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SUMMARY

Tissue morphogenesis involves both the sculpting of
tissue shape and the positioning of tissues relative
to one another in the body. Using the renal tubules
of Drosophila, we show that a specific distal tubule
cell regulates both tissue architecture and position
in the body cavity. Focusing on the anterior tubules,
wedemonstrate that tip cellsmake transient contacts
with alary muscles at abdominal segment bound-
aries, moving progressively forward as conver-
gent extension movements lengthen the tubule. Tip
cell anchorage antagonizes forward-directed, TGF-
b-guided tubule elongation, thereby ensuring the
looped morphology characteristic of renal tubules
from worms to humans. Distinctive tip cell explor-
atory behavior, adhesion, and basement membrane
clearing underlie target recognition and dynamic
interactions. Defects in these features obliterate tip
cell anchorage, producingmisshapen andmisplaced
tubules with impaired physiological function.

INTRODUCTION

Many organs are built around branched networks of tubular

epithelia, precisely organized in three dimensions. Seminal

studies have uncovered the processes underlying the spatial

regulation of tubule branching (Sternlicht et al., 2006; Affolter

et al., 2009; Costantini, 2010). Branching is frequently followed

by tubule extension, which is also highly regulated in space. In

many systems, tubule branching and/or extension is regulated

by the activity of specialized tip cells at the distal ends of tubules.

During vertebrate angiogenesis, tip cells guide newly sprouted

vessels toward angiogenic stimuli (Gerhardt et al., 2003) and, in

the generation of both mammalian and fly respiratory systems,

cells at the branch tips receive high levels of FGF and lead

outgrowth toward the source of growth factor (Ribeiro et al.,

2002; Caussinus et al., 2008; Bellusci et al., 1997). The morpho-

genesis of Drosophila salivary glands and the nematode gonad

also depend on the activity of distally placed tip cells (Bradley
Developme
et al., 2003; Blelloch et al., 1999). Indeed, tip cells act as orga-

nizers in primitive multicellular systems; in Dictyostelium, cells at

the tip of the ‘‘slug’’ act toguide itsmigrationand tocontrol thedif-

ferentiation of its constituent cells (Rubin and Robertson, 1975).

Whereas tubule elongation in the majority of systems pro-

duces an extensive, branched network, in other organs, such

as the kidney (or regions of the vascular system), tubules develop

a loopedmorphology. In this architecture, the proximal and distal

regions (or for blood vessels, branch points) remain relatively

close to one another, and elongation produces an extended U

shape, characteristic, for example, of the loop of Henle. This

morphology is also seen in the stereotypically positioned renal

(Malpighian) tubules of Drosophila. The invariant architecture

and positioning of insect renal tubules were observed a long

time ago; Wigglesworth (1939) noted that ‘‘in spite of their great

length and twisted course their arrangement is extraordinarily

constant in a given species.’’ As insects have an open circulatory

system, primary urine cannot be formed by pressure filtration, so

the precise arrangement of renal tubules in the body cavity is

important for comprehensive clearance of hemolymph-borne

toxins and for effective ionic and osmotic homeostasis.

Insect tubules have distally placed tip cells that regulate tubule

cell proliferation but persist long after cell proliferation is com-

plete (Skaer, 1989, 1992a, 1992b). We have therefore used the

renal system of Drosophila to investigate the role of tip cells in

the spatially regulated outgrowth of tubules.

DrosophilaMalpighian tubules arise from the embryonic hind-

gut, budding out as four short tubular structures. Each bud

enlarges by cell division, regulated by cells of the tip cell lineage,

which secrete the EGF ligand Spitz to promote regionally

restricted cell division (Kerber et al., 1998; Sudarsan et al.,

2002). It is only after the completion of cell proliferation that the

tubules elongate. Strikingly, as they lengthen, their extension

through the body cavity follows a highly stereotypical path,

with two projecting into the anterior body cavity and two into

the posterior. We have shown that this precision results in part

from guided morphogenesis through the reception of cues

secreted from tissues adjacent to their navigation route (Bunt

et al., 2010). Although these cues act to guide a specific region

of the tubules (the ‘‘kink’’ region of the loop where the anterior

tubules bend back on themselves; see Figure 1), the entire tubule

is stereotypically positioned, suggesting that other regions regu-

late tubule architecture and positioning.
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In this paper, we analyze the role of the distal tips of the ante-

rior tubules in the morphogenetic movements that determine

their looped shape and final positions in the body cavity. We

show that tip cells make specific contacts with target tissues

as the tubules elongate, and maintain their final targets into adult

life. We demonstrate that the formation of both transient and final

contacts is crucial for the normal looped architecture of the

tubules. We present a hypothesis to explain the interactions

that normally regulate tubule shape and account for the misrout-

ing phenotypes we find when either tip cells or their targets are

lost. Through genetic analysis and live imaging, we show that

the tip cell’s lack of basement membrane and its active protru-

sive membrane activity and expression of specific adhesion

molecules are characteristics that underlie its ability to interact

with its targets, thereby ensuring the reproducibility of tubule

morphology. As the mature shape of fly renal tubules is reminis-

cent of excretory tubules from annelid nephridia to mammalian

nephrons, the regulatory mechanisms we describe could be

widely relevant in nephrogenesis.

RESULTS

As the Malpighian tubules elongate, during stages 13–16 of

embryogenesis, they course through the body cavity, taking

up characteristic and markedly invariant positions by the end

of embryogenesis (Figures 1A–1C; Bunt et al., 2010). Tip cells,

at the distal end of each tubule, persist through tubule elonga-

tion (Figures 1A0–1C0), and by the end of this process contact

specific tissues; posterior tip cells contact paired nerves that

run up either side of the hindgut visceral muscle (Hoch et al.,

1994), and anterior tip cells contact the paired alary muscles

at the A3/A4 segmental boundary—one of the seven pairs of

segmentally reiterated contractile alary muscles, which support

the heart, linking it to the lateral body wall (Figures 1F and 1G).

Our analysis focuses on the morphogenesis of the anterior

tubules.

