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Abstract: For improving the wear properties of NiCrAlY, the 10 wt %, 20 wt % and 30 wt % ZrO2-
added NiCrAlY samples were prepared by ultrasonic-assisted direct laser deposition, respectively.
The results showed that the ultrasonic-assisted direct laser deposition can realize the ZrO2-added
NiCrAlY preparation. Furthermore, due to the cavitation effect and agitation of the ultrasound in the
molten pool, ultrasonic-assisted could make the upper surface of the samples smoother and flatter,
and it also improved the microstructural homogeneity. The microstructure was mainly composed
of columnar dendrites, and most of ZrO2 particles were located in the intergranular regions. The
principal phase constituents were found to contain γ-Ni and t-NiZr2, and the amorphous (Ni, Zr)
intermetallic phase generated, because of more rapid solidification after ultrasound assisted. The
microhardness was improved slightly with the increase of ZrO2 contents, rising from 407.9 HV
(10% ZrO2) to 420.4 HV (30% ZrO2). Correspondingly, wear mass loss was decreased with the
maximum drop 22.7% of 30% ZrO2 compared to that of 10% ZrO2, and wear mechanisms were
mainly abrasive wear with slightly adhesive wear. After applying ultrasound, the oxide islands
in samples disappeared, and more ceramic particles were retained. Thus, the hardness and wear
performance of the samples were improved.

Keywords: direct laser deposition; ultrasonic-assisted; ZrO2-added NiCrAlY; microstructure;
wear properties

1. Introduction

MCrAlY (M means Ni and/or Co) is an engineering coating material with excellent
properties. It has the advantages of good wear resistance, excellent high temperature oxi-
dation resistance, and strong corrosion resistance [1–3]. In general, MCrAlY is extensively
used in turbos, blades, and other hot-end parts of aero engines and large gas turbines [4,5].
However, with the rapid development of aerospace and energy, the working temperature of
hot-end components is getting higher. And the MCrAlY coatings have been difficult to meet
the working conditions of high-temperature environment. Thus, the coatings with CeO2,
Al2O3, or ZrO2 adding to MCrAlY matrix are developed to increase its high-temperature
corrosion resistance and thermal stability [6–8]. At the same time, there are also two-layer
coating with MCrAlY as a bonding layer with a ceramic layer on the surface [9], and graded
thermal barrier coating with bonding metal and ceramic composites in the middle [10,11].
Furthermore, this material has important guiding significance for the preparation of graded
thermal barrier coatings.
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At present, the main preparing methods of ceramic-added MCrAlY and graded ther-
mal barrier coatings are thermal spraying (including plasma spraying, flame spraying and
arc spraying), transfer arc cladding, and laser cladding. The thermal spraying method
can simply operate, and shows high working efficiency. However, the sprayed materials
are mechanically bonded to its substrate, and a large number of pores exist in the mi-
crostructure [12]. Hence, the density cannot be guaranteed. Transferred arc cladding and laser
cladding can realize metallurgical bonding between coatings and substrate, and the density
can be effectively improved. Unfortunately, owing to the poor wettability of MCrAlY and
ceramics, it is easy to form ceramic agglomerates and make them non-uniformly distributed.

Bolelli G. prepared NiCrAlY + Al2O3 coatings by plasma spraying coupled with feed-
ing of dry powder plus suspension, and measured the friction properties at different tem-
peratures of the coating materials [13]. However, it is still laminated structural, and a mass
of inter-layer voids may affect its wear resistance. Demian C. used a plasma transfer arc to
prepare NiCrAlY + ZrO2 coatings, then examined and analysed the microstructure [14]. It
was found that the microstructure had large ceramic oxide islands in the matrix, resulting
in a heterogeneous microstructure. Fortunately, Li prepared WC-Ni composite coatings
by laser cladding on Ti-6Al-4V alloy substrates under high frequency micro-vibration [15].
The vibration made the coating microstructure more uniform, and its microhardness and
wear performance were significantly improved. Liu fabricated Ni60CuMoW coatings by
combination of laser cladding and mechanical vibration processing [16]. With the help
of mechanical vibration, he found that the corrosion and wear properties of the coating
were significantly increased. Li successfully fabricated TiC/AlSi10Mg alloys by laser
additive manufacturing under high-frequency micro-vibration [17]. The high-frequency
micro-vibration could accelerate the melt flow, promote the floating of gas and slag in the
molten pool and significantly reduce the pores in the alloys, which could obtain refined
and homogenous microstructure with superior alloy density as well as good performances.

