
fphys-09-00518 May 7, 2018 Time: 23:6 # 1

ORIGINAL RESEARCH
published: 09 May 2018

doi: 10.3389/fphys.2018.00518

Edited by:
Chunhua Bian,

Nanjing University, China

Reviewed by:
Ronny P. Bartsch,

Bar-Ilan University, Israel
Paul Bogdan,

University of Southern California,
United States

*Correspondence:
Deyu Li

deyuli@buaa.edu.cn
Shuyu Li

shuyuli@buaa.edu.cn

Specialty section:
This article was submitted to

Fractal Physiology,
a section of the journal
Frontiers in Physiology

Received: 23 October 2017
Accepted: 20 April 2018
Published: 09 May 2018

Citation:
Li X, Li Q, Wang X, Li D and Li S

(2018) Differential Age-Related
Changes in Structural Covariance

Networks of Human Anterior
and Posterior Hippocampus.

Front. Physiol. 9:518.
doi: 10.3389/fphys.2018.00518

Differential Age-Related Changes in
Structural Covariance Networks of
Human Anterior and Posterior
Hippocampus
Xinwei Li1,2, Qiongling Li1,2, Xuetong Wang1,2, Deyu Li1,2* and Shuyu Li1,2*

1 School of Biological Science and Medical Engineering, Beihang University, Beijing, China, 2 Beijing Advanced Innovation
Centre for Biomedical Engineering, Beihang University, Beijing, China

The hippocampus plays an important role in memory function relying on information
interaction between distributed brain areas. The hippocampus can be divided into the
anterior and posterior sections with different structure and function along its long axis.
The aim of this study is to investigate the effects of normal aging on the structural
covariance of the anterior hippocampus (aHPC) and the posterior hippocampus (pHPC).
In this study, 240 healthy subjects aged 18–89 years were selected and subdivided
into young (18–23 years), middle-aged (30–58 years), and older (61–89 years) groups.
The aHPC and pHPC was divided based on the location of uncal apex in the MNI
space. Then, the structural covariance networks were constructed by examining their
covariance in gray matter volumes with other brain regions. Finally, the influence of age
on the structural covariance of these hippocampal sections was explored. We found
that the aHPC and pHPC had different structural covariance patterns, but both of them
were associated with the medial temporal lobe and insula. Moreover, both increased and
decreased covariances were found with the aHPC but only increased covariance was
found with the pHPC with age (p < 0.05, family-wise error corrected). These decreased
connections occurred within the default mode network, while the increased connectivity
mainly occurred in other memory systems that differ from the hippocampus. This study
reveals different age-related influence on the structural networks of the aHPC and pHPC,
providing an essential insight into the mechanisms of the hippocampus in normal aging.
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INTRODUCTION

With the population aging, understanding normal brain changes are as important as understanding
demented diseases. Memory decline is a typical characteristic of normal aging. The hippocampus
is considered critical in human memory and spatial navigation (Scoville and Milner, 1957; Buzsáki
and Moser, 2013). Evidence suggests that hippocampal volume changes throughout the lifespan,
which stays relatively stable until the age of 60 shows a sharp decline (Raz et al., 2010; Schuff et al.,
2012; Fjell et al., 2013). Functional imaging studies have revealed and hypometabolism (de Leon
et al., 2001; Wu et al., 2008) of the hippocampus in aging. Moreover, a reduced fractal dimension
of hippocampal dynamics with age was reported (Goldberger et al., 2002; Wink et al., 2006).
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The hippocampus differs in structure and function along
its longitudinal axis (Poppenk et al., 2013). The anterior
hippocampus (aHPC) and posterior hippocampus (pHPC) vary
in pyramidal cell density (Babb et al., 1984; King et al., 2008) and
have different developmental trajectories (DeMaster et al., 2014).
Compared with young adults, both the aHPC and the pHPC
showed volumetric atrophy in old adults (Pruessner et al., 2001;
Chen et al., 2010; Rajah et al., 2010), and their rates of atrophy
were different (Malykhin et al., 2008; Chen et al., 2010). Besides,
an fMRI study reported the functional connectivity of the aHPC
and pHPC were differentially affected in aging (Damoiseaux et al.,
2016).

