1.0 mg/mL) were mixed with a solvent (ethanol-water
solution) at a ration 1:100 and shaken intensively to produce
the first centesimal dilution (i.e., 100-fold dilution). All
subsequent dilutions comprised one part of the previous di-
lution and 99 parts of solvent (ethanol-water solution for
intermediate dilutions and purified water for the preparation of
the final dilutions), with intensive vibration treatment between
the dilution steps. Thus, if we do not take into account the
physical aspects mentioned in the Introduction, the theoretical
concentration of initial Abs to eNOSmight be 1.0 × 10�24 mg/
mL. This value is mentioned here only to avoid misunder-
standing regarding the dilution level of HD of Abs to eNOS.
The solution of HD of Abs to eNOS was prepared in glass
vials under sterile conditions and was stored at room tem-
perature protected from direct intense light. Distilled water
(hereafter, a vehicle) served as a negative control.

Other chemicals and drugs used in experimental design
were as follows: phenylephrine (hereafter PE; Sigma-Aldrich,
P6126), acetylcholine chloride (hereafter Ach, Sigma-Aldrich,
A6625) and perindopril (Sequoia Research Products Limited,
SRP01317p). Perindopril was solubilized in distilled water,
and then further diluted in Krebs buffer (to achieve final
concentration of 1 µM in the bath (a standard effective dose
which works very well in aorta rings)34,35 and utilized as a
clinically approved ACE inhibitor, which eliminates vaso-
constrictor activity of angiotensin II.

All reagents were of analytical grade and stored according
to the manufactures prescriptions.

Animals

This study was carried out on 14-week-old SHR (SHR, n = 9)
and normotensive Wistar–Kyoto (WKY, n = 6) male rats
weighing 300-350 g. Animals were obtained from Janvier
SAS (France). As WKY rats have normal vascular properties,
six species was sufficient to have reproducible data. In con-
trast, the impairment in the SHR rats could be slightly different
among animals, so it was decided to include more animals to
reduce variability. Rats were housed in groups of 2 animals on
a normal 12 hours light cycle (at 7PM lights off), 22 ± 2°C and
55 ± 10% relative humidity. During the experiments, standard
diet (Safe R04-10) and tap water were provided ad libitum. All
procedures performed on animals in the course of the study
were reviewed and approved by the Institutional Animal Care
and Use Committee concerning their compliance with the
regulatory documents № 31-2012-82 dated on June 22nd,
2012.

Organ Bath Assay

Isolation and preparation of aortic rings. After the 5-day ac-
climation period, rats were terminally anesthetized with
pentobarbital sodium, (50 mg/kg, ip) thoracic aortas were

excised, cleared of all adherent tissues and placed in cold
modified Krebs buffer of the following composition (mM):
118.5 NaCl, 25 NaHCO3, 4.7 KCl, 1.2 MgSO4-7H2O, 1.2
KH2PO4, 11 glucose, and 2.5 CaCl2-H2O. The aortas were
then cut into rings (4 to 5 mm in length) with their respective
assignment to the experimental groups.

After being cut, the aortic rings were mounted on fixed
segment support pins and two fine stainless-steel holders were
placed through the lumen. Aortic segments have then been
bathed in isolated organ chambers containing Krebs buffer
(5 mL) at 37°C, continuously bubbled with 95% O2 and 5%
CO2 to pH 7.4. Each ring was connected to a force dis-
placement transducer for the measurement of isometric force,
which was continuously displayed and recorded on-line on a
computer via an eight-channel transducer data acquisition
system (MP100, Biopac System Inc.).

The aortic rings were submitted to a tension of 2 g, which
was readjusted every 15 min during a 60-min equilibration
period. The organ bath fluid has been refreshed every 15 min
during this period. Subsequently tissue was exposed to 60 mM
KCl to check preparation viability and then washed with
Krebs buffer.

Experimental procedure. The animal model used in experiment
was described in literature previously.36,37

After equilibration, the rings were repeatedly stimu-
lated with KCl solution (high K+, 80 mmol/L) until 2
consecutive equal contractions were reached. Following
washout of high K+ responses, the aortic rings were in-
cubated for 30 minutes with either HD Abs to eNOS
(1 mL), vehicle (1 mL) or perindopril as positive control
(1 µM). All of the tested substances were added directly to
the organ bath. Each group had 8 to 12 evaluable aortic
rings from at least 6 different animals. The difference in a
number of rings can be explained by quality control
standards used: some rings could be excluded due to in-
sufficient KCl-induced contraction or observation of tissue
damage. In addition to that, the length of the trachea varies
from one animal to another.