As the anterior tubules elongate, they form a tightly looped

structure, with the point of maximum curvature, or kink, leading

forward movement (Figures 1A–1C; Bunt et al., 2010). The distal

tip of each tubule lies more posteriorly but moves forward as

tubule elongation progresses (Figures 1A–1C). The tip cells

initially contact the paired alary muscles at the A5/A6 segmental

boundary, later contacting the muscles at A4/A5 before binding

to their final targets at A3/A4 (Figures 1D–1F and 1D0–1F0). Estab-
lishing these contacts occurs in a 150 min window and is

associated with dynamic behavior of the tip cells; the surface

membranes show highly protrusive activity through the forma-

tion of actin-rich filopodia and lamellipodia (Figures 1H and 1I;

Movie S1 available online). This dynamic filopodial activity is

associated with exploration of each alary muscle as a contact

is made (Figures 1J and 1K; Movies S2 and S3). Live imaging in-

dicates that tip cells remain attached to their transient contacts

for approximately 30 min before exploring the adjacent, more

anterior alary muscle, detaching and rebinding to the new

target, a process that takes about 25 min. Even the early tempo-

rary contacts are able to transmit force, as shown by the defor-

mation of the alary muscle that occurs before each contact is

finally broken and the tubule tip cell recoils forward to establish

contact with the next alary muscle (Figure 1L; Movie S2).
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Once the tip cells reach their final alary muscle targets a per-

manent contact is made, so that the tip cells remain attached

to the A3/A4 alary muscles throughout larval (Figure 1M) and

adult life (Figure 1N). The alary muscles develop long, actin-

rich side extensions (Figure 1M) along the tip cell surface

(Figure 1O).

Manipulation of Tip Cell Number Perturbs
Morphogenesis
Previouswork has shown that tip cells arise by single division of a

progenitor cell, which is itself selected through lateral inhibition

from a small group of competent cells in each tubule. Both pro-

genitor cell daughters have equivalent tip cell potential but only

one adopts the primary tip cell fate, its sibling being repressed

through Delta/Notch signaling. Reception of this inhibitory signal

is biased by the asymmetric inheritance of the Notch inhibitor

Numb in the tip cell (Hoch et al., 1994;Wan et al., 2000; Sudarsan

et al., 2002). If the activity of Notch in the tip cell lineage is

increased, either by removing the function of numb (see Fig-

ure 2A) or by driving the activated Notchintra receptor fragment

in both daughter cells (Figure S1A), two sibling cells develop in

the absence of tip cells. Conversely, if numb is hyperactive,

two tip cells differentiate at the expense of the sister (sibling

cell) fate (Figure 2A). In either situation, tubule cell division and

tissue elongation occur (Wan et al., 2000; Ainsworth et al.,

2000), as both cell types secrete the EGF ligand Spitz (Sudarsan

et al., 2002). However, our observations now reveal that the final

shapes and positions of the tubules in the body cavity are

abnormal (Figures 2B–2D and 2O–2R; cf. Figures 2E and 2S).

In the absence of tip cells, the anterior tubule tips fail to contact

any of the alary muscles, even though these muscles develop

normally (Figure S1B), and the tubules become strikingly

misshapen and mispositioned (Figures 2B–2D; Figure S1A).

The elongating tubules move more rapidly forward so that by

the end of embryogenesis, the distal tubule ends are located

both more anterior (in A1) and further ventral in the body cavity.

As a result, the normally tight kink region loosens and its position

along the proximodistal axis of the tubule becomes progres-

sively more distal (Figures 2B–2D; Figure S1A), so that by stage

16 the characteristic, tightly looped architecture of the tubule is

lost (cf. Figure 2D with Figure 2E).

Cells in the kink region of the anterior tubules normally respond

to Dpp guidance cues secreted by the dorsal epidermis, midgut,

and gastric caeca, a process known to ensure normal tubule

morphogenesis (Bunt et al., 2010). We asked whether these

signals are active in numb mutants and found that DadGFP, a

pathway target (Ninov et al., 2010; Weiss et al., 2010), was ex-

pressed in kink cells as in wild-type (Figures S1C and S1D).

Further, tubule cells differentiate at the end of embryogenesis,

transporting the nitrogenous waste product urate, which forms

uric acid crystals in the tubule lumen (Figure S1E), showing

that other aspects of tubule maturation are unperturbed.

We sought to confirm the loss-of-tip cell phenotype by laser

ablating the tip cells of anterior tubules at stage 13 after cell

division is complete (Figure 2F; Movie S4). The tubules elongate

but are mispositioned exactly as in numb mutant embryos, with

the distal regions lying more anteroventral with loose kink

regions and no tip cell-alary muscle contacts (Figures 2G–2I;

cf. Figure 2J; Movie S5). A similar phenotype is found if tip cell
Authors



Figure 1. Tip Cells Contact Alary Muscle Targets

(A–C) Wild-type stage 13–16 embryonic anterior tubules (Ct, red) navigate along precise routes, led by the kink region (arrowheads). Tip cells (green;

aseGal4>mCD8GFP) protrude from distal tubule ends (arrows) but sibling cells do not (A0, arrowhead).

(D–F) Tip cells (tubules, green; ctBGal4>mCD8GFP) contact successive alary muscle pairs (MHC, red) at the A5/A6, A4/A5, and A3/A4 segment boundaries

(arrows).

(G) Seven pairs of embryonic alary muscles (red) from A1/A2 to A7/A8 attach the dorsal vessel (gray) to lateral epidermis. Asterisks (blue) indicate tip cell contacts.

(H–K) Protrusive tip cell membrane activity (H–I) associated with alarymuscle interaction (J and K, arrows). Tubules andmuscles are labeled withmembraneCD8-

GFP (H, J, and K) or moesin-GFP for actin (I).

(L) Alary muscles (MHC, red) deformed (arrowhead) at the point of tip cell contact (arrow, ctB-eGFP).

(M–O) Tip cell-muscle attachments (arrows) in third-instar larvae (M; ctBGal4>mCD8GFP; O) and adults (N). Actin-rich alary muscle fibers extend over the tip cell

surface (O, arrow). Phalloidin labels actin (red, M; green, N; white, O); Tsh (blue, M and N) and Ct (magenta, N) label tip and tubule cell nuclei, respectively.

TC, tip cell; SC, sibling cell; am, alary muscle; dv, dorsal vessel. Scale bars represent 50 mm (A–F), 5 mm (A0–F0 and H–K), 10 mm (L), and 30 mm (M–O). For all

figures, anterior is left and dorsal is top in lateral perspectives.
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ablation is delayed until stage 14, after the first alary muscle con-

tact has been made (Figure S1F), showing that each contact is

important for tubule shape and positioning.

In the absence of tip cells, the tubules lose their looped struc-

ture as the kink region loosens and shifts distally so that the re-

gion of the tubule distal to the kink becomes shorter and the

proximal region becomes concomitantly longer. We analyzed
Developme
the number of cells in each region and measured their relative

lengths in stage 16 embryos (Table S1). Compared to wild-

type tubules (43% distal, 57% proximal; cell number), those

lacking tip cells have 29% distal, 71% proximal (Figures 2I and

2J). These measurements suggest that in tubules without tip

cells the kink becomes less stable. We tested this idea by ex-

pressing the photoconvertible fluorescent protein Kaede (Ando
ntal Cell 27, 331–344, November 11, 2013 ª2013 The Authors 333



Figure 2. Tip Cells Are Required to Establish Anterior Tubule Architecture

(A) Removal or overexpression of the Notch inhibitor numb (nb) gives tubules that lack (a) or possess two tip cells (b), respectively.

