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Abstract

Even though the fungal kingdom contains more than 3 million species, little is known about
the biological roles of RNA silencing in fungi. The Colletotrichum genus comprises fungal
species that are pathogenic for a wide range of crop species worldwide. To investigate the
role of RNA silencing in the ascomycete fungus Colletotrichum higginsianum, knock-out
mutants affecting genes for three RNA-dependent RNA polymerase (RDR), two Dicer-like
(DCL), and two Argonaute (AGO) proteins were generated by targeted gene replacement.
No effects were observed on vegetative growth for any mutant strain when grown on com-
plex or minimal media. However, Adc/1, Adcl1Adcl2 double mutant, and Aago7 strains
showed severe defects in conidiation and conidia morphology. Total RNA transcripts and
small RNA populations were analyzed in parental and mutant strains. The greatest effects
on both RNA populations was observed in the Adcl1, Adcl1Adcl2, and Aago1 strains, in
which a previously uncharacterized dsRNA mycovirus [termed Colletotrichum higginsia-
num non-segmented dsRNA virus 1 (ChNRV1)] was derepressed. Phylogenetic analyses
clearly showed a close relationship between ChNRV1 and members of the segmented Par-
titiviridae family, despite the non-segmented nature of the genome. Immunoprecipitation of
small RNAs associated with AGO1 showed abundant loading of 5’U-containing viral siRNA.
C. higginsianum parental and Adc/1 mutant strains cured of ChNRV1 revealed that the coni-
diation and spore morphology defects were primarily caused by ChNRV1. Based on these
results, RNA silencing involving ChDCL1 and ChAGO1 in C. higginsianum is proposed to
function as an antiviral mechanism.

Author Summary

Colletotrichum sp. comprises a diverse group of fungal pathogens that attack over 3000
plant species worldwide. Understanding the underlying mechanisms that govern fungal
development and pathogenicity may enable more effective and sustainable approaches to
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crop disease management and control. In most organisms, RNA silencing is an important
mechanism to control endogenous and exogenous RNA. RNA silencing utilizes small reg-
ulatory molecules (small RNAs) produced by proteins called Dicer (DCL), and exercise
their function though effector proteins named Argonaute (AGO). Here, we investigated
the role of RNA silencing machinery in the fungus Colletotrichum higginsianum, by gener-
ating deletions in genes encoding RNA silencing components. Severe defects were
observed in both conidiation and conidia morphology in the Adcll, Adcl1Adcl2, and Aagol
strains. Analysis of transcripts and small RNAs revealed an uncharacterized dsRNA virus
persistently infecting C. higginsianum. The virus was shown (1) to be de-repressed in the
Adcll, Adcl1Adcl2 and Aagol strains, and (2) to cause the conidiation and spore mutant
phenotypes. Our results indicate that C. higginsianum employs RNA silencing as an antivi-
ral mechanism to suppress viruses and their debilitating effects.

Introduction

RNA-mediated silencing mechanisms regulate gene expression at the transcriptional and post-
transcriptional level [1]. Although pathways have proliferated and specialized in various line-
ages, a core RNA silencing mechanism is conserved among plants, animals, fungi and other
eukaryotes [2]. Canonical RNA silencing involves highly base-paired or double-stranded RNA
(dsRNA) that is processed into 21-30-nucleotide small RNAs by the activity of one or more
ribonucleaselIl-like enzymes called Dicer or Dicer-like (DCL) [3]. Small RNAs are incorpo-
rated into an RNA-induced silencing complex (RISC) that contains a member of the Argo-
naute (AGO) protein family [4]. The small RNA programs the complex to recognize target
RNA(s) through base pair complementarity, while the AGO protein functions as an effector to
modulate the abundance or activity of the target [5,6].

The fungal kingdom comprises an enormous, diverse group of organisms. Two major fungal
RNA silencing pathways have been described: the quelling and the meiotic silencing by
unpaired DNA (MSUD) pathways [7,8]. Both appear to be effective genome defense mecha-
nisms that operate during asexual (quelling) [9,10] and sexual development (MSUD) [11].
Fungal RNA silencing pathways function in genome protection and have been proposed to be
involved in pathogenicity [12], development [13] and antiviral defense [14].

Fungal viruses, or mycoviruses, are widespread. Most characterized mycoviruses have
dsRNA genomes packaged in spherical particles (Totiviridae, Partititiviridae, Chrysoviridae) or
a (+)single stranded (ssSRNA) genome without the ability to form particles (Hypoviridae,
Endornaviridae) [15]. Both (-)ssRNA [16] and ssDNA mycoviruses [17] have also been
described. Mycoviruses do not have an extracellular phase, but rather are transmitted vertically
by spores or horizontally by hyphal anastomosis [15]. Although mycoviral infections are gener-
ally associated with cryptic (non-symptomatic) and latent (expressed under specific condi-
tions) infections, some mycoviruses cause debilitating phenotypes in their host, making
mycoviruses a potential tool for the control of fungal plant pathogens [18-20]. In other cases,
mycoviruses have coevolved mutualistically with their hosts [21,22]. Cryphonectria parasitica
is a model filamentous fungus for the study of virus-host interactions [23,24], and provided the
first example that RNA silencing functions as an antiviral defence mechanism in fungi [14]. C.
parasitica has four RNA-dependent RNA Polymerases, two Dicer, and four Argonaute genes,
but only dcl-2 and agl-2 have been shown to have roles in antiviral defense [14,25,26]. Genetic
studies have revealed that C. parasitica antiviral defense is active against members from the
Hypoviridae, Reoviridae [14,25], Partitiviridae [27], Totiviridae [28] and Megabirnaviridae
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[29] families. Indirect evidence of an RNA silencing-mycovirus interaction has also been
described in fungi with killer viruses. In Saccharomyces cerevisiae the M satellites of the dsRNA
mycovirus L-A from the Totiviridae family produce a toxin that kills uninfected neighbour
cells but renders the host immune to the toxin [30]. Strains with active RNA silencing suppress
the virus and lose the advantage provided by the virus [31]. The incompatibility between the
killer virus and the RNA silencing machinery might explain the existence of several RNA
silencing-deficient fungi [31,32].