Vascular relaxation study was performed by doing cu-
mulative concentration–response curves to the endothelium-
dependent relaxant agonists—acetylcholine (ACh; 1 nM,
3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1 µM 3 µM, 10 µM,
and 30 µM) on tissues of SHR and WKY rats, precontracted
with phenylephrine (PE, 1 µM).

Statistical Analyses

The data are expressed as mean ± standard error of mean
(m±SEM). For substances that elicit contraction of aortic
rings (KCl and PE), results are expressed as an increase in
isometric tension from the resting level. For Ach that elicit
relaxation, the response is expressed as percent of reversal of
the PE-induced pre-constriction and was calculated for each
concentration as relaxation = [(maximal tension induced by
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PE—tension induced by Ach)/(maximal tension—basal
tension)] x 100.

Statistical analysis was performed using R language ver-
sion 3.4.0 (RStudio, ViennaS). Data are presented as relative
values in the range of 0% to 100%, so logit transformation was
performed for its analysis.

After transformation, linear mixed effect model followed
by Tukey’s Post Hoc Test was used to assess intergroup
differences.

Differences were considered statistically significant when
p-value was less than .05.

Results

The tension induced by KCl (60 mM) or PE (1 µM) was
significantly higher for SHR compared to WKY rats, the
values were 2.5±.2 vs 2.07±.15 and 2.3±.13 vs 1.7±.18, re-
spectively, (P < .05).

We observed a marked endothelial dysfunction in SHR
vascular ring preparations, which was exhibited in the lowest
rates of aortic relaxation. The Ach-induced relaxation in this
group was 37% lower compared to a group of WKY rings (p<
.05; Figure 1A)

Treatment with perindopril (1 µM) significantly improved
Ach-induced relaxation compared to a vehicle-treated rings
from SHR. Percent of maximal pre-constriction was
79.9±5.1% (P < .05). Similarly, to perindopril, treatment with
the HD Abs to eNOS normalized relaxation starting from
30 nM Ach concentration (P < .05; see Figure 1B). Maximal
relaxation to Ach was 81,7±2.77% and significantly differed
from vehicle-treated SHR group (P < .05)

Discussion

Mechanisms underlying endothelial dysfunction observed in
animal models of hypertension and in clinical practice include

Figure 1. (A) Concentration-response curves to acetylcholine (1 nM to 30 µM) in aortic rings from Wistar–Kyoto and spontaneously
hypertensive rats. *P < .05 difference vs vehicle-treated rings dissected from spontaneously hypertensive. Data presented asm ± SEM. (B) Effect
of HD Abs to endothelial NO-synthase or perindopril treatment on Ach-induced relaxation in spontaneously hypertensive rats. Data presented
as m ± SEM. *P < .05 difference between a group of HD Abs to endothelial NO-synthase vs vehicle-treated rings dissected from spontaneously
hypertensive rats. +P < .05 difference between a group of perindopril vs vehicle-treated rings dissected from spontaneously hypertensive rats.
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an increase in the levels of cyclooxygenase-generated vaso-
constricting factors, a decreased release of vasorelaxant agents
(such as NO and bradykinin), and a reduced bioavailability of NO
whichmay be due to a higher production of oxygen free radicals.38

In earlier studies, HD Abs to eNOS had an effect on the
eNOS-NO system.17,18 However, an involvement of HD Abs
to eNOS in a direct vasorelaxant effects ex vivo has not been
previously reported.

In the present study, which did address this question we
have shown that HD Abs to eNOS restored the impaired
endothelium-dependent relaxation in the aortae of SHRs
suggesting its antihypertensive effect. We link the determined
effect to the properties of HD solutions and primarily, their
ability to modify the activity of the target via conformational
changes. Indeed, Tarasov et al30 using high-resolution solution
nuclear magnetic resonance spectroscopy, on the example of
HD Abs to IFN-γ have demonstrated that HD Abs induced
conformational changes in the targeted protein. These mo-
lecular changes shown to be crucial for the function of the
protein, as evidenced by an observed therapeutic effect in-
duced by HDAbs. eNOS being a strong vasodilator with a key
role in the regulation of systemic vascular resistance and
responsible for NO production seems a promising therapeutic
target for management of endothelial dysfunction.