In summary, ultrasonic-assisted direct laser deposition technology has many advan-
tages in the preparation of metal-ceramic composites. Direct laser deposition is a kind of
additive manufacturing technology. Compared with traditional subtractive processing
methods, this method has the unique advantages of additive manufacturing technology
such as high material utilization rate, easy preparation of complex parts, and short process-
ing cycle [18–20], and it is suitable for the preparation of gradient materials. Ultrasound is
applied at the bottom of the substrate; the ultrasound can effectively convey the vibration
to the molten pool, utilizing the cavitation effect, acoustic flow effect, and stirring effect of
the ultrasonic wave to improve the microstructure and properties of the formed material.
Using this method to prepare ZrO2-added NiCrAlY material can obtain a more uniform
ceramic distribution as well.

The ZrO2-added NiCrAlY coating was prepared by ultrasonic-assisted direct laser de-
position. Macroscopic morphology, microstructure, and phase of the samples prepared with
ultrasonic-assisted were evaluated. The effects of different ZrO2 content on microstructure
and mechanical properties were analyzed.

2. Experimental Procedures

The working principle of the direct laser deposition system used in this experiment
is shown in Figure 1. The system includes Nd:YAG continuous laser device (JK1002, GSI
Lumonics, Rugby, England.) and a three-hopper powder feeder(DPSF-D3, Beijing Aero-
nautical Manufacturing Technology Research Institute, Beijing, China) which can realize
various powder mixing and conveying. The ultrasonic vibration system is a standard sine
wave generator with frequency of 20 kHz (the material of ultrasonic vibration plate is
stainless steel). The ultrasonic vibration plate is rectangular, and the ultrasonic vibration
direction is vertical. The substrate is pressed on the ultrasonic vibration plate by the
fixture, and the guided wave medium is filled between the substrate and the ultrasonic
vibration plate to ensure the effective transmission of ultrasonic. The experiment used
99.9% high-purity argon as the shielding gas and carrying gas.
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Figure 1. Working principle of the equipment.

The experiment used an Inconel718 substrate with a thickness of 12 mm. Before the
experiment, sandpaper was used to polish the substrate surface to remove impurities
and polish the flat surface, and then the surface was cleaned by ethanol. The particle
sizes of Ni-22Cr-10Al-1Y and YSZ (Y2O3 stabilized ZrO2) powders used in the research
were both 45–90 µm (Beijing Sunspray New Materials Co., Ltd., Beijing, China). The
chemical composition of the powders was shown in Tables 1 and 2. Three combinations (by
mass fraction) of NiCrAlY-ZrO2 composites were designed, as 90%NiCrAlY + 10%ZrO2,
80%NiCrAlY + 20%ZrO2, 70%NiCrAlY + 30%ZrO2 (abbreviated to 10%ZrO2, 20%ZrO2,
and 30%ZrO2 in later sections). The formed sample size was 16 mm square with a thickness
of 1.8 mm. Although ZrO2 powder had higher melting point, its absorption rate for laser
was higher than that of metal, so the forming process parameters of the two materials
were not much different. After many process explorations, the main process parameters
were shown in Table 3, it could be used to fully melt two kinds of powders. Two sets of
experimental samples were formed with the same process parameters. One set was not
ultrasound-assisted, and the other one was assisted by ultrasonic vibration with the power
of 90 W. During the depositing process, the scanning directions were crossed between
adjacent layers to relieve the thermal stress.