The genus Colletotrichum is considered one of the most economically important groups of
plant pathogens, causing anthracnose disease in over 3,200 species of monocot and dicot plants
[33], with some infections leading to post-harvest losses of up to 100%. Colletotrichum higgin-
sianum infects plants of the Brassicaceae family, including Arabidopsis thaliana, and is emerg-
ing as a model for the study of plant-pathogen interactions in dicotyledonous species [34]. C.
higginsianum is a hemibiotrophic fungus that forms an intracellular hyphae during the initial
symptomless biotrophic stage before entering a destructive necrotrophic colonization phase. C.
higginsianum has a relatively small haploid genome that was recently sequenced, the ability to
be cultured axenically, and stable transformation methods that allow for the analysis of gene
function by targeted disruption [35].

The primary goal of this study was to identify and analyze the role of the RNA silencing
machinery in the fungal pathogen C. higginsianum. Knock-out mutants and high-throughput
sequencing was used to functionally characterize transcriptomes and small RNA populations
in C. higginsianum mycelia. ChAGO1 and ChDCL1 were determined to be critical for main-
taining low levels of accumulation of a novel dsRNA virus, designated as ChNRV 1. Production
of viral small RNAs was ChDCL1-dependent and loading into ChAGO1 demonstrated a strong
preference for 21-nt, 5’U sequences.

Results and Discussion
Colletotrichum higginsianum RNA silencing machinery

Genes encoding three homologs of RNA-dependent RNA Polymerase (RDR1, RDR2 and
RDR3), two homologs of Dicer (DCL1 and DCL2) and two homologs of Argonaute (AGO1
and AGO?2) were identified in the Colletotrichum higginsianum genome (Fig 1A). All three
RDRs contained an RNA-dependent RNA Polymerase domain (RdRP). Both DCLs contain an
RNA helicase domain, double-stranded RNA-binding domain (dsRBD) and two RNasellI cat-
alytic domains. Neither DCL contained a PAZ (Piwi/Argonaute/Zwille) domain, which binds
the two-nucleotide, 3’ overhangs on canonical DCL substrates [36,37]. Dicer-like proteins in
some eukaryotes lack the PAZ domain [38-40] but retain the capacity to generate small RNAs,
suggesting the possibility of other substrate recognition mechanisms (S1A Fig). Both C. higgin-
sianum AGO proteins possess conserved PAZ and PIWI domains, and a conserved MID
domain required for 5" anchoring of the guide RNA. The catalytic triad residues (Aspartic-
Aspartic-Aspartic), required for slicer activity [41], are present in the PIWI domain of both
proteins (S1B Fig). Additionally, AGO1 contains an amino-terminal RGG box, with 12 copies
of the Arginine-Glycine-Glycine motif (Fig 1A). The RGG domain functions in nucleic-acid
binding and protein-protein interactions, and is present in some other eukaryotic AGO pro-
teins [39,42,43].

The evolutionary relationships of C. higginsianum RDRs, DCLs and AGOs with those of
other fungal species from the Ascomycota clade was assessed by phylogenetic analysis of pro-
tein sequences for each family. Members of C. higginsianum RDR, DCL, and AGO families
grouped clearly with known members that function in quelling or MSUD pathways (Fig 1B
and 1D). RDR3, DCL1, and AGO1 grouped with quelling factors, while RDR1, DCL2, and
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Fig 1. RNA silencing in the ascomycete fungus Colletotrichum higginsianum. (A) Domain organization of RNA Dependent RNA polymerases
(RDR), Dicer (DCL) and Argonaute (AGO) proteins in C. higginsianum. RRM, RNA Recognition motif. dssRBD, dsRNA Binding Domain. The conserved
aspartic acid residues required for AGO catalytic activity in the PIWI domain are indicated (DDD). RGG, arginine-glycine-glycine rich domain. (B-D)
Phylogenetic analysis of RDR (B), DCL (C) and AGO (D) protein sequences. Rooted maximum likelihood neighbor joining trees were constructed by
alignment of full-length protein sequences from representative members of the Ascomycota clade (Sordariomycetes in blue, Eurotiomycetes in green,
Dothideomycetes in orange, Leotiomycetes in pink). C. higginsianum proteins are indicated with red dots. For the sake of clarity, only maximum
likelihood bootstraps values higher than 90% are shown. Two main groups are labeled, the Quelling pathway (shaded in green) and the Meiotic-
Silencing by Unpaired DNA (MSUD) pathway (shaded in purple). Accession numbers for protein sequences used in the alignment are in S1 Table.
Phylogenetic trees were generated using RAXML under the model LG+G+F of amino acid substitution. Scale bar in each panel represents 0.1 amino
acid substitutions per site. (E) Expression analysis of RDR, DCL and AGO genes in C. higginsianum mycelium. Silencing genes are grouped into the
Quelling pathway (left panel), MSUD pathway (middle panel) and Unknown pathway (right panel). Three biological replicates were used for each gene;
values were normalized to the mean of ACTIN and TUBULIN genes and the mean expression of each RNA silencing gene is represented as a relative
value compared to AGO1.

doi:10.1371/journal.ppat.1005640.9001
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AGO?2 grouped with proteins from the MSUD pathway. RDR2 was identified in a separate
group with RRP3 from Neurospora crassa and RDR4 from C. parasitica (Fig 1B), the function
of which are not clear [44]. Expression of RRP3 and RDR4 is elevated by the introduction of
dsRNA [45] or in response to viral infection [26], respectively.

Expression levels of C. higginsianum silencing genes were determined using quantitative
real time PCR (qRT-PCR). Based on the phylogenetic analysis, we hypothesized that genes in
the quelling and MSUD pathways would be expressed during asexual and sexual stages of fun-
gal development, respectively. Colletotrichum is generally recognized as an asexual genus,
although some species are able to adopt a sexual form, which are classified under the genus
name Glomerella [33]. Colletotrichum asexual morphs are generally associated with disease
symptoms, while sexual stages tend to develop in moribund or dead host tissues [33]. The C.
higginsianum strain IMI349063A used in this study has not been observed to reproduce sexu-
ally [35], thus, gene expression analysis was limited to mycelia, conidia, and germinated
conidia. RDR3, DCLI and AGOI had the highest levels of expression in mycelia (Fig 1E, left
panel), conidia, and germinated conidia (S2 Fig, left panels), which is consistent with their pre-
dicted role in the quelling pathway during vegetative growth and asexual reproduction. Con-
versely, transcripts for RDR1, DCL2 and AGO2 (MSUD pathway) were expressed at detectable
but relatively low levels in mycelia, conidia, and germinated conidia (Figs 1E and S2, middle
panels). Thus, while a role for RDR1, DCL2 and AGO2 during sexual reproduction is antici-
pated, it is possible that these genes have roles in asexual developmental phases. Transcripts for
RDR2 were expressed at intermediate levels in mycelia, but relatively high in conidia and ger-
minated conidia (Fig 1E and S2 Fig, right panels).