For structural connectivity, the structural covariance network
(SCN) approach provides an effective way to characterize inter-
regional structural covariance pattern of gray matter (GM)
morphological properties (Mechelli et al., 2005; Modinos et al.,
2009; Seeley et al., 2009; Zielinski et al., 2010; Montembeault
et al., 2012; Li et al., 2013; DuPre and Spreng, 2017). The
GM morphological covariance may result from direct white
matter connection or neuronal co-activation (Alexander-Bloch
et al., 2013). Studies have revealed a consistency among SCNs,
anatomical connectivity networks, and functional connectivity
networks, which provides strong support for using SCN mapping
approach to assess network integrity. Age-related alteration of
structural covariance in sensorimotor and cognitive networks has
been found (Montembeault et al., 2012; Li et al., 2013). However,
the effects of aging on the structural covariance of the aHPC
and pHPC remain to be studied, which may provide insights
into the hippocampal-related mechanism of aging and demented
diseases.

In this study, we utilized a seed-based SCN approach to
investigate the anterior and posterior hippocampal structural
networks in 240 healthy subjects that were subdivided into young,
middle-aged, and elderly groups. We first defined aHPC and
pHPC based on the location of uncal apex in the MNI space.
Then, we identified the SCNs seeding from aHPC and pHPC
and compared the structural covariance differences between age
groups. We expected the SCNs of the aHPC and pHPC have
different patterns and were differently affected by age.

MATERIALS AND METHODS

Participants
The MRI data were obtained from the publicly available Open
Access Series of Imaging Studies (OASIS) database (Marcus et al.,
2007). The OASIS database consists of 416 subjects aged 18–96,
including 100 mild dementia and 316 healthy subjects. Based
on the age distribution of the OASIS database, we selected 240
participants from the healthy subcohort and grouped them into
young (18–23 years), middle-aged (30–58 years), and elderly (61–
89 years) groups, with 80 participants in each group (see Table 1).
All the subjects are right-handed and cognitively normal, with
the Mini-Mental State Examination scores (Folstein et al., 1975)
above 29 and the Clinical Dementia Rating scores (Folstein et al.,
1975) equal zero. The same group of subjects was used in our
previous study (Li et al., 2013).

Data Acquisition
All MRI scans were performed on 1.5 Tesla Siemens scanners. For
each individual, three to four T1-weighted images were acquired
using a magnetization-prepared rapid gradient echo (MPRAGE)
sequence with the following parameters: repetition time = 9.7 ms;
echo time = 4 ms; inversion time = 20 ms; delay time = 200 ms;
flip angle = 10◦; matrix = 256 × 256; field of view = 256 mm;
slices = 128; slice thickness = 1.25 mm. After motion corrected,
the images of each subject were averaged to improve the contrast-
to-noise ratio.

Image Preprocessing
We used the VBM8 toolbox1 runs within SPM8 to implement
voxel-based morphometry analysis (Ashburner and Friston,
2000) of the structural images. The acquired anatomical images
were tissue classified into GM, white matter and cerebrospinal
fluid images using tissue priors. Then, the segmented images
were bias corrected and registered to a standard space using
an affine transformation and a high-dimensional non-linear
registration approach (Ashburner and Friston, 2005). Next,
modulation of the segmented images was performed to correct
for different individual brain size by using the non-linear
registration parameters. Finally, the modulated GM segments
were smoothed using an isotropic 12 mm full-width at half
maximum Gaussian kernel for the structural covariance analysis.