(B–E) Anterior tubule architecture (Ct, brown) in nbmutants lacking tip cells (B–D; cf. control, E). Distal tubule endsmove further anteroventral (B–D, asterisks) and

the kink shifts distally (B–D, arrowheads).

(F–J) Identical tubule defects (G–I) following laser ablation of anterior tip cells (arrows) at stage 13 (F, before; F0, after ablation; ctBGal4>mCD8GFP). Distal regions

of control tubules contain 43% of cells (J); cf. 29% after tip cell loss (I). Anterior tubules fully elongate with two cells surrounding the lumen by stage 16 (I, inset).

(K–N) Kink region (arrowheads) labeled by local activation of the photoconvertible fluorophore Kaede (kaede*, red; K–K0 0, arrowheads) at stage 13. Cells rapidly

move out of the kink (L–M0, arrowheads) after tip cell ablation (asterisk), but labeled cells of control tubules do not (N and N0, arrowheads).

(O–S) bynGal4>nb tubules with two tip cells (Futsch, black, O and P; green, Q–S; tubule cells Ct, blue) stall posteriorly with both tip cells attached to posterior alary

muscles (MHC, red; Q0, arrow). Tip cells in branched tubules (R) attach to separate alary muscles (R0, arrows). Tip cells of control tubules (S) attach to the A3/A4

muscle (S0).
TMC, tip mother cell; abl, tip cell ablation; d, distal; p, proximal. Scale bars represent 50 mm (B–E, G–K, and O–S), 10 mm (F and K0–N0 ), and 5 mm (O0–S0). See also

Figure S1.
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et al., 2002) throughout the tubules (Figure 2K) and UV irradiated

just the kink region of stage 13 tubules to cause stable green-red

photoconversion of Kaede (Figure 2K0). The movement of photo-

converted cells confirms the relative stability of the kink region in

control tubules with tip cells (Bunt et al., 2010; Figure 2N; Figures

S1G–S1I). In contrast, if the tip cell is ablated immediately after

photoconversion, cells of the kink region move into the proximal

regionmore rapidly (Figures 2K–2M), resulting in shrinkage of the

distal region and corresponding lengthening of the proximal

region.

To test the effects of increasing the number of tip cells in each

tubule, we overexpressed numb using an early hindgut/tubule

driver, bynGal4. Two tip cells differentiate in each tubule without

any apparent alteration in the fates of other tubule cells (Ains-

worth et al., 2000; Figure 2O0). Tubule cell division and tissue

elongation occur normally, and the early outgrowth of the tubules

during stage 14 is similar to wild-type (Figure 2O; cf. Figure 1B).

However, the tubules fail to complete their forward navigation

and stall in the posterior of the embryo, with the kink region in

A2 (cf. T3 in wild-type), and the distal tips remain bound to their

early alary muscle contacts in A5/A6 (45%, n = 20) or A4/A5

(40%, n = 20) (Figures 2P and 2Q; cf. Figure 2S). In rare cases,

tubules with two tip cells branch, producing a duplicate distal re-

gion each with a single tip cell (Figure 2R), which form separate
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alary muscle contacts at the segmental boundaries A3/A4 and

A4/A5 (Figure 2R0).
Together, these results show that normal tubule architecture

depends on the allocation of a single tip cell in each tubule.

The importance of tubule shape and positioning is indicated

by the appearance of the flies that survive to adulthood after

(genetic) tip cell ablation, in which two sibling cells are allocated

in each tubule at the expense of tips cells (acGal4>Nintra; 50%,

n = 50). Adults become bloated with retained fluid by 3 days after

eclosion and die prematurely, most likely due to failure of fluid

homeostasis (Denholm et al., 2013; Figures S1J and S1K).

Tubule Positioning Depends on Tip Cell Targets
We asked whether tip cells influence tubule positioning through

contact with their normal targets by laser ablating alary muscles

in an otherwise intact embryo. We ablated all three alary muscles

normally contacted by the anterior tubule tip cell on one side of

the embryo (A5/A6, A4/A5, and A3/A4; Movie S6) and found

that although all the tubules extend, only the tubule on the abla-

ted side is misshapen and abnormally positioned (Figures 3A–

3C; cf. internal nonablated control, Figure 3D). In most cases,

the tubule position resembles the loss of the tip cell, with the

kink loosening and lying further forward, the distal tip more ante-

roventral, and the tip cell failing to contact any target at all
Authors



Figure 3. Alary Muscles Act as Distal Anchors during Tubule Morphogenesis

(A–D) Ablation of the A3/A4, A4/A5, and A5/A6 alary muscles (MHC, red) perturbs anterior tubule architecture (A–C; control, D; Ct, green). Distal regions move

further anteroventrally (A–C, arrows) and the kinkmoves distally (arrowheads); tip cells either fail to contact alarymuscle targets (A0 and B0, arrow) or attach further

anteriorly (C0, arrow).

(E–I) Manipulation of alary muscle anteroposterior identity does not affect tip cell choice. Three anterior-most alary muscle pairs (A1/A2–A3/A4) express Ubx

(purple) but not Abd-A. Four posterior-most alary muscle pairs (A4/A5–A7/A8) express Abd-A (blue) but not Ubx. Asterisks indicate alary muscle targets. Ectopic

Abd-A expression (tupGal4 in F; 24BGal4 in G and H) posteriorizes all alary muscles (E). 24BGal4>Abd-A embryos possess three additional alary muscle pairs,

T1/T2–T3/A1 (G, arrowheads). 24BGal4>Abd-ARNAi anteriorizes alary muscles (E). In all cases, tip cells (Ct, green) contact A3/A4 alary muscles (MHC, red) as

normal (F0, H0, and I0, arrows).

(J–K) InUbx (J) and dsparc (K) mutants, anterior tubules (Ct, brown, J; green, J0 and K) stall with their kinks in A2 (arrowheads) and tip cells bound to posterior alary

muscles (MHC, red) at A5/6 (J0 and K0, arrows).

Scale bars represent 50 mm (A–D and F–K), 10 mm (A0 and B0), and 5 mm (C0, D0, F0, H0, and K0). See also Figure S2.
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(Figures 3B and 3B0; 70%, n = 10). In other cases, the tubule ex-

tends too far anterior but the distal region remains dorsal and the

tip cell contacts a more anterior alary muscle at A2/A3 (Figures

3C and 3C0; 30%, n = 10).