Loss of DCL1 or AGO1 leads to reduced conidiation and altered conidia
morphology

To identify functions of the RNA silencing components in C. higginsianum, single deletion
mutants with loss of RDR (S3 Fig), DCL (54 Fig) and AGO (S5 Fig) genes were generated by
targeted gene replacement. A double DCL1/DCL2 deletion mutant was also generated (S4 Fig).
Single-site gene disruptions were confirmed by Southern blot and RT-PCR analysis, and four
independent deletion mutants were selected for further analysis (S3 and S5 Figs). Previous
work in Mucor circinelloides [46], Magnaporthe oryzae [47], Candida albicans [48], Botrytis
cinerea [12], and Trichoderma atroviride [13] demonstrated that disruptions of DCLI ortho-
logs were sufficient to slow vegetative growth. However, in other fungi, such as C. parasitica
[14] and Saccharomyces castellii [38], comparable mutations did not affect growth. To evaluate
C. higginsianum silencing mutants, mycelial growth and morphology on conidiation
(Mathur’s), complete (PDA), and minimal (CDA) media were measured. For all single and
double mutants, colony morphology and growth were indistinguishable from that of the wild-
type strain (Figs 2A and S6). The Adcl1, Adcl2, and Adcl1Adcl2 mutants were also exposed to
oxidative stress (H,0, and Methyl Viologen), cell wall stress (Calcofluor white), salt-related
stress (NaCl, and LiCl), osmotic stress (sorbitol, and sucrose) and nutrient deprivation (carbon
and nitrogen). Growth of the Adcl1, Adcl2, and Adcl1Adcl2 mutant strains was indistinguishable
from that of the wild-type on all media (S7 Fig), suggesting that small RNA-mediated processes
are not necessary for vegetative growth under several abiotic stress conditions. These results
are in agreement with those reported for silencing mutants of the yeasts S. castellii [38] and C.
neoformans [49].

Conidiation was analyzed for all mutant strains after growth in Mathur’s media for seven
days. Compared to the control strains, conidiation was significantly reduced in the Adcll,
AdclIAdcl2, and Aagol strains by 8.8-fold, 11.6-fold, and 4-fold, respectively (Fig 2B). There
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Fig 2. Phenotype analysis of C. higginsianum RNA silencing-mutant strains. (A) Colony morphology and radial growth phenotype for the C.
higginsianum RNA silencing machinery mutants and Control strains on Mathur's medium. A representative example of colony morphology after 6
days of growth (left panel), and radial growth measurements from days 2 to 5 (right panel) (mean +/- SE). Scale bar = 1 cm (B) Conidia production in
the Control and RNA silencing mutant strains. Conidia were collected after 7 days of growth in Mathur's medium and counted with a hemocytomer.
Values plotted are from three biological replicates for each of four unique transformants; red bar indicates the mean. Strains with significantly
different conidia production from the Control strain are indicated (“a”: p = 0.05). (C) Box plots representing length (upper panel) and width (lower
panel) of conidia. Conidia were collected, observed and measured by light microscopy using a confocal microscope. At least 200 conidia were
measured for each strain. Error bars represent the first and third quartile. The horizontal line within the box represents the median value (ie. 50th

percentile). Black dots represent outliers. (D) Confocal images of conidia from the C. higginsianum Control and RNA silencing mutant strains. Scale
bar=2 pm.

doi:10.1371/journal.ppat.1005640.9g002

was no significant difference between the Adcll and Adcl1Adcl2 strains, indicating that conidia-
tion effect was due to DCL1 with little or no redundancy with DCL2. DCL genes have been
implicated in conidiation in other fungi [13,50]. In B. cinerea, at least partial redundancy of the
two DCL proteins was observed [12] where the double mutant dclIdcl2 had a stronger, negative
effect on sporulation than did the single mutants dclI and dcl2. Argonautes were also shown to
affect spore production in M. circinelloides [51], in which an ago-1 mutant strain produced
~50% fewer spores than the control strain.

Conidia produced by the Adcll, Adcl1Adcl2, and Aago]l mutants were shorter and wider
than those produced by the controls strain (Fig 2C). Most conidia from the AdclI and
Adcl1Adcl2 strains exhibited an abnormal, slightly rounded morphology (Fig 2D), and were
more variable in length and width than those control strains. Deletion mutants lacking RDR1,
RDR2, or RDR3 genes had no measurable growth or conidiation phenotypes (Fig 2B). How-
ever, it is not clear whether RDRI, RDR2 and RDR3 are not functional during growth and coni-
diation, or are functional but redundant, as combinatorial mutants were not analyzed.
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Fig 3. Transcript and small RNA reads unmapped to the C. higginsianum genome. Percentage of reads
not aligned to the C. higginsianum genome in the Control and RNA silencing mutant strains, from (A)
transcript and (B) small RNA libraries. (C) Percentage of small RNAs reads unaligned to the C. higginsianum
genome from Aago1/6His-3FLAG-AGO1 Input and IP libraries. 6H3F, 6His-3FLAG.

doi:10.1371/journal.ppat.1005640.9003

Loci not present in the C. higginsianum genome are a major source of
small RNA and transcript RNA

The deletion mutant analysis revealed that DCL1 and AGO1 both affect conidia production
and asexual spore morphology in C. higginsianum. To identify loci that are affected by RNA
silencing factors, in particular DCL1 and AGO1, transcripts and small RNA from all mutant
strains (Fig 3) were analyzed. In addition, small RNAs were analyzed after immunoprecipita-
tion (IP) of 6His-3FLAG (6H3F) epitope-tagged versions of AGO1 (6H3F-AGO1) and AGO2
(6H3F-AGO2), which were expressed in Aagol and Aago2 strains, respectively (S8 Fig). Trans-
formants containing and expressing 6H3F-AGO1 had significantly increased conidia produc-
tion relative to the original Aagol background, indicating the tagged version of AGO1
complemented the loss of AGO1 (S8B and S8D Fig).