Table 1. Composition and contents of NiCrAlY powders.

NiCrAlY Ni Cr Al Y

Content (wt.%) 67.70 21.65 9.94 1.08

Table 2. Composition and contents of ZrO2 powders.

YSZ ZrO2 Y2O3 HfO2 TiO2 I

Content (wt.%) 86.42 7.13 6.24 0.13 0.05

Table 3. Process parameters of NiCrAlY-ZrO2 composites.

Laser Power P (W) Scanning Speed V
(mm/min)

Powder Feeding Q
(g/min)

Layer Thickness ∆Z
(mm)

560 300 2.3 0.3
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After deposited, the samples were cut along their longitudinal sections by wire cutting,
and then they were ground, polished, and etched by Kelling’s No.2 reagent. The microstruc-
ture of the sample was observed by optical microscope (MX40F, Olympus, Tokyo, Japan)
and scanning electron microscope (Supra55, Zeiss, Jena, Germany). The elemental analysis
was performed by EDS testing. The phase compositions of these samples were analyzed by
X-ray diffraction (Empyrean X, PANalytical, Almelo, Netherlands) with Cu-Ka radiation at
a scanning angle of 30◦ to 90◦. Vickers (MVS-1000Z, Xutai Instrument Technology, Hefei,
China) was employed for microhardness tests with a 200 g load for 15 s. In addition, eight
measure points were applied on each sample, and the averages and standard deviations
were calculated. The wear properties of each sample were tested at room temperature
using a universal friction and wear tester (MMW-1A, Jinan PuYe Mechanic & Electronics
Technology, Jinan, China). The testing parameters were as follows: load 20 N, friction time
15 min, turntable speed 100 r/min. After the friction test, wear morphology was observed
by a confocal microscope (VK-X100/X200, Keyence, Osaka, Japan).

3. Results and Discussion
3.1. Macroscopic Morphology

With no ultrasonic assistance, the prepared samples have oxide scales falling off from
the top during the cooling process. With the increase of ZrO2 content, the amount of oxide
scales that broke from the sample increased slightly. After swiping off the scales with a
scraper, the upper surface of the sample was found to be inferior in forming quality, poor
in flatness, showing local concave and local convex (Figure 2a–c).
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Figure 2. Macro-morphology of NiCrAlY-ZrO2 composites samples with oxide scale swept off.
(a) 10% ZrO2 composites without ultrasonic vibration, (b) 20% ZrO2 composites without ultrasonic
vibration, (c) 30% ZrO2 composites without ultrasonic vibration, (d) 10% ZrO2 composites with
ultrasonic vibration, (e) 20% ZrO2 composites with ultrasonic vibration, (f) 30% ZrO2 composites
with ultrasonic vibration.

The melting point of ZrO2 is higher than that of the metal matrix. Therefore, ZrO2
first solidifies during the rapid cooling, but the molten liquid nickel-based alloy and ZrO2
have poor wettability [21]. This causes a large amount of oxide scales peeling, and this
phenomenon becomes more remarkable as the increase of ZrO2 addition. More seriously,
during the solidification, it appears the phenomenon of macroscopic separation of ceramic
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and metal matrix. Furthermore, under the huge thermal physical property differences
between ceramic and metal, a large residual stress generates during the process and force
the ceramic to burst off from the upper. Therefore, it can be judged that the main content of
the oxide scale is ZrO2.

When the ultrasound was applied, the oxide scales still peeled off from the surface.
However, after the oxide scales were cleaned up, the top surface quality of the sample was
significantly improved, and the local concave and convex were reduced (Figure 2d–f). The
main reason for the flatness improvement is that the ultrasonic has stirring effect on the
molten pool, then the large oxide scale has less chance to accumulate on the local upper
surface, thus the concave and convex caused by large oxide scales peeling off are reduced.
In addition, the ultrasonic can lower the surface tension gradient, and the spheroidization
phenomenon can be weakened, so that the adjacent scanning tracks are more even during
the depositing process.