As the tip cell normally makes stereotypical contacts with spe-

cific alary muscles, we tested whether altering the segmental

identity of alary muscles would affect target selection and tubule

positioning. In wild-type embryos, the A4/A5 alary muscle and

those posterior to it expressAbdA, whereas A1/A2 to A3/A4 alary

muscles express Ubx (Figure 3E; Figures S2A and S2B; LaBeau

et al., 2009). We altered the expression of these homeotic genes,

‘‘posteriorizing’’ all alary muscle pairs by driving AbdA using

the pan-alary muscle driver tailupGal4, which also leads to the

repression ofUbx in the anterior alarymuscles (Figure 3E; Figures

S2C and S2D). The anterior tubules develop normally, with the tip

cellsmaking their normal transitory and final contacts (Figures 3F

and 3F0). We used the pan-mesodermal, early driver 24BGal4 to

see whether a stronger driver might produce a phenotype.

Even though 24BGal4>AbdA results in the development of three

pairs of ectopic alary muscles in T1/T2 to T3/A1 (Figure 3G), tip

cells make their normal A3/A4 alary muscle contacts (Figures

3H and 3H0). We then ‘‘anteriorized’’ all alary muscles using

24BGal4 to express AbdA-RNAi, which abrogates its expression

in posterior alary muscles and induces them to expressUbx (Fig-

ure 3E; Figure S2E). Again, the tubules develop normally, with tip

cells making their normal contacts (Figure 3I).

These results show that tip cells do not sense the segmental

identity of their alary muscle targets; they appear to make indis-

criminate contact with alary muscles at each segmental bound-
Developme
ary as they come into contact with them. Indeed, under certain

conditions, they are able tomake stable contacts with alarymus-

cles in more anterior segments than normally occurs in wild-type

(Figure 3C). This suggests that factors other than segmental

identity dictate their final alary muscle target.

In normal development, the forward projection of the anterior

tubules relies on interactions of the kink region with Dpp guid-

ance cues, and in their absence the tubules stall in the posterior.

In Ubx9.22 mutant embryos, the Dpp guidance cue from the

midgut visceral mesoderm is lost (Tremml and Bienz, 1989)

and the tubules fail to navigate forward past the midgut (Bunt

et al., 2010). We find that in these embryos, the tip cells remain

stably attached to their initial posterior alary muscle target at

A5/A6 (Figure 3J). However, as anterior alary muscles (A1/A2

to A3/A4) are variably missing in Ubx9.22 mutants (LaBeau

et al., 2009), we also analyzed the phenotype of dsparc mutant

embryos in which alary muscle development is unaffected but

the reception of guidance cues is lost (Bunt et al., 2010) and,

just as in Ubx9.22 mutant embryos, the tip cells make stable con-

tacts with the A5/A6 alary muscles (Figures 3K and 3K0).
These results indicate that the final tip cell target is set by the

balance of opposing interactions: the Dpp-dependent forward

tubule movement, which pulls the tip cell from one alary muscle

to the next, and tip cell-muscle contacts, which act to stabilize

tubule position more posteriorly.

Tip Cell Morphology Determines Tubule Positioning
Tubule tip cells adopt a specialized morphology. They are apico-

basally polarized with a small apical domain, separated from the
ntal Cell 27, 331–344, November 11, 2013 ª2013 The Authors 335



Figure 4. Tip Cell Morphology and Protrusive Activity Regulate Anterior Tubule Architecture

(A–C) Tip cell apicobasal polarity. Baz (red) localizes apically at the luminal membrane (A and B). Dlg (green) localizes laterally at the stalk membrane (arrow, A and

B). DAPI (blue) labels tip (asterisk) and tubule cell nuclei. Microtubules (C, white; tau-GFP) are concentrated in the stalk (arrow) and encapsulate the nucleus

(asterisk).

(D–H) Inactivation of tip cell RhoA by overexpressing RhoGAP cv-c (D–G) or dominant-negative RhoN19 (H) produces tip cells (tc) with abnormally long stalks

(brackets), enriched in microtubules (E; Tubulin, green) and derived from basal membrane lacking Baz and Dlg (F). Elongated tip cells (Futsch, green), including

membrane extensions basal to the tip cell nucleus (D0 and G, arrows), contact the alary muscle (MHC, red) at the A3/A4 boundary (G, arrow), and the tubules

(Ct, blue, G; brown, H) move further anteroventral (G and H).

(I–O) Tip cell membrane protrusions are significantly reduced by expression of dominant-negativeRacN17 (I) or Ena inactivation (K, arrow; ctB>GFP-FP4mito). Ena

(green) is expressed in tip cells (asterisk) from stage 13 (J, arrow) at similar levels as epidermal leading-edge cells (le). GFP-FP4mito (DNEna) accumulates in

cytoplasmic puncta (K, arrowhead). Without protrusive activity, tip cells (arrows, L–N) fail to attach to alary muscle targets (MHC, red, L0 and M0) or bind muscles

further anterior (N0, arrow). Distal tubule ends (arrows) move further anteroventrally and the kink (arrowheads) moves distally (cf. L–N with O).

Scale bars represent 5 mm (A–C, E, F, and I–K), 50 mm (D, H, and L–O), and 10 mm (D0, G, H0, L0–O0 ).
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extendedbasolateral domain by anadherens junction (Figures 4A

and 4B). The lateral membrane encloses microtubule-enriched

cytoplasm, forming the stalk (Figure 4C), so that the cell bodypro-

jects from the tubule tip.Wehavepreviously shown that the length

of this stalk region is influenced by the activity of a RhoGAP,

Crossveinless-c (Cv-c). Overexpression of cv-c in the tip cell

lineage results in a dramatic increase in stalk length (from 10

to >50 mm) (Denholm et al., 2005; Figure 4D). The elongated stalk

is highly enriched with microtubules (Figure 4E) and is an exten-

sion only of the basal membrane, as the lateral membranemarker

Discs large (Dlg) is absent from the extended stalk (Figure 4F).

We asked whether increasing the length of the tip cell stalk

might affect the positioning of the tubules in the body cavity.
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The elongated tip cells of anterior tubules make contact with

their normal final A3/A4 alary muscle targets, but the tubule

kink regions extend further anteroventral than in wild-type (Fig-

ures 4D and 4G; see Table S1). To check that the increase in

Cv-c acts through inhibition of its known target in tubule cells,

the Rho GTPase RhoA, we expressed a dominant-negative

form of RhoA in the tip cell lineage and found the same pheno-

types, both in extension of the tip cell and misplacement of the

anterior tubules (Figures 4H and 4H0).
These results confirm that there is a two-way interaction be-

tween tubule extension and tip cell position. Although in normal

development the guided forward extension of the tubule delivers

the tip cell to the A3/A4 alary muscle, the presence of a long tip
Authors
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cell stalk, rather than forcing the tip cell to make amore posterior

alary muscle contact, allows the tubule to extend further into the

anterior, with the tip cell making its normal A3/A4 alary muscle

contact.