Transcript RNA reads were de-multiplexed and aligned to the C. higginsianum genome
using Bowtie2 (S2 Table) [52]. Strikingly, 40+3% of the RNA-seq reads in Aagol, 54+5% of the
reads in Adcll, and 46+6% of the reads in Adcl1Adcl2 did not map to the C. higginsianum
genome (Fig 3A and S2 Table). Small RNA libraries were also de-multiplexed, trimmed of the
3’adaptor sequence, and aligned to the C. higginsianum genome using the aligner Bowtie (S3
Table) [53]. Here, 63£3% of the small RNA reads in Aagol, and 46+8% of AGO1-bound small
RNAs did not map to the C. higginsianum genome (Fig 3B and 3C, S3 Table).

High-throughput sequencing usually yields a proportion of reads that do not map to the tar-
get genome such as sequencing errors, sequence variants, and chimeric sequences [54]. Draft
genome sequences present further difficulties; the available C. higginsianum IMI349063A
genome sequence contains approximately 48.2 Mbp of a predicted 53.4 Mbp nuclear genome
across 10,235 contigs, where 5.2% of genes are split across multiple contigs, 4% of genes are
truncated and the assembly does not include the mitochondrial genome [35]. Further, exoge-
nous species (viral or bacterial) may be present in the target sample. Several infectious agents
have been identified from high-throughput sequencing reads that did not map reference
sequences [55-57]. Since the increase in unmapped transcript and small reads was specific to
the Adcll, Adcl1Adcl2, Aagol strains, as well as the small RNA reads from the 6F3H-AGO1 IP,
we hypothesized that the C. higginsianum silencing machinery is important for the regulation
of one or more loci of an undetermined origin.

C. higginsianum strain IMI349063A is infected with a dsRNA mycovirus

Identification of unknown RNA molecules using de novo transcriptome assembly of
RNA-seq data. To identify transcript(s) missing from the reference genome sequence we
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Fig 4. Identification of a novel dsRNA virus in C. higginsianum. (A) Genome organization and size of the
Colletotrichum higginsianum Non-segmented dsRNA Virus 1 (ChNRV1) identified by de novo transcriptome
assembly. ChNRV1 contains two ORF that are in different frames. ORF1 encodes a putative coat protein
(CP) and ORF2 a putative RNA-dependent RNA polymerase (RdRP). UTR, Untranslated region. (B)
Accumulation of ChNRV1 transcripts in the C. higginsianum wild-type strain IMI 349063A as determined by
semi-quantitative RT-PCR analysis (center lane, cDNA), using primers spanning both ORFs (S7 Table). PCR
analysis from genomic DNA (gDNA) of C. higginsianum IM| 349063A strain using the same primers pairs
determined that ChNRV1 is not integrated into the fungal genome. (C) Electrophoretic analysis of viral
dsRNA in 1% agarose gel without treatment, treated with DNase, treated with RNase in a high-salt, or treated
with RNase in a low salt buffer. Resistance to degradation by RNaseA in buffer with high salt concentration
confirmed the nature of the dsRNA molecule.

doi:10.1371/journal.ppat.1005640.g004

kb

created a de novo transcript assembly using a combined set of all reads from the four AdclI rep-
licates and the program Trinity [58]. A total of 22,237 contigs were assembled with an average
length of 509 bp per contig. From this assembly 26 non-redundant contigs were identified as
originating from the C. higginsianum mitochondrial genome. Additionally, a 4,077 bp contig
was identified as an additional copy of the large subunit rRNA gene. The mitochondrial and
rRNA transcript sequences were added to the existing C. higginsianum genome reference
sequence for subsequent whole-genome analyses (S1 Text).

Next, the unmapped RNA-seq reads from one AdclI replicate were aligned to the de novo
assembled transcriptome to identify high coverage transcripts not present in the genome
sequence. A single sequence, assembled into two contigs representing the forward and reverse
strand of the same sequence, accounted for 79% of the previously unaligned reads. A BLASTX
analysis against the nr database using the longer of these two sequences (2,835 bp versus 2,611
bp) identified two putative open reading frames (ORF) (Fig 4A). The highest-scoring align-
ment for the 5° ORF (ORF1) was ORFA, a protein of unknown function from Beauveria bassi-
ana RNA virus 1 (e-value 0.0). The best alignment for the 3> ORF (ORF2) was to the RNA-
dependent RNA polymerase of Penicillium janczewskii Beauveria bassiana-like virus 1 (e-value
0.0). The conserved domain cd01699 (RNA-dependent RNA polymerase) was also identified.

Novel RNA molecule is a double-stranded RNA virus present in the wild-type strain.
Both bioinformatic and molecular approaches were used to confirm the presence of the virus in
wild-type C. higginsianum and was thus ancestral to the generated RNA silencing mutant lines.
RNA-seq reads from the control samples were aligned to the Trinity contigs, resulting in 9x cov-
erage of both virus genome contigs. Additionally, we analyzed previously published RNA-seq
data from four developmental stages of C. higginsianum [35] for the presence of the virus and
found sequences that uniquely mapped along 95% of the viral genome. Normalized virus read
counts (per million mapped) for the O’Connell and colleagues [35] dataset were approximately
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300-times less abundant than observed in our control dataset, likely due to differences in total
RNA extraction protocols: O’Connell and colleagues used poly-A purified total RNA as the tem-
plate for library preparation, while we used rRNA-depleted RNA. RT-PCR demonstrated the
presence of a viral transcript in the wild-type strain of C. higginsianum (IMI1349063A) (Fig 4B,
Lane 2), and PCR analysis of fungal genomic DNA showed that the sequence was not integrated
into the C. higginsianum genome (Fig 4B, Lane 3). Further, the RNA molecule was determined
to be dsRNA based on resistance to DNase, resistance to RNase at high salt concentration (1 M
NacCl), and degradation by RNase at low salt concentration (Fig 4C).