3.2. Oxide Islands

Figure 3a–c shows the cross-section images of the samples prepared without ultrasonic
assisted. It can be seen that there are black blocks embedded in the metal matrix; they are
large in size and irregular in shape, and judged as oxide islands.
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Figure 3. Microstructure of NiCrAlY-ZrO2 composites sample in low magnification. (a) 10% ZrO2

composites without ultrasonic vibration, (b) 20% ZrO2 composites without ultrasonic vibration,
(c) 30% ZrO2 composites without ultrasonic vibration, (d) 10% ZrO2 composites with ultrasonic
vibration, (e) 20% ZrO2 composites with ultrasonic vibration, (f) 30% ZrO2 composites with ultra-
sonic vibration.

As the melting point of ZrO2 is higher than that of NiCrAlY (about 1450 ◦C), hence,
the ceramic first precipitates from the molten pool during the solidification process. When
the ZrO2 particles are just precipitated with a small size, these particles circulate in the
molten pool. Therefore, the first precipitated ceramic particles move in the liquid metal
and collide with other particles at a high frequency. When the ZrO2 particles meet together
in the liquid, they mechanically bond together by laser remelting to form a metallurgical
bonding, ultimately forming an irregularly shaped oxide islands. Once they get larger in
size, there are more chances to collide with small particles, and there are more forces to
attract small particles to agglomerate.

However, the density of ZrO2 is only 5.6 g/cm3, quite lower than the density of
NiCrAlY alloy (approximately 8.3 g/cm3). As a result, the formed oxide islands tend to
float in the liquid metal. Most of the aggregated ceramic also float to the surface. After
they are completely cooled, due to the huge stress caused by the large difference of thermal
expansion coefficient of the metal and the ceramic, the ceramic starts to peel off, forming
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the oxide scales. Further, a small number of oxide islands fail to float to the surface in a
short time, thus, solidified in the metal matrix.

Figure 3d–f shows the microstructure after ultrasonic vibration applied. There are
no clear massive oxide islands in the matrix, so the ultrasonic vibration has a clear effect
on improving the microstructure uniformity. There are two reasons for the removal of
oxide islands:

Firstly, the ultrasonic vibration has a cavitation effect on the metal melt. Ultrasonic
vibration will form a hollow bubble in the negative pressure zone of the melt, which will
produce tiny explosions under the high frequency vibration and pressure changes [22].
This will break up the mechanically bonded large oxide islands and make them become
small ceramic particles distributed in the microstructure [23–25]; Secondly, the ultrasonic
vibration has an acoustic flow effect and mechanical stirring effect on the melt. Thus, the
ceramic particles will increase the chance of colliding with other particles, and then to
form larger particles [25]. According to the Stokes’ law, under the ultrasonic vibration, the
fluidity of the metal liquid increases and the viscosity decreases, increasing the floating
speed. Meanwhile, some cavitation bubbles generated by the cavitation effect adhere to
the oxide islands, thereby reducing the density of the oxidation islands and increasing the
floating speed [26]. Therefore, the oxide islands float upward in a shorter time to ensure
high uniformity of the microstructure.

3.3. Microstructure

Figure 4 shows the microstructure of different compositions prepared with ultrasonic-
assisted. It can be seen that the microstructure of each sample is similar. They all have
columnar dendrites morphology, and the growth directions are generally along the deposi-
tion direction of the sample. However, in the local area, some columnar dendrites are of
disordered growth directions. This phenomenon of disordered dendrites has been found
in the study of laser cladding of NiCrAlY coatings [27,28].
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ZrO2, (c) 30% ZrO2.