Tip Cells Have Special Attributes
Live imaging reveals that tip cells actively explore their environ-

ment, forming filopodia and lamellipodia as they establish target

contacts (Figures 1H–1K; Movie S2). These membrane exten-

sions are formed by the dynamic modulation of the actin cyto-

skeleton and can be repressed by expressing a dominant-nega-

tive construct of the Rho GTPase Rac in tip cells (Figure 4I;

average filopodial length: control, 7.2 mm ± 1.5 [SD], n = 7 tip

cells; cf. RacN17, 0.9 mm ± 0.5, n = 19 tip cells) (Nobes and

Hall, 1995). We also found that the actin anti-capping factor

Enabled is expressed in tip cells (Figure 4J) and that membrane

protrusions were repressed when Enabled was inactivated by

expressing the FP4mito construct that acts as a dominant nega-

tive (Gates et al., 2007) (Figure 4K; control, 7.2 mm ± 1.5; cf.

1.7 mm ± 0.8, n = 12 tip cells). It is striking that the lack of protru-

sive activity is correlated in the majority of cases with the failure

of tip cell-alary muscle connections and the same tubule mispo-

sitioning as seen in the absence of tip cells or alary muscle tar-

gets (cf. Figures 4L and 4M with Figure 4O; see Table S1). In a

few cases, tip cells domakemuscle contact, but more anteriorly,

with the A1/A2 alary muscle (Figure 4N).

Tip Cells Lack a Basement Membrane
The developing tubules are ensheathed in a basement mem-

brane (BM), which contains two collagen IVs (Viking, Cg25C),

laminin, and perlecan (Bunt et al., 2010). Tubule cells secrete

Pvf ligands from stage 11 to attract a subset of hemocytes,

which secrete collagen IV, laminin, and perlecan around the tu-

bules, although the tubule cells themselves also express laminin

(Bunt et al., 2010). As the laying down of an extracellular matrix

around the tip cells might impede their exploratory activity, we

examined the presence of BM at the tubule tips. We found that

tip cells remained free of collagen IV, laminin, and perlecan

throughout tubule morphogenesis, only becoming invested by

the BM after making their final target muscle contacts (Figures

5A–5D; final contact, Figure 5E). The absence of BMat the tubule

tips is dependent on the presence of tip cells. In numb mutant

embryos that lack tip cells or when Nact is driven in the tip cell

lineage, the BM ensheathes the whole tubule (Figures 5F and

5G), and when numb is overexpressed, both tip cells remain

free of extracellular matrix (Figure 5H).

We wondered how tip cells regulate their BM covering and

found that they do not express the Pvf ligands and so are unlikely

to attract hemocytes to their surface (Figure 5I; Pvf2 and Pvf3,

data not shown). In contrast to neighboring tubule cells, tip cells

do not express lamininA and B (Figures 5J and 5K). Thus, the

secretion of BM components around tip cells is likely to be

low. However, we also found that from stage 15, tip cells express

the matrix degradation enzyme metalloproteinase MMP1 (Fig-

ure 5L), suggesting that anymatrix deposited around the tip cells

could be broken down.

In many tissues, the laminin receptor Dystroglycan (Dg) acts to

stabilize the assembly of BM components (Henry and Campbell,

1998). We therefore analyzed Dg expression in tubules and
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found that whereas all tubule cells, including the tip cells, show

clear mRNA expression from stage 13 (Figure 5M), the protein

is found predominantly on the basal surface of all tubule cells

except the tip cell (Figure 5N). The absence of basal Dg is a tip

cell-specific characteristic, as in numb mutants that lack tip

cells, Dg is found on the basal surface over the whole distal re-

gion of the tubule (Figure 5O), and when numb is overexpressed,

producing two tip cells, neither has significant levels of basally

localized Dg (Figure 5P).

We overexpressed Dg in the tip cell lineage using acGal4 and

found that Dg is no longer excluded basally (Figure 5Q). This

expanded distribution is associated with a complete covering

of the tip cell by laminin, collagen IV (Viking), and perlecan (Fig-

ures 5R–5T). This ectopic BM interferes with the ability of the

tip cell to develop filopodia (Figure 5U; average filopodial length:

control, 7.2 mm ± 1.5 (SD), n = 7 tip cells; cf. Dg overexpression,

3.3 mm ± 0.9, n = 14 tip cells). As a result, tip cells do not make

their alary muscle contacts (Figure 5V), and tubules fail to adopt

their normal shape and position in the body cavity (Figure 5V0).
Careful observation shows that tip cells are not devoid of Dg;

there is a concentration of protein on the small apical surface (Fig-

ures 5N and 5D). This apical distribution of Dg could result from

transcytosis of any basally inserted protein. Indeed, we find

similar apical concentrations of laminin (Figure 5W), suggesting

that the tip cell might be actively clearing any BM deposited

over its surface. This would involve the uptake and transcytosis

of basally located Dg and associated BM components. Rab5, a

small GTPase, promotes the fusion of endocytic vesicles to the

early endosome, and has been shown to mediate transcytosis

of BM components in border cells (Olkkonen and Stenmark,

1997; Medioni and Noselli, 2005). We drove the expression of a

GFP-tagged dominant-negative DRab5 (Drab5s43N; Wucherp-

fennig et al., 2003) in the tip cell lineage. This construct impairs

the fusion of endocytic vesicles to the endosome, resulting in

the accumulation of endocytic vesicles in the cytoplasm (Bucci

et al., 1992) and the failure of trafficking from the early endosome

(Zerial and McBride, 2001). By stage 15, tip cells expressing

Drab5s43N contained high levels of laminin in the cytoplasm (Fig-

ure 5X), suggesting that laminin is normally taken up and further

trafficked from tip cell endosomes, perhaps to the degradative

pathway but also to the apical surface.

Tip Cells Show Dynamic Adhesive Properties
Tip cells clearly adhere to their final alary muscle targets, but our

movies also showdistortion of transient muscle targets as the tu-

bules move forward, suggesting substantial adhesion between

tip cells and the more posterior alary muscles (Movie S2). An

enhancer trap line, A37 (Kania et al., 1993), in neuromusculin

(nrm), which encodes a cell-adhesion protein, marks out the tip

cell lineage (Hoch et al., 1994; Figure 6A). We sought to confirm

nrm expression in tip cells by in situ hybridization and found

expression in the tip cell progenitor and in its daughter cells, a

pattern which resolves into the tip cell alone, persisting

throughout tubule elongation (Figures 6B–6E). Driving nrm-

RNAi in the tip cell lineage abrogates tip cell contact with alary

muscles, resulting in mispositioning of the anterior tubules that

resembles the loss of tip cells or alary muscles (Figures 6F and

6G; cf. with Figures 2D and 3A–3C). Nrm has been shown to

act as a homophilic adhesion molecule in the fly nervous system
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Figure 5. Tip Cells Lack a Basal Extracellular Matrix Sheath

(A–E) Embryonic tubules (Ct, red) are ensheathed (arrowheads) in laminin (green, A), collagen IV (Viking, green, B and B0), and perlecan (green, C), but until

attached to their final targets, tip cells lack this sheath (A–C, arrows; D, schematic). Laminin (green, E) localizes to the final tip cell-alary muscle junction (arrows,

Ct, red; MHC, blue).