RNA-ligase-mediated RACE (RLM-RACE) [59] sequencing extended the 5’ and 3’ ends of
the coding strand by 65 nt and 23 nt, respectively, resulting in a complete dSRNA molecule of
2,923 nt (Fig 4A). The additional 5’ sequence extended ORF1 to include an ATG start codon,
resulting in a 975 nt long gene, putatively encoding a 324 aa (~35 kDa) protein. The dsRNA
sequence included 5’ and 3’ untranslated regions (UTR) of 16 and 106 nt respectively. ORF1
and ORF?2 are in different frames of the plus strand: ORF1 in frame 2 (nucleotides 17 to 991)
and ORF2 in frame 1 (nucleotides 1081 to 2817), with an 89-nt spacer in between. A putative
slippery site heptamer, G GAU UUU, is present immediately upstream of the stop codon of
ORF1, suggesting that an ORF1-ORF?2 fusion protein may be produced by a -1 ribosomal
frameshift.

As a search through the de novo Trinity transcripts did not reveal any additional viral
RNAs, and the dsRNA sequence was assembled as a single fragment, we have designated the
assembled contig as Colletotrichum higginsianum non-segmented dsRNA virus 1 (ChNRV1).
The complete viral genome sequence is deposited in GenBank under the accession KM 923925,
and GenBank protein IDs for ORF1 and ORF2 are AIW81424 and AIW81425, respectively.

The identification of ChNRV1 prompted us to ask if it was present in other isolates of C.
higginsianum and the closely related species C. destructivum, collected from various geographi-
cal locations (S4 Table). RT-PCR was used to screen for the presence of ChNRV1 and only one
other C. higginsianum strain (IMI349061), which was collected from Trinidad and Tobago
along with the strain used in this study, had detectable virus (S4 Table). As this assay specifi-
cally queried for the presence of ChNRV1 sequences, these C. destructivum/higginsianum
strains could be infected with other viruses. Viral dsSRNA elements have been described previ-
ously in three Colletotrichum species, including one further characterized as a Gammapartiti-
virus [60-62]. Deeper surveys of more strains from additional locations will be needed to fully
define the range of ChNRV1.

Analysis of ChNRV1 proteins and virions. Double-stranded RNA viruses share numer-
ous structural and functional similarities [63]; many are encapsidated with the necessary capsid
proteins encoded for within their genome, along with the RARP used for replication. Therefore,
we hypothesized that ORF1 encodes a capsid protein. Using the previously solved 3D structure
of Saccharomyces cerevisiae virus L-A (ScV-L-A) (PDB ID: 1mlc) [64] to predict the putative
3D structure of ORF1 using I-TASSER [65,66]. The template modeling score (TM-score) is
reported between 0 and 1, where a TM-score greater than 0.5 indicates a strong similarity in
topology [67,68]. The TM-score for ORF1 aligned to ScV-L-A capsid protein was 0.872 indi-
cating that the two proteins have a similar topology [67]. The next highest scoring structural
analog was the capsid protein from Penicillium chrysogenum virus (PDB ID: 3j3iA) with a
TM-score of 0.594. The top model predicted by I-TASSER was downloaded and visualized
with Chimera, where the ORF1 sequence is in white and the ScV-L-A capsid sequence in cyan
(Fig 5A and S1 Movie). As ScV-L-A capsid protein sequence is ~2X longer than ORF1 (608 aa
versus 324 aa), it was expected that a large part of the ScV-L-A capsid sequence would not have
homologous regions in ORF1. Indeed, ORF1 is structurally similar to only the N-terminal 414
aa of ScV-L-A. This N-terminal region is enriched with alpha helices (56%) compared to full
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Fig 5. Characterization of viral proteins. (A) Predicted secondary structure of ChNRV1-ORF1, putative
coat protein, (white) aligned to the model of ScV-L-A capsid protein (cyan). The 10 amino acids from the N-
terminal and C-terminal ends of ChNRV1-ORF1 are in purple and orange respectively. (B) Analysis of viral
proteins by SDS-PAGE (upper panel) and dsRNA by agarose electrophoresis (lower panel) from purified
virus fractions. Four proteins bands (p110, p36, p34 and p25) and viral dsRNA accumulate in the Adcl7,
Adcl1Adcl2 and Aago1 strains. KDa, kilodaltons. (C) Distribution of ChNRV1 trypsin-digested p110, p36, p34
and p26 peptides identified by Mass Spectrometry along the capsid protein (blue boxes) and the RdRP
protein (orange boxes). Values indicate the mean normalized spectral counts and the percentage of
sequence coverage in parenthesis, p110: below diagram; p36, p34, p26: next to diagram.

doi:10.1371/journal.ppat.1005640.g005

length ScV-L-A (38%) while the C-terminal end, which is not found in ORF1, is enriched in
beta sheets (C-terminus: 86%, entire sequence: 63%) (S9 Fig). Thus ORF1 appears to contain
the conserved helix-rich core found in ScV-L-A and other totiviruses [69].
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis detected differential accumula-
tion of four proteins of approximately 110, 36, 34, and 26 KDa in the Adcl1, Adcl1Adcl2 and
Aagol strains that were visibly absent in the wild-type strain, that was accompanied by specific
accumulation of dsSRNA molecules (Fig 5B). Each protein was excised from two biological repli-
cates of Aagol and wild-type strains, digested by trypsin and subjected to mass spectrometry
(MS). Protein abundance was estimated on the basis of spectral count values [70] (S5 Table). In
all Aago1 samples, proteins encoded by ChNRV 1 were the most abundant proteins observed.
From the p110 sample, an average of 70 and 66 spectral counts matched the capsid and RARP
proteins, respectively (Figs 5C and S10A, S5 Table). The estimated size of p110 is similar to the
predicted size of a CP-RdARP fusion protein (933 aa, 103.9 KDa), suggesting that these proteins
are expressed as a single polyprotein, likely due to a ribosomal frameshift. However as the pre-
dicted m/z ratio of the trypsin products from the frameshift region exceeded the MS survey scan
m/z cut-off, these fragments were not observed. The capsid protein was the major source of spec-
tral counts in the Aagol mutant for the p36, p34, and p26 samples (870, 791, and 970, counts
respectively) (Figs 5C and S10A, S5 Table). Both p36 and p34, but not p26, had trypsin-derived
peptides that matched the capsid N-terminus (Figs 5C and S10C), suggesting that p26 is a trun-
cated form of the capsid protein. Although not visibly detectable on the gel, the capsid protein
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was detected by MS in all wild-type samples (10-33 spectral counts) (S5 Table), confirming that
ChNRV1 capsid protein is present at very low amounts in C. higginsianum wild-type.