Definition of the Hippocampal Seeds
Following previous studies (Poppenk et al., 2013; Persson
et al., 2014), we adopted a MNI-coordinate-based segmentation
method to partition the hippocampus. The hippocampus was
identified using the Harvard-Oxford subcortical structural atlas
(Desikan et al., 2006) from the FSL Software Library (Smith et al.,
2004). Next, the left and right hippocampi were divided into the
anterior and posterior sections separately based on the location of
uncal apex in the MNI space (i.e., Y = −21 mm) (Poppenk et al.,
2013). To avoid contamination effects between the aHPC and the
pHPC, we removed a 2-mm coronal slice from each of the two
adjacent ends (see Figure 1). For each subject, we measured the
mean volumes of the hippocampal subfields from the modulated
GM images using the MarsBar ROI toolbox2. Then a quadratic
regression model was used to investigate age effects on the mean
volumes of the anterior and posterior hippocampal segments. We
also assessed the age-related hippocampal volumetric dispersion.
To do so, for age = t, we calculated the variance of hippocampal
volumes of subjects with age ∈ [t−2, t+2] and examined its
quadratic relationship with age.

1http://www.neuro.uni-jena.de/vbm/
2http://marsbar.sourceforge.net/

TABLE 1 | Participant characteristics by age group.

Group Sample size (Females) Age in years (mean ± SD)

Young 80 (50) 18–23 (20.66 ± 1.47)

Middle-aged 80 (50) 30–58 (47.43 ± 8.23)

Old 80 (55) 61–89 (73.75 ± 7.12)
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FIGURE 1 | Illustration of the anterior and posterior hippocampal seeds.
aHPC, anterior hippocampus; pHPC, posterior hippocampus.

Structural Covariance Analysis
Four separate regression analyses were executed on the
modulated GM images data to map SCNs of the bilateral aHPC
and pHPC in the young group. The model fitted the target voxel
GM volume Y as:

Y ∼ β0 + β1(Seed)+ β2(Gender)

where β0 is the intercept term, β1 model the relationship
between the target voxel volume and the seed volume,
and the Gender term was included as a nuisance variable.
Total intracranial volume was not included because the
modulation step already considered the brain size differences.
These statistical analyses enable us to determine voxels
that expressed a significant positive correlation with each
seed. The criterion for significance was set at height and
extent thresholds of p < 0.05, family-wise error (FWE)
corrected for multiple comparisons. The resulting correlation
maps were displayed on a standard brain template using
the BrainNet Viewer (Xia et al., 2013) to allow qualitative
comparisons the structural covariance patterns of hippocampal
seeds.

We further assessed the influence of age on the regional
structural covariance between the hippocampus and the rest
brain regions by using a classic linear interaction model (Lerch
et al., 2006). For any two age groups, the target voxel volume Y
was modeled as follows:

Y ∼ β0 + β1 (Seed) + β2 (Group) + β3 (Gender)+

β4 (Group × Seed)

where β0 is the intercept term, β1 ∼ β4 models the relationship
between the target voxel volume and the seed volume, group
term, gender term, and interaction term (group by seed),
respectively. To obtain between-group differences, specific t
contrasts were established to test the statistical significance
of the interaction term. Clusters with height and extent
thresholds set at p < 0.05 (FWE corrected) were considered
significant.

RESULTS

Hippocampal Volume Analyses
Results for the regression analysis of anterior and posterior
hippocampal mean GM volumes versus age are presented in
Figure 2. Similar nonlinear relationship between the bilateral
hippocampal volumes and age were found: the volumes slightly
increased before the age of 50 and then decreased sharply (left
aHPC: R2 = 0.187, p < 0.001; right aHPC: R2 = 0.136, p < 0.001;
left pHPC: R2 = 0.089, p < 0.001; right pHPC: R2 = 0.106,
p< 0.001). Moreover, the results suggested that the mean volume
of the aHPC was larger than the pHPC, and the left hippocampal
volume was slightly greater than the right side. In addition, we
found the variance of the bilateral anterior hippocampal volumes
has an age-related U-shaped relationship (left aHPC: R2 = 0.489,
p < 0.001; right aHPC: R2 = 0.666, p < 0.001). Specifically, the
anterior hippocampal volumes of the young and old subjects were
more dispersed than the middle age. However, the variance of
the posterior hippocampal volumes did not significantly relate to
age (left pHPC: R2 = 0.015, p = 0.646; right pHPC: R2 = 0.051,
p = 0.215).

Structural Covariance Networks of the
Anterior and Posterior Hippocampus
The SCNs seeding from the aHPC and pHPC in the young
participants are presented in Figure 3 (p < 0.05, FWE corrected).
The aHPC correlated with the bilateral temporal lobe (including
the superior, middle and inferior temporal, parahippocampal
gryi, entorhinal cortex, fusiform and temporal pole), amygdalae,
insula and posterior cingulate gyrus, orbitofrontal cortex, as
well as left superior frontal gyrus. For the pHPC, its covariance
maps involved the bilateral medial temporal regions (including
the parahippocampal gyrus, entorhinal cortex and fusiform),
amygdalae and insula. Noted that the regions correlated with
both the aHPC and pHPC were mainly located in the medial
temporal lobe and insula.

Age-Related Differences Within the
Anterior Hippocampal Network
Within the anterior hippocampal network, significant between-
group differences were only observed between the young group
and the old group (p < 0.05, FWE corrected, Figure 4 and
Table 2). Specifically, the left and right aHPC showed decreased
positive correlation with the ipsilateral parahippocampus and
increased positive correlation with the ipsilateral amygdala in the
old group relative to the young group. Moreover, compared to the
young group, the left aHPC exhibited lower structural covariance
with the left precuneus and greater structural covariance with the
right putamen in the old group.

Age-Related Differences Within the
Posterior Hippocampal Network
Within the posterior hippocampal network, only increased
structural associations were found in the old group relative
to younger adults (mainly the young group, p < 0.05, FWE
corrected, see Figure 5 and Table 2). For the left pHPC, the
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FIGURE 2 | Life-span trajectories of the anterior and posterior hippocampal mean gray matter volumes. The lower row shows the relationship between age and the
variance of hippocampal volumes in a small age range. aHPC, anterior hippocampus; pHPC, posterior hippocampus; L, left, R, right.

FIGURE 3 | Structural covariance networks of the anterior and posterior hippocampus in the Young group. Regions with PFWE < 0.05 are presented as correlation
coefficient values. aHPC, anterior hippocampus; pHPC, posterior hippocampus; L, left; R, right.

old group exhibited significantly increased connectivity with the
right caudate related to the young group. For the right pHPC,
its connection with bilateral putamen was negative in the young
group but was positive in the old group. Similarly, the right pHPC
and temporal pole was negatively related in the middle-aged
group but positively related in the old group.

DISCUSSION

Here, we studied the age-related structural covariance alterations
of the aHPC and pHPC using a seed-based SCN approach.
We found that the SCNs seeding from the aHPC and pHPC
in the young adults were different from each other, but
both of them related with the medial temporal lobe and
insula. In addition, the structural covariance differences within
the anterior hippocampal network were mainly between the
young group and the old group with both decreased and
increased positive structural associations. While compared to

the younger adults, only increased structural associations were
found in the old group within the posterior hippocampal
network.

We observed that the volumes of aHPC/pHPC slightly
increased from young to middle age, and then decreased sharply
with age. In line with this finding, several morphometric studies
reported an inverted U pattern of the hippocampal volume
changes with age (Walhovd et al., 2005; Li et al., 2014). As the
hippocampus is important in memory processing, this pattern
may partially explain the similar age-related memory change
trajectory (Nyberg et al., 2012). Interestingly, we found that the
anterior hippocampal volumes of the young and old subjects are
more dispersed than the middle age, may pointing to stronger
heterogeneity memory ability in young and old subjects. Whether
this age-related dispersion due to the sample selection or other
reasons requires further analysis.

Structural covariance analyses suggested that the aHPC
connected with temporal lobe, amygdala, insula, and
orbitofrontal cortex (p < 0.05, FWE corrected), which agree with
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FIGURE 4 | Age-related group differences in structural covariance of the anterior hippocampus. Correlations between the mean volume of the anterior hippocampus
and the regional gray matter volumes extracted from a 4-mm-radius sphere centered on the peak voxel of a significant cluster (PFWE < 0.05, shown on the right) are
displayed. Y, young group; O, old group; L, left; R, right.

TABLE 2 | Significant between-group differences in structural association between hippocampal seeds and other anatomical regions.

Seed Contrast Anatomical region MNI coordinates Cluster size MaxT

X Y Z

L aHPC Y > O L Parahippocampus −27 −16 −21 126 7.08

L Precuneus −18 −52 31 18 4.83

Y < O L Amygdala −21 −7 −15 1314 5.96

R Putamen 18 3 −11 1096 5.64

R aHPC Y > O R Parahippocampus 27 −15 −21 36 5.93

Y < O R Amygdala 16 −1 −14 1871 6.29

L pHPC Y < O R Caudate 12 10 −6 5 4.51

R pHPC M < O R Temporal pole 62 0 −17 29 4.70

Y < O R Putamen 14 8 −6 1655 5.42

L Putamen −22 3 −3 1084 5.04

P < 0.05, FWE corrected. Abbreviations: L, left; R, right; aHPC, anterior hippocampus; pHPC, posterior hippocampus; Y, young group; M, middle-aged group; O, old
group.

previous studies (Kier et al., 2004; Smith et al., 2009; Catenoix
et al., 2011). And the pHPC was covariant with medial temporal
amygdala, and insula (p < 0.05, FWE corrected) showing
consistent connections with previous studies by using fMRI and
tractography (Kahn et al., 2008; Poppenk and Moscovitch, 2011;
Poppenk et al., 2013). The common related regions with both
aHPC and pHPC were mainly located in the medial temporal
lobe where the hippocampus located.

Age-related decrements in structural covariance were
observed in the aHPC-related SCNs (p < 0.05, FWE corrected).
In particular, the parahippocampal gyrus and precuneus showed
reduced association with the aHPC seed in old adults relative
to young adults. The parahippocampal gyrus is considered
as a mediator between the cortical DMN subsystem and the

hippocampus (Ward et al., 2014), and the integrity of the
cortico-parahippocampus-hippocampus circuit is important
for learning and episodic memory (Witter et al., 2000; Van
Strien et al., 2009). Therefore, the weakened parahippocampus-
hippocampus connection may lead to memory deficits in normal
elderly, and result in decreased structural covariance between the
hippocampus and cortical regions, such as the precuneus found
in this study. Besides, the decreased connectivity between the
precuneus and hippocampus might result from very early beta-
amyloid deposition of the precuneus in elderly subjects (Sheline
et al., 2010). The abnormal synaptic activity caused by amyloid
deposition might disrupt cortico-hippocampal connectivity,
which then results in hippocampal atrophy (Mormino et al.,
2009).
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FIGURE 5 | Age-related group differences in structural covariance of the posterior hippocampus. Correlations between the mean volume of the posterior
hippocampus and the regional gray matter volumes extracted from a 4-mm-radius sphere centered on the peak voxel of a significant cluster (PFWE < 0.05, shown
on the right) are displayed. aHPC, anterior hippocampus; pHPC, posterior hippocampus; Y, young group; M, middle-aged group; O, old group; L, left; R, right.

Note that the parahippocampal gyrus, precuneus, and
hippocampus are all components of DMN (Andrews-Hanna
et al., 2014). Thus, our findings may indicate that aging is
associated with decreased structural covariance within the DMN,
which is in keeping with observations from previous SCN
studies (Montembeault et al., 2012; Li et al., 2013; Spreng
and Turner, 2013). A previous study reported decreased fractal
complexity in DMN with age using multifractal analysis of fMRI
series (Ni et al., 2014). Moreover, aging-related decrements in
functional connectivity (Damoiseaux et al., 2008; Tomasi and
Volkow, 2012) and white matter integrity (Damoiseaux et al.,
2009; Brown et al., 2015) of DMN were also reported. Since
DMN is known to play a role in episodic memory processing
(Greicius et al., 2004, 2009), its decreased integrity could
underlie memory impairment in senior populations (Salami et al.,
2014).

Additionally, our data suggest that the influence of age
on the structural connectivity between the hippocampus and
cortical DMN nodes may be limited to the anterior portion
of the hippocampus. Similarly, Salami et al. (2014) revealed
reduced functional connectivity between the cortical DMN
subsystems and more anteriorly located hippocampus with
advancing age. Several fMRI studies have demonstrated the
aHPC as part of DMN was engaged in episodic memory
(autobiographical memory) processing (Zeidman and Maguire,
2016). However, some studies found no age-related differences

for the connectivity between the aHPC and DMN regions (Koch
et al., 2010; Damoiseaux et al., 2016), while others reported lower
connectivity between the pHPC and DMN regions in older adults
(Andrews-Hanna et al., 2007; Damoiseaux et al., 2016). These
discrepancies may be due to methodological differences, notably
in the type of measurements and sample characteristics, which
should be further investigated.

Moreover, age-related increments in structural covariance
were observed in both the aHPC- and pHPC-related SCNs
(p < 0.05, FWE corrected). Particularly, compared to young
adults, the putamen and amygdala showed increased associations
within the aHPC-related SCNs in old adults. Within the
pHPC-related SCNs, the putamen, caudate, and temporal pole
showed increased associations in old adults relative to younger
adults. The putamen and caudate form the dorsal striatum.
In fact, the hippocampus, dorsal striatum, and amygdala
belong to different memory systems and play different roles
in information acquisition (McDonald and White, 1993). The
dorsal striatum and hippocampus cooperate to support episodic
memory function (Sadeh et al., 2011), while the amygdala plays
a role in regulating these two memory systems (Packard and
Teather, 1998). We speculated that the age-related increment in
hippocampal structural covariance may reflect the compensatory
mechanism or dedifferentiation effects of the brain memory
systems during aging (Dennis and Cabeza, 2011; Oedekoven
et al., 2015).
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The greater structural covariance between the hippocampus
and dorsal striatum (caudate-putamen) in older adults may
also be related to non-optimal dopamine processing. The CA1
area of the hippocampus receives dopaminergic modulation
from the ventral tegmental area, which plays a vital role
in synaptic plasticity of the hippocampus (Lisman and
Grace, 2005). But the ventral tegmental area suffers from
dopamine neurons loss (Siddiqi et al., 1999) and reduced
dopamine transporter function (Salvatore et al., 2003) with
age. However, the dorsal striatum, another area in the
dopamine system, increases its dopamine synthesis capacity in
aging (Braskie et al., 2008). Thus, the increased connections
between the hippocampus and dorsal striatum during aging
suggest compensation for deficits in the ventral tegmental
area, which may represent non-optimal dopamine system
functioning.

The SCN method used in this study provides an effective
way to construct brain networks from medical images, which
complements the signal analysis methods (Liu et al., 2015).
However, since aging is not only characterized by brain deficits
but also decline in multiple organ functions, it is interesting to
utilize the integrative approaches within the new filed of network
physiology to study the effects of aging on brain–brain or brain–
organ networks in future (Bashan et al., 2012; Bartsch et al.,
2015; Ivanov et al., 2016). In addition, it is worth noting that
brain networks have a fractal property of hierarchical modularity,
which confers robustness of network function (Bullmore and
Sporns, 2012). Future studies using fractal analysis approaches
(Meunier et al., 2010; Xue and Bogdan, 2017) to study the

complexity and heterogeneity of hippocampal networks could
advance our understanding of the brain in normal aging.
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