Spontaneously hyperintensive rats are a standard model of
NO-deficient hypertension similar to the one observed in
human. The causes of pathological changes observed in SHR
rats may include: the predominance of vasoconstrictors, im-
paired endogenous NO production, and reduced endothelial-
dependent vasorelaxation in certain arteries, hyperproduction
of superoxides, which is another mechanism of reduced NO
bioavailability.36,39,40

Thus, we suppose that improved dilatation in response to Ach
observed in a group with HDAbs to eNOS treated animals may be
the result of ameliorated endothelium-dependent vasodilation,
changes in signaling properties, increased production, release and
consequently diffusion ofNO.41,42 Indeed, in the previous studywe
have shown that application of HD Abs to eNOS enhanced NOS
activity, increased the content of NO derivatives and cGMP16.
Additionally, the efficacy of HDAbs to eNOS (as a part of Impaza)
has been demonstrated in a model of L–NAME-induced (a non-
selective NO synthase inhibitor) endothelial dysfunction.18,43 The
endothelial protection activity was assessed according to the co-
efficient of endothelial dysfunction. This parameter indicates a
change in the reactivity of the vascular bed in the model of NO
deficiency and allows us to assess the extent of correction of
endothelial dysfunction44

For a group of HDAbs to eNOS (single administration or in
combination with the other drugs) the coefficient of endo-
thelial dysfunction was close to the values obtained for the
intact animals and was comparable to that of Mildronate® and
furostanol glycosides from the cell culture of the Dioscorea
deltoidea (laboratory code DM-05).17

Moreover, in the frame of the above-mentioned experi-
ments a cardioprotective effect has also been shown, which

consisted in a decrease in adrenoreactivity and in systolic
blood pressure in the left ventricle during a resistance load test
compared to the control animals.

What is more important, the results for HD Abs to eNOS
observed in our study were comparable with the results
published for other NO enhancers. For instance, AVE3085
significantly improved Ach-induced endothelium-dependent
relaxations in the aortae of SHRs by 25% after a 4-weeks
treatment.11 In our study this parameter equaled to 24%, but
unlike to AVE3085, the effect of HD Abs to eNOS has been
realized in a shorter time, an additional pretreatment of rats
was not required.

The results of preclinical studies are in agreement with the
data observed in clinic. For example, on patients with en-
dothelial and erectile dysfunction HD Abs to eNOS con-
tributed to increase in NO45 and NO metabolites level46 in
serum by the end of the therapy.

It is also known that endothelial dysfunction is associated
with insulin resistance, contributes to the progression of type 2
diabetes (T2D) and its vascular complications. Indeed, high
glucose in diabetes can undergo autoxidation and generate
hydroxyl radicals that reduce the bioavailability of NO. The
HD Abs to eNOS also being a part of complex hypoglycemic
drug Subetta® (OOO “NPF “MATERIA MEDIC HOLD-
ING,” Russian Federation) revealed sufficient glycemic
management in subjects with T2D and led to normalization of
microcirculatory system conditions through the markers re-
lated to oxidative metabolism.47 These findings suggest that
HD Abs to eNOS may increase the level of NO also via
antioxidant property of this drug, allowing normal NO sig-
naling and relaxations. However, to confirm this statement and
to further investigate mechanisms underlying HD Abs to
eNOS action future research using a set of antioxidant assays
are necessary. Additionally, it would be interesting to estimate
the effect of HD Abs to eNOS in other animal models, like
STZ-induced diabetic rats48 and examine an opportunity of
combined with standard antihypertension therapy application.

In conclusion, the present results provide the evidence of
the beneficial vascular protective effect of HD Abs to eNOS in
vivo, however, additional experiments aimed at studying the
effect of HD Abs to eNOS on quantitative NO production in
this particular model are required. We suggest that the ap-
plication of HD Abs to eNOS may help to restore the normal
endothelial function and be useful in the treatment of hy-
pertension and related diseases.
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