When using high magnification scanning electron microscope, white particles can be
observed uniformly distributed in the all three composition samples. According to the
EDS results, these particles are ZrO2 phase. The ceramic particles are mostly distributed in
the grain boundaries and a few in the grain matrix, as shown in Figure 5. Owing to the
poor wettability of ceramic and metal, the particles cannot easily adhere to the dendrites
during the solidification process, and they are pushed by the growing dendrites to the
grain boundaries. Therefore, the ceramic particles concentrated at the grain boundaries are
more than the particles wrapped in the grain matrix.

In Figure 5b, it can be clearly seen that discontinuous reticulate precipitates in the grain
boundaries. As shown in Figure 6, the intergranular precipitates are rich in Zr element,
whereas the Al and Cr elements are mostly concentrated in the intragranular area. When
the size of the solute atom is similar to that of Ni [29], it has a greater solubility in the Ni
matrix, so Al and Cr can be dissolved in the Ni matrix, whereas the Zr element has only 3%
solubility. This result also verifies the distribution of ZrO2 particles and the enrichment
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of Zr element in intergranular area. Thus, it is judged that intergranular precipitates are a
kind of (Ni, Zr) intermetallic compound.
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3.4. Phase Patterns

The XRD results of the ZrO2-added NiCrAlY with different composition ratios are
shown in Figure 7. It can be seen that the three coatings contain the same phases,
mainly γ-Ni phase and t-NiZr2 phase. However, it did not find the (Ni, Zr) intermetal-
lic compound precipitated in the intergranular—this is because of the tiny quantity of
intergranular precipitates.

(Ni, Zr) intermetallic compounds have glass forming ability. Under the conditions
of rapid solidification, they can form amorphous substances with disordered arrange-
ment of atoms [30]. In Figure 8, a tiny amount of area containing glassy (Ni, Zr) com-
pounds was found. The forming reason of the amorphous compounds may ascribe to
the instantaneous cavitation high temperature and high temperature gradient induced by
ultrasonic-assisted [31,32]. Since the content of the formed glassy material is quite low, the
overall performance of the prepared NiCrAlY-ZrO2 composites will not be affected. This
coexistence of amorphous and crystalline intermetallic compounds has also been reported
in other Ni-Zr/Zr-Si laser cladding research [33].
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3.5. Mechanical Properties

In the microhardness test, 8 points were taken for each sample, and the mean value and
standard deviation were calculated respectively. As shown in Figure 9, the microhardness
of the composites increases slightly with increasing ZrO2 content, from 407.9 HV of 10%
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ZrO2 to 413.2 HV of 20% ZrO2, and finally to 420.4 HV of 30% ZrO2. ZrO2 is a ceramic
phase and its microhardness is approximately 1500 HV. According to the lever principle of
composite materials, the microhardness of NiCrAlY-ZrO2 composites should be greatly
improved. However, in this study, the microhardness is slight growth. The main reason is
that part of the added ZrO2 is lost in the form of oxide scale due to poor wettability and
large density difference, and the other part of ZrO2 reacts to form the NiZr2 intermetallic
compound. Only part of ZrO2 remains in the metal matrix to play a role of hardness
strengthening, so the microhardness of the composite has little change.
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As summarized in Table 4, the wear loss weight decreases with the increasing ZrO2
content, thus the wear resistance increases. According to the analysis of Archard model:

V = KPL/H (1)

where V is the wear loss volume, K is the wear coefficient, P is the pressure between the
sample and the friction, L is the relative slip distance, and H is the hardness of the sample.
In the present friction–wear test, both P and L are set to be the same. From the above, it can
be seen that the hardness of the three composites increases slightly with more ZrO2 added.
Therefore, the wear mass loss is significantly reduced. It can be concluded that the wear
resistance of ZrO2-added NiCrAlY composites increase with more ZrO2 content.

Table 4. Wear mass loss of NiCrAlY-ZrO2 composites.