We attempted to purify viral particles from mycelia of the AdclI, Adcl1Adcl2, and Aagol
strains, however, despite highly abundant dsRNA and capsid protein in the viral particle prepa-
ration, repeated attempts to observe ChNRV1 virions using electron microscopy were unsuc-
cessful. Most dsRNA viruses assemble their capsid by arranging 120 capsid proteins, organized
into 60 dimers, thus, dimer formation is a key step prior capsid assembly [71]. 3-sheets are
located at the dimer interface and are important for dimer stabilization in members of the Par-
titiviridae family [72,73]. The putative capsid proteins encoded by ChNRV1 and plant amalga-
maviruses are shorter in size than those from the Totiviridae and Partitiviridae families and
have fewer §3-sheets (S9 Fig). Thus ChNRV1 may not form classical virions, similar to members
of the plant Amalgamaviridae family [74-76]. Virions are an effective means of protecting the
viral dsSRNA genome from the host RNA silencing machinery, but in the absence of a viral par-
ticle, specialized structures within the cell may be used. Members of the Hypoviridae family
enclose their genome within host-derived vesicles [18,77]. Therefore, it remains to be deter-
mined if ChNRV1 capsid is functionally required for dsRNA protection. Further microscopic
analyses of C. higginsianum mycelium combined with viral-specific antibodies may reveal the
presence of ChNRV1-containing structures.

ChNRV1 belongs to a distinct group of dsRNA viruses

To determine the relationship between ChNRV1 and other mycoviruses we used a maximum-
likelihood phylogenetic analysis on the amino acid sequence of the RARP of ChNRV1 and
other mycoviruses from the Totiviridae, Partitiviridae, and Unclassified dsRNA viruses (S6
Table). We initially hypothesized that ChNRV1 is a Totiviridae based on its non-segmented
genome organization and the predicated structural similarity between ORF1 and the capsid
protein of ScV-L-A. However ChNRV1 was not placed into either the monophyletic Totiviri-
dae or the Partitiviridae groups (Fig 6A). Instead, ChNRV1 grouped in as a sister clade to the
Partitiviridae family RARPs with a number of recently described members of the family Amal-
gaviridae that primarily have monopartite genomes (Fig 6A). A set of RARP sequences from
dsRNA viruses currently unclassified is also part of this sister clade, but separate from the
Amalgaviridae members. Further supporting a relationship with Partitiviridae RARPs, an anal-
ysis within the eight conserved domains of RARP proteins of dsRNA viruses determined that
all residues specific to the Partitiviridae family RARPs are present in ChNRV1, while only 4 of
29 Totiviridae-specific residues are observed [78] (Fig 6B).

While the evolutionary relationship between ChNRV1 and existing mycovirus families is
unclear, it seems likely that ChNRV1 belongs to a distinct group of dsRNA viruses with some
similarities to both totiviruses and partitiviruses. The recent discovery of both fungal and plant
dsRNA viruses with high levels of shared sequence homology indicates these viruses are either
new members of the Amalgamaviridae family or belong to a yet to be determined family [74-
76,79-84] (Fig 6A).

ChNRV1 is a target of the C. higginsianum RNA silencing machinery

ChNRV1 transcripts and dsRNA genome are affected by AGO1 and DCL1. Since
ChNRV1 RNA and protein levels changed in specific mutant strains (Fig 5B), we hypothesized
that ChNRV1 is regulated by RNA silencing. Transcript and small RNA datasets from the
mutant and control strains were re-aligned to a reference genome, which included the C. hig-
ginsianum supercontigs along with the mtRNA, rRNA, and ChNRV1 sequences. Using this
updated reference genome resulted in an increase in RNA-seq reads mapped in comparison to
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the original genome alignments (S11A Fig). The Adcll, Adcl1Adcl2, and Aagol strains had the
largest gain in mapped reads with an average of 2.1X, 1.8X, and 1.7X more mapped reads,
respectively. RNA-seq reads mapped to the virus were >80% of the newly mapped reads in
Adcll, Adcl1Adcl2, and Aago1, but less than 3% of the remaining genotypes (S11A Fig). The
total number of reads mapped to the ChNRV1 genome was determined for all replicates and
scaled by the total number of reads in the respective library (Fig 7A). A one-way ANOVA and
Tukey post-hoc analysis evaluated the differences in scaled read counts between the mutant
and controls strains. Only the Adcll, Adcll1Adcl2, and Aagol strains had significantly differing
amounts of RN A-seq reads than the controls with 411,802 more reads in Adcl1 (95% confi-
dence interval: 294,782 to 528,823), 563,122 more reads in Adcl1Adcl2 (95% confidence inter-
val: 446,102 to 680,143) and 290,788 more reads in Aagol (95% confidence interval: 173,767 to
407,808) (Fig 7A).

Next we analyzed the number of reads that mapped to the ChNRV1 sense and antisense
strands, hypothesizing that a significant increase in virus transcription would result in a greater
amount of sense strand (mRNA). Indeed, the scaled read counts mapped to the sense strand of
the virus genome were significantly greater in the Adcll, Adcl1Adcl2, and Aagol strains relative
to the controls, with 406,981, 556,991, and 289,613 more reads, respectively (Fig 7B and 7D-
7F) (95% confidence intervals Adcll: 289,234 to 524,729; Adcl1Adcl2: 439,244 to 674,739;
Aagol: 171,866 to 407,361). Quantitative RT-PCR confirmed the RNA-seq results as a substan-
tial increase in viral mRNA levels in the Adcll, Adcl1Adcl2, and Aagol strains, while the
remaining strains had levels of CANRV1 mRNA near wild-type (S12A Fig). A significant differ-
ence was also observed in the number of reads mapped to the antisense strand of the ChNRV1
genome in Adcll and AdclIAdcl2 (Fig 7C-7F), where 4,820 and 6,130 more reads mapped,
respectively (95% confidence intervals, AdclI: 995 to 8,645; Adcll1Adcl2: 2,306 to 9,955). Anti-
sense strand reads were also increased in the Aago1 strain but did not meet the threshold of sig-
nificance. The presence of RNA-seq reads from the antisense strand of the ChNRV1 genome
serve as an indicator for the dsSRNA genome and correspond with the accumulation of viral
dsRNA elements in the Adcll, Adcl1Adcl2, and Aagol strains observed during gel electrophore-
sis (Fig 5B). Despite using RNA preparation methods not optimized for isolation of dsSRNA
species, antisense reads from the dsRNA genome would be expected to be at least partially
amplified by our library preparation protocol; Coetzee and colleagues identified the dsSRNA
“virome” of an infected vineyard by treating dsRNA at 95°C for 10 minutes, followed by frag-
mentation via the Illumina mRNA Sequencing Kit [85], which are conditions similar to those
employed in our study. A significant effect on viral RNAs was not observed in the RNA-seq
data from any of the single RDR mutants. Thus ChNRV1 is deregulated in the Adcl1,
Adcl1Adcl2, and Aagol strains relative to wild-type, resulting in the accumulation of both
dsRNAs and mRNAs (Figs 5, 7 and S12A).

Small RNAs derived from ChNRV1 are DCL1-dependent. In other organisms, induction
of an antiviral defense response is generally characterized by the production of small RNA mol-
ecules that map to the sense and/or antisense strand of the viral genome [86-88]. Thus, small
RNAs were aligned to the new reference genome, using Bowtie and allowing only perfect
matches. As with the RNA-seq data sets, all strains demonstrated an increase in the percent of
reads mapped compared to the original mapping results (S11C Fig). ChNRV1-derived small
RNAs were present in all strains analyzed (Figs 8A and S11D), along with other genomic fea-
tures including structural RNAs, protein-coding genes, repeats, transposable elements, and
non-annotated regions (Fig 8A). Aligning against the expanded genomic sequence, Aagol
gained the greatest amount of reads (29%) where >90% of these reads mapped to ChNRV 1.
While not an abundant proportion of total reads, ChNVR1-derived small RN As also repre-
sented the largest category of newly mapped reads in Ardr3, Adcll, and Adcl1Adcl2 (S11D Fig).
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Fig 8. Characterization of viral small RNAs. (A-G): Analysis of viral small RNAs from the Controls and RNA silencing mutant strains.

Significant differences between the Control and RNA silencing mutant strains are indicated where “a

" p < 0.05. (A) Summary of genomic loci

that produce small RNAs as a percentage of total reads per genotype. (B) Small RNA reads, scaled to reads per million of total reads (RPM),
mapped to the virus genome. (C) Ratio of sense to antisense small RNAs that mapped to the viral genome. (D) Distribution of viral small
RNAs by size and by strand as a percentage of total viral small RNAs by strand. Sense strand small RNAs are plotted above the x-axis and
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reads from the antisense strand are plotted below. (E) 5" nucleotide distribution of viral small RNAs. (F) Ratio of small RNAs to RNA-seq
mapped to ChNRV1. RPM counts for each small RNA replicate were divided by the average RPM counts from the RNA-seq for that
genotype. (G) Analysis of small RNA read counts along the viral genome, as a function of RNA-seq levels. Small RNA RPM counts per
nucleotide were determined by strand then divided by the average RPM counts for the RNA-seq for that genotype and strand. Graphical
representation of the virus is in the middle, with the two ORFs indicated, and genome coordinates are along the top-most edge. Sense strand
reads are plotted in blue above the genome figure and antisense reads are plotted in orange below. The scale for sense strand and
antisense strand values is shown as density heatmaps above the plot. (H-M): Analysis of the 6H3F-AGO1 input and IP fractions. Significant
differences between the Input and IP fractions are indicated where “a”: p < 0.05. (H) Summary of genomic loci that produce small RNAs
found in the input and IP fractions. Colors are the same as (A). (I) RPM counts of small RNAs in the input and IP that mapped to the virus
genome. (J) Ratio of sense to antisense of viral small RNAs. (K) Size distribution and (L) 5’ nucleotide distribution of viral small RNAs as a
percentage of total viral small RNAs. (M) Input and IP RPM counts plotted by strand at single nucleotide resolution along the virus genome.
Heatmap densities shown below the plots indicate the scale of RPM for sense and antisense strand reads.

doi:10.1371/journal.ppat.1005640.9008

ChNRV1-derived small RNAs were scaled to the total number of small RNAs per library
then evaluated using a one-way ANOVA and Tukey post-hoc analysis. Due to the significant
increase in ChNRV1 levels observed in the Aagol RNA-seq dataset, we hypothesized that viral
small RNA production may be lower in the Aago1 strains. However, a significant increase in
viral small RNAs was observed the Aagol mutant strain relative to the controls, with 234,333
more reads present in Aagol (Fig 8B) (95% confidence interval: 174,481 to 294,185). This result
indicates that AGOL is not required for production of ChNRV1-derived small RNAs, and that
in the absence of AGO1, ChNRV1 was not adequately targeted for suppression. Further, the
abundant production of small RNAs in Aagol demonstrated that DICER activity alone is insuf-
ficient for controlling viral infection, a result also observed in an agol/ago2 double mutant of
Arabidopsis thaliana where DCL4 activity alone was insufficient for controlling viral infection
[89]. We further hypothesized that without DCLI, viral small RN As would be significantly
under-represented. However, ChNRV1-derived small RNAs were significantly over-repre-
sented in AdclI relative to the controls (Fig 8B) (89,571 more reads; 95% confidence interval:
29,719 to 149,423), while levels in the AdclIAdcl2 strain were not significantly different than
the controls.

To address the unexpected results for the Adcll and Adcl1Adcl2 samples we examined the
ratio of sense to antisense small RNAs from the viral genome, hypothesizing that if the
sequences observed in these samples were true small RNAs, this ratio would remain unchanged
relative to the controls. A clear strand bias was not observed in the C. higginsianum control
strains (1.48 sense to antisense), indicating that viral small RN As originate from both sense
and antisense strands in an RNA silencing-proficient strain (Fig 8C). The ratio of sense to anti-
sense reads in all the rdr and ago mutants, as well as Adcl2 strain, was indistinguishable from
the controls. Further, while the total number of viral small RNAs significantly increased in
Aagol, the relative ratio of sense to antisense reads was maintained, indicating that DCL action
remained capable of generating viral small RNAs in the absence of AGO1. However, the aver-
age ratio of sense to antisense small RNAs in Adcll and AdclIAdcl2 strains was 3.7 and 9.5,
respectively (Fig 8C), where the higher ratios are due to an increase in the number of reads
from the sense strand (data available in Fig 8 dataset). As this ratio was only partially perturbed
in the Adcl1 strain, possibly DCL2 activity is capable of producing antisense viral small RNAs
in the absence of DCL1; the loss of both DCLs results in primarily sense strand small RNA
sequences with low representation from the antisense strand.

To further characterize the nature of ChNRV1-derived small RNAs, particularly those in
the DCL1-deficient strains, we did a routine analysis of small RNAs by size and 5’ nucleotide
preference. An initial analysis of the small RNAs by size did not reveal a pattern responsive to
the loss of DCL1 (data available in Fig 8 dataset). Thus, viral small RNAs were split by strand
and then plotted by size, reasoning that the antisense strand reads would convey the size profile
of true viral small RNAs, while the signal on the plus strand may be contaminated with viral
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mRNA degradation products. The size distribution of ChNRV1 sense strand small RNAs was
broad (20-24 nt) and largely unaffected by genotype (Figs 8D and S13A). In particularly the
size distribution by strand for the Aago2, Adcl2, and all rdr mutant strains was indistinguishable
from the controls, with peak abundance at 21 nt on the antisense strand (S13A Fig). Analysis
of antisense strand small RNAs in the Aago1 strain also demonstrates a peak at 21 nt, along
with a slight increase in abundance of longer (>23 nt) small RNAs (Fig 8D). A more pro-
nounced shift in size is observed in the two strains lacking DCL1, where 21 nt sequences are
depleted and those > 23 nt are more abundant (Fig 8D). This suggests that despite the presence
of antisense small RNAs in the Adcl! strains, there was a loss in size-specificity expected of
DICER-dependent small RNAs. A Northern blot analysis of visSRNAs from Adcl1, Adcl1Adcl2,
Aagol, and wild-type confirmed three key aspects of the sequencing analyses (S12B Fig). First,
viral small RNAs in Aagol are more abundant than in wild-type, and that there is a size speci-
ficity of ~22 nt. Secondly, the signal in the AdclI lanes was diffuse and lacked the specific accu-
mulation of visSRNAs observed in the Aago1 strains. Finally, no signal from ChNRV1 small
RNAs was detected in the AdclIAdcl2 or wild-type lanes indicating that accumulation in these
strains was demonstrably lower than observed in the Aago1 strains, and indeed, below the
threshold for detection via blot under these experimental conditions.

ChNRV1-derived small RNAs from the control strains had a preference for 5’ U, which was
negatively affected in the Adcll, Adcl1Adcl2, and Aagol strains (Fig 8E), but not in the remain-
ing RNA silencing mutants (S13B Fig). In Aago1 less than 50% of reads had a 5’U compared to
75% in the controls, suggesting that AGO1 binds to and stabilizes viral small RNAs with a 5°U.
Similarly, loss of DCLI affected the 5" nucleotide distribution of ChNRV1 small RNAs, where
only 25% of reads contained a 5’U (Fig 8E). Thus, size and nucleotide analyses indicate that in
strains with an intact AGO1 and DCL1, ChNRV1-derived small RNAs are 21-nt in length with
a5U.

To better understand viral small RNA production, particularly in the AdclI and AdclIAdcl2
strains, we measured the abundance of ChNRV1-derived small RNAs relative to the ChNRV1
RNA-seq data. Each replicate of small RNA for each genotype shown in Fig 8B was divided by
the average number of RNA-seq reads of the corresponding strain (data shown in Fig 7A). The
average ratio of small RNAs to RNA-seq in the controls was 23.33, which was not significantly
different from that of the rdr, dcl2, and ago2 mutant strains (Fig 8F). The ratio observed in
Aagol was significantly lower at 0.90 (95% confidence interval: 4.0 to 34.1), meaning that small
RNA production from ChNRV1, as a function of the RNA-seq data, was approximately 22
times lower in Aagol (Fig 8F), further indicating that the abundant levels of ChNRV 1 small
RNAs produced by DCLI are not sufficient for controlling viral RNA levels; AGO1 is also
required. As with Aagol, the small RNA to RNA-seq ratios observed in Adcll and Adcl1Adcl2
decreased to a mean of 0.28 and 0.06, respectively (95% confidence intervals: 4.6 to 34.7 and
4.8 to 34.9). Visualizing the distribution of small RNAs along the viral genome, again control-
ling for RNA-seq levels, illustrates that particular loci from both strands appeared to be hot
spots for ChNRV1-derived small RNA production in strains with a functioning DCL1 and
AGO1 (Fig 8G). Taken together, these results indicate that DCLLI is the primary producer of
viral small RNAs as the strains lacking this gene have altered size and 5" nucleotide distribu-
tions relative to RNA silencing-proficient strains. Further, AGOL1 is also a crucial member of
the antiviral defense as DCLI activity alone was inadequate for controlling ChNRV1 transcript
levels.

Small RNAs derived from ChNRV1 are loaded into AGO1. ChNRV1-derived small
RNAs were further characterized by the analysis of AGO immunoprecipitate fractions. A com-
parison of unique sequences in the 6H3F-AGO2 IP and WT/mock IP revealed a high degree of
correlation between these samples (average Pearson correlation co-efficient (p) = 0.96) that
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was not observed between 6H3F-AGO1 IP and WT/mock IP (average p = 0.67). Combined
with the nearly undetectable levels of AGO2 RNA and protein, suggested that AGO2 does not
play a major role in RNA silencing during vegetative growth. As such, we focused all further
analyses on the 6H3F-AGO1 input and IP samples only. As expected, we observed
ChNRV1-derived small RNAs in both the AGO1 input and IP fractions upon alignment to the
expanded genome sequence (Figs 8H and S11C, right panel), and these sequences represented
the majority of newly mapping reads (S11D Fig). ChNRV1-derived small RNAs were signifi-
cantly more abundant in the 6H3F-AGO1 