(F and G) Distal ends of tubules lacking tip cells (arrowheads; F, nb mutant; G, ase>Nact) encapsulated in a sheath of laminin (green, F) and collagen IV (Viking;

green, G).

(H) Ectopic tip cells (arrows; Futsch, magenta) in byn>nb tubules (Ct, blue) lack an extracellular matrix sheath (laminin, green; each tip cell shown in H0 and H0 0 ).
(I–L) Embryonic tubules express platelet-derived growth factor/vascular endothelial growth factor ligands pvf1–3 (pvf1 in I) and laminin subunits lanA (J) and lanB2

(K) but tip cells do not (arrows, I–K, in situ hybridization). Tip cells express mmp1 from stage 15 (L, arrow).

(M–P) Dystroglycan in embryonic tubules, including the tip cell (in situ hybridization; tip cell, arrow, M andM0). Whereas Dg protein localizes basally in tubule cells

(green, N and N0, arrows), in tip cells it localizes in a cap over the apical membrane (N and N0, arrowheads; tip cell basal membrane, arrow; nuclei [DAPI, blue],

apical membrane [Baz, red]). Basal Dg (green, O and P) ensheathes the distal ends (asterisk) of nb mutant tubules (Ct, red) lacking tip cells (O) but is virtually

absent from ectopic tip cells (asterisks) in byn>nb embryos (P, arrows).

(Q–V) Tip cell-specific overexpression of dg causes basal accumulation (green, Q, arrow) of laminin (green, R), collagen IV (Viking; green, S), and perlecan (green,

T) over the tip cell surface (R–T, arrows). Tip cell filopodia are reduced (U, arrow) and tip cell attachment to muscle targets (MHC, green) is disrupted (V, arrow);

tubules (Ct, red) are mispositioned anteroventrally with their distal ends in A1 (V0, arrow) and the kink region further distal (V0, arrowhead).

(W–X) Laminin (green) accumulates apically in wild-type tip cells (W andW0, arrowheads) but is absent basally (W0, arrow). Laminin (green, X and X0) accumulates

in the cytoplasm (arrow) of tip cells expressing dominant-negative Rab5 (ac>Rab5DN).

Scale bars represent 10 mm (A–L, M0–T, and V–X), 50 mm (M and V0), and 5 mm (U).
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(Kania et al., 1993; Kania and Bellen, 1995), but it is not ex-

pressed in tip cell target alary muscles, and driving nrm-RNAi

in the alary muscles produces no mispositioning phenotype

(data not shown).

In embryos in which nb is overexpressed and two tip cells

develop, both express nrm (Figure 6I). This increase in tip cell
338 Developmental Cell 27, 331–344, November 11, 2013 ª2013 The
adhesion might underlie the maintenance of more posterior tip

cell-alary muscle contacts and the mispositioning of the tubules

(Figures 2O and 2P). To test this idea, we increased the expres-

sion of nrm in tip cells (Figure 6H) and drove it ectopically in alary

muscles (Figures 6J and 6K). In both experiments, distal tubule

regions remained in the posterior with tip cells, stabilizing their
Authors



Figure 6. Tip Cell-Alary Muscle Interactions Require Neuromusculin and Integrin Adhesion

(A–E) Neuromusculin is expressed in the tip cell lineage; nrm-lacZ reporter A37 (b-gal, green; A, arrows) and in situ hybridization (B–E). nrm is detected in the

progenitor cell (B, arrows) and both daughters (C, arrows) before refining to the tip cell (D and E, arrows). TC, tip cell; SC, sibling cell.

(F and G) In the absence of nrm (ctB>nrmRNAi), tubules (Ct, brown) move further anteroventrally (F and G, arrows), and tip cells (Futsch, green, G0) fail to attach

alary muscle targets (MHC, blue; G0, arrow). Arrowheads, kink.

(H) Overexpression of nrm in the tip cell lineage causes tubules (Ct, brown, H) to stall posteriorly with tip cells (arrows) bound to A5/A6 alarymuscles (MHC, red, Ct,

green, H0 ).
(I) Ectopic tip cells in byn>nb tubules express nrm (arrows).

(J and K) Ectopic expression of nrm in embryonic alary muscles (blue, J, arrows) causes tubules (Ct, brown, K, green, K0) to stall posteriorly with tip cells (arrows)

bound to A5/A6 alary muscles (MHC, red, K0).
(L–T) bPS integrin (red, L, O, andR), talin (red,M, P, and S), and tiggrin (red, N, Q, and T) localize to each tip cell-alarymuscle junction (L–N andR–T, arrows) but are

absent from the tip cell surface in the absence of muscle attachment (O–Q, arrows).

(U–W) Tubules (Ct, brown) mislocalize anteroventrally following RNAi-mediated loss of tip cell bPS integrin myospheroid (mys; U and W0 ), integrin-linked kinase

(ilk; V), or aPS1 integrinmultiple edematous wings (mew; W). Arrowheads, kink. Tip cells (arrows) bind anteriorly to A1/A2 alary muscles (W0, Ct, green; MHC, red).

(X and Y) bPS integrin (green; Futsch, red) localizes to points of tip cell-muscle contact (arrows) on long tip cells that bindmultiple alary muscles (X and X0, arrows;

MHC, blue) and ectopic tip cells of byn>nb tubules (Y–Y0 0, arrows). Individual tip cells are shown in (Y0) and (Y0 0).
(Z) Tubules (Ct, green) stall posteriorly with tip cells (arrow, Z0) bound to posterior A5/A6 alary muscles (MHC, red) in embryos carrying an activating mutation in

mys (mysb51).

Scale bars represent 10 mm (A–E, F0–J, K0–T, and W0–X0 ), 50 mm (F–H, K, U–W, and Z), and 5 mm (Y0 and Y0 0). See also Figure S3.
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Figure 7. Tip-Cell-Dependent Anchorage of

Anterior Tubules to Alary Muscles

Elongating anterior tubules (MpTs, blue) navigate

in a stereotypical manner (A–C) to achieve

invariant positions by stage 16 (D). Dpp (pink)

released from the leading edge (le; A), midgut (mg;

A), and gastric caeca (gc; C) activate signaling

(dark pink) in the tubule kink and attract the tubules

forward (A–D). Distal tip cells (purple) bind to

sequential alary muscles (green), first at the A5/A6

segment boundary (B) and later at A4/A5 (C) and

A3/A4 (D). If tip cells or alary muscles are removed

or tip cell protrusions are disrupted, anterior

tubules are misshaped and mispositioned, with

shorter distal ends intimately associated with the

gastric caeca (E). Final tubule architecture reflects

a balance between the strength of Dpp-guided

anterior attraction and antagonistic tip cell

anchorage. If Dpp signaling is abrogated, tubules

stall posteriorly with tip cells bound to A5/A6 tar-

gets (F). Conversely, if tip cell-muscle adhesion

strength is increased (by increasing tip cell number

or adhesion; H) tubules remain posterior, with tip

cells bound to A5/A6 or A4/A5 targets. Tip cell

RhoGTPase activity must be strictly controlled;

inhibition of Rho1 lengthens the tip cell stalk, and

tubules move further anteroventrally (G). ams,

alary muscles; hg, hind gut; VNC, ventral nerve

cord.
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first alary muscle contact in A5/A6 (Figures 6H0 and 6K0). Corre-
spondingly, if nrm is driven in all tubule cells, other regions as

well as the tip cells attach to alary muscles (Figures S3A and

S3B). Thus, Nrm is both necessary and sufficient for target

adhesion.

In other contexts where epithelial tissues make stable con-

tacts with muscles, integrin-mediated adhesion plays a crucial

role (Bökel and Brown, 2002; Levi et al., 2006; see Schejter

and Baylies, 2010). We therefore analyzed the localization of

integrins, one of their extracellular ligands, tiggrin, and a cyto-

plasmic partner, talin, at the tip cell-muscle junction. We find

that integrin complexes are dynamically assembled when tip

cells contact their target alary muscles (A5/A6 contact shown

in Figures 6L–6N). Once released from a transient contact, integ-

rins, tiggrin, and talin disappear from the tip cell surface (Figures

6O–6Q), reassembling when contact is made with the next target

muscle. Once the final contact ismadewith the A3/A4 alary mus-

cle, a stable accumulation of integrin, tiggrin, and talin forms

(Figures 6R–6T). The association between the alary muscle and

tip cell persists through larval and adult life (Figures 1M–1O; Fig-

ures S3C–S3E), with enrichment of laminin, collagen IV, tiggrin,

and a- and b-integrin (Figures S3F–S3J).

The importance of integrin-mediated adhesion can be demon-

strated by blocking it using RNAi. Driving the expression of RNAi

constructs against the integrin subunits encoded by mew and

mys or against integrin linked kinase prevents the establishment

of the normal tip cell-alary muscle contacts, resulting in either

more anterior contacts or phenotypes that resemble the loss of

tip cells or alary muscle targets (cf. Figures 6U–6W with Figures

2D and 3A–3C).

The ability to form adhesive contacts with target alary muscles

appears to be a property of the tip cell surface. When cv-c is
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overexpressed, tip cells develop with a greatly extended stalk

(Figures 4E–4G).Where this stalk lies over an alarymuscle, integ-

rin accumulates at the site of contact, in addition to the normal

contact distal to the tip cell nucleus with the adjacent, more pos-

terior alary muscle (Figure 6X). Similarly, when nb is overex-

pressed and two tip cells develop, both accumulate integrins

at the site of their more posterior alary muscle contacts (Figures

6Y–6Y0 0). Increasing integrin adhesion produces a similar pheno-

type; in embryos homozygous for the dominantly active allele

mysB51 (Kendall et al., 2011), tip cells remain bound to the alary

muscles in A5/A6 (Figure 6Z).

DISCUSSION

As the embryonic renal tubules assume their mature shape they

interact with other tissues, responding to Dpp guidance cues as

they take up their characteristic positions in the body cavity (Bunt

et al., 2010). Here we show that, in addition, a single cell at the

distal end of each renal tubule makes specific transitory, and

finally long-term, contacts with target tissues. These cells ex-

press a distinctive pattern of genes and show characteristic

exploratory activity, which is crucial for the stereotypical looped

shape and position of the tubules in the body cavity. In turn,

these features have profound consequences for the efficacy of

fluid homeostasis in the whole animal.

We suggest that the elongation and forward extension of the

tubules result from the combined effects of cell rearrangements

that lengthen the tubule and the response of kink region cells to

regional Dpp guidance cues (Figures 7A–7D). Our evidence in-

dicates that the tip cells act as anchors, through their interac-

tions with alary muscles, so that tubules are tethered at both

ends, the proximal end being attached through ureters to the
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hindgut. These attachments perform two functions: they stabi-

lize the looped architecture, maintaining the kink close to the

tubule midpoint, and they limit forward and ventral movement

to ensure the stereotypical tubule arrangement in the body

cavity.

If tip cell contact with the alary muscles is lost, the kink ‘‘un-

ravels,’’ shifting distalward, and the tubule as a whole extends

too far into the anterior, with the distal region lying more ventrally

close to the Dpp-expressing gastric caeca (Figure 7E). Confirm-

ing the existence of a forward tractive force responsible for tip

cell detachment are the distortion of transient alary muscle tar-

gets before the tip cell detaches (Movie S2) and the character-

istic ‘‘recoil’’ seen when the tip cell is ablated (Movies S4 and

S5). Evidence that this results from the response to guidance

cues is the failure of tip cells to detach from their first alary mus-

cle contact (A5/A6) in the absence of the midgut Dpp guidance

cue (Figure 7F) and the more anterior location of the kink region

(close to the gastric caeca) in tubules where the tip cell stalk is

greatly extended, for example when the activity of RhoA is

repressed (Figure 7G). The critical nature of the balance between

these forward and restraining influences is also revealed when

adhesion between the tip cells and alary muscles is increased

by manipulating tip cell number or adhesive strength (Figure 7H).

In each case, the tip cells remain attached to alary muscles pos-

terior to their normal final contacts, and this results in more pos-

terior positioning of the whole tubule. Together, these results

strongly suggest that tip cells detach because the forwardmove-

ment of tubules overcomes the adhesive strength of their early

transient contacts.

The final tip cell/alary muscle target is highly reproducible,

suggesting recognition through segmental identity, the A3/A4

target being the first encountered by the tip cell that expresses

Ubx (LaBeau et al., 2009). However, altering Ubx expression in

alary muscles has no effect on the final tip cell contact. Instead,

it appears that tip cells adhere to each alarymuscle they contact,

and the final target depends on the balance between forward

tubule movement and the strength of tip cell/target adhesion

(Figure 7). Consistent with this view, when all the normal muscle

targets are ablated, tip cells can make stable contacts with the

A2/A3 alary muscle.

From the time that they are specified, tip cells show distinctive

patterns of gene expression, morphology, and behavior critical

to their ability to make alary muscle contacts; they form dy-

namic filopodia, which explore the alary muscle surface, remain

denuded of the BM that envelops the rest of the tubule, and ex-

press cell-adhesion proteins, including Nrm and integrins. Pro-

trusive activity depends on the rapid turnover of actin, mediated

by regulators such as RacGTPase and the actin-capping protein

Enabled, which are active in tip cells.

BM deposition basally around the tip cells severely inhibits

protrusive behavior, and tip cells therefore employ multiple

mechanisms to ensure that they remain denuded. These

include the absence of expression of factors that promote

BM deposition and stabilization (hemocyte attractants, BM

components, or receptors), the removal by transcytosis of

any BM that is deposited, and expression of MMP1, which is

able to cleave matrix components (Gross and Lapiere, 1962).

MMP1 is expressed late during tubule elongation and the pro-

tein is localized apically in tip cells (H.W., unpublished data),
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suggesting that its function might be to degrade transcytosed

BM proteins.

Protrusive exploratory behavior results in adhesive contacts

made possible through tip cell expression of Nrm and integrins.

Nrm is a homophilic cell-adhesion molecule of the Ig-domain su-

perfamily (Kania et al., 1993). The binding partner for tip cell Nrm

is unclear, as alary muscles do not express it. However, driving

nrm expression in alarymuscles induces strong adhesion, result-

ing in tip cells remaining bound to their first target in A5/A6. It

is possible that Nrm in tip cells normally makes heterophilic

associations with Ig domain-containing proteins such as Dumb-

founded (Kirre), which is expressed in alary muscles and is suffi-

cient, when overexpressed, to induce more posterior target

adhesion (H.W., unpublished data).

Tip cells express integrins, and complexes accumulate as

each target contact is made, but initially they do not lead to

long-term adhesion. We suggest that the strength of adhesion

increases with successive contacts, either through increased

expression of integrins and their associated factors or by regu-

lated adhesive complex turnover, as shown in other tissues

(Ulrich and Heisenberg, 2009; Webb et al., 2002). Once the final

tip cell contact is made, BM accumulates around the tip cell-

alary muscle surface, increasing the concentration of integrin

ligands at the junction. The accompanying decline in the protru-

sive activity of the tip cell could also result from integrin-

mediated adhesion, which is known to reduce levels of the

actin-capping protein Enabled (Delon and Brown, 2009). This

sequence of events parallels the mechanism by which elongated

myotubes and tendon cells establish their myotendinous junc-

tions (Martin-Bermudo et al., 1998).

Once the anterior tubule tip cells make their final alary muscle

contact, they remain attached throughout development into

adult life. Such interaction of excretory tubule tips with muscles

is a common feature of renal systems in insects, either with

alary muscles or with fine striated muscles that spiral along

the tubule (see Wigglesworth, 1972). Muscle contacts increase

tubule movement, maximizing the effectiveness of excretion,

by increasing hemolymph sampling and enhancing tubule

flow. Similar contacts are found outside the arthropods; the

flame cells that cap planarian protonephridial tubes develop

prominent filopodia and interact with nearby muscle fibers

(McKanna, 1968), providing anchorage, thought to be impor-

tant during branching morphogenesis in this system (Rink

et al., 2011).

Tip cells or groups of cells at the distal tips of outgrowing

epithelial tubes act as organizers in tubular systems, from

the migrating Dictyostelium slug to the branching epithelial

scaffolds of human organs. As in fly renal tubules, these

distinctive cells regulate cell division (Kimble and White, 1981)

and guided tubule extension (e.g., Caussinus et al., 2008; Brad-

ley et al., 2003; Blelloch et al., 1999; Su et al., 2000), and in

mammalian systems they control branching morphogenesis

(Gerhardt et al., 2003; Watanabe and Costantini, 2004; Chi

et al., 2009).

However, in distinct contrast to the role of tip cells in the

morphogenesis of these systems, the tip cells of the anterior

renal tubules play no role in leading outgrowth. Instead, they

act to counteract outgrowth, and importantly this leads to the

development of a looped tubular structure both by tethering
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the distal tips of tubules close to their proximal junction with the

ureter and by maintaining the tightness of the tubule kink region.

Looped tubular structures are relatively uncommon; a tubule

tree as in the lung, pancreas, or liver or an anastomosing

network as in the vascular system is more frequently seen.

However, a striking example of looped tubules is found in the

mammalian kidney, where the distal and proximal convoluted

tubules together with the loop of Henle connect the tubule tip

(at the glomerulus) to the collecting duct (close to the site of

urine outflow). Looping of both the nephron and its vascular

supply creates a countercurrent system that maximizes the

efficiency of ion and fluid homeostasis. Such exchange systems

also occur in insects with specialized diets (e.g., Le Caherec

et al., 1997) or those living in dry conditions (Ramsay, 1964).

Countercurrent exchange has not been demonstrated in

Drosophila melanogaster tubules, where it is more likely that

the looped tubule structure is important for effective hemo-

lymph sampling.

In the development of the mammalian nephron, as in fly renal

tubules, both the site of connection to the ureter and the tubule

tip, the renal corpuscle, are established early in organ develop-

ment (Potter, 1972; Georgas et al., 2009; Cho and Dressler,

2003) so that tubule extension, by both cell proliferation (Fischer

et al., 2006) and rearrangements (Karner et al., 2009), occurs be-

tween these fixed points. It will be interesting to discover whether

similar tissue interactions stabilize the position of the developing

glomerulus, and so play a prominent role in maintaining the

looped structure as kidney tubules extend, resulting in the final

intricate and regular array of nephrons apparent in the mature

mammalian kidney.

EXPERIMENTAL PROCEDURES

Drosophila Genetics

Fly stocks were maintained according to standard protocols (Greenspan,

1997). Crosses were carried out at 25�C unless otherwise stated. For strains,

see the Supplemental Experimental Procedures.

Immunostaining and In Situ Hybridization

Immunostaining was performed using standard techniques with the anti-

bodies listed (see Supplemental Experimental Procedures). An amplification

step using streptavidin-conjugated FITC, Cy3, or Cy5 was performed when

required.

RNA localization was performed by in situ hybridization using DIG-labeled

RNA probes generated by in vitro transcription from DNA templates (see

Supplemental Experimental Procedures). Hybridization and staining were

done according to standard protocols (Nagaso et al., 2001; Tautz and Pfeifle,

1989).

Live Imaging

Staged embryos were dechorionated in bleach and mounted in Voltalef

10S oil with a raised coverslip. Live imaging was performed using a

Leica SP5 scanning laser microscope. To photoconvert Kaede, cells

were exposed to a 55–85 s UV pulse using FRAP software on the Leica SP5

system.

Laser Ablation

Dechorionated embryos were mounted with Scotch double-sided tape

in PBS solution. Cell ablation was performed using a 633 water-dipping

lens (N.A. 0.9) on a Yokogawa spinning disk (CSU-10) confocal microscope

fitted with a pulsed nitrogen laser (MicroPoint). Image acquisition and micro-

scope control were by MetaMorph (version 7.0) software (Molecular

Devices).
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