Content Wear Mass Loss (g) Changing Percentage (%)

0% ZrO2 0.022 0
20% ZrO2 0.020 −9.1
30% ZrO2 0.017 −22.7
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As illustrated in Figure 10, there is no significant difference in the wear surface
morphology of the three samples. The main wear mechanism is abrasive wear with slight
adhesive wear. There are many furrows caused by abrasive wear on the wear surface.
Since the hardness of the 45-steel friction pair after quenching is greater than the sample,
the 45-steel wear debris will repeatedly be squeezing and scratching the surface of the
sample during the wear process, thereby creating the furrows. The sample is doped with
ceramic, so that friction parts are poor in intersolubility with each other, and are less prone
to adhesive wear. A small amount of the adhesive points on the wear surface can also
prove this. Meanwhile, ceramic particles are randomly distributed in the microstructure,
which may cause the discontinuity of the γ-Ni matrix. Thus, it is beneficial to improve the
plastic deformation-resistance of the metal matrix. In addition, the sparsely distributed
ZrO2 ceramic particles also withstand friction, directly reducing the wear area of the metal
matrix. Furthermore, when there are more ceramic particles dispersed in the matrix, the
higher the wear resistance is.

After employing the ultrasonic-assisted process, the defects such as oxidation islands
in the microstructure disappear, increasing the density of the sample. In addition, the
agitation of the molten pool by ultrasound facilitates rapid solidification. Therefore, this
promotes grain refinement and uniform distribution of ceramic particles. It can be consid-
ered that the application of ultrasonic energy can effectively improve the wear resistance
of the sample.
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4. Conclusions

This study investigated the macroscopic morphology, microstructure, microhardness,
and friction-wear of ZrO2-added NiCrAlY by ultrasonic-assisted direct laser deposition
process. The conclusions are as follows:

• Ultrasonic-assisted could make the upper surface smoother and flatter. Ultrasonic
sound flow, cavitation and other effects on the molten pool could effectively reduce or
remove the ceramic oxide islands in the matrix, further to improve the microstructural
homogeneity of the ZrO2-added NiCrAlY;

• The microstructure of 10% ZrO2, 20% ZrO2, and 30% ZrO2 added NiCrAlY were
similar—mainly composed of columnar dendrites. The growth directions were gen-
erally along the deposition direction, and there were partially disordered dendrites.
ZrO2 ceramic particles were randomly distributed in the microstructure, most of
which were located in the intergranular regions, with a small number wrapped in the
grain matrix;

• The three ZrO2 -added NiCrAlY samples had the similar phase patterns, mainly con-
tained γ-Ni phase and t-NiZr2 phase. (Ni, Zr) intermetallic phase was also generated
in the process. The fast-cooling speed caused by the ultrasonic-assisted process could
induce the formation of (Ni, Zr) intermetallic compound;

• The microhardness of the composites improved slightly with the increase of ZrO2
content, rising from 407.9 to 420.4 HV. The main reason is that part of the added
ZrO2 is lost in the form of oxide scale, and part of ZrO2 forms NiZr2 intermetallic
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compound, and a small amount of ZrO2 remains in the metal matrix to strengthen the
hardness, so the microhardness of the composite has little change;

• The wear resistance of the three composites increased with the increase of ZrO2
content. The values of wear mass loss declined, as the maximum drop 22.7%. The wear
mechanism for the three composites was mainly abrasive wear with slight adhesive
wear. There is no obvious change in the wear mechanism of different composites.

After the preparation of ZrO2-added NiCrAlY composite was preliminarily achieved
by the ultrasonic-assisted process, the influences of different ultrasonic parameters on
ZrO2-added NiCrAlY composite will be studied in the next step to further optimize the
microstructure of the composite. To improve the columnar dendritic morphology, the
wettability of NiCrAlY and ZrO2, and the mechanical properties of the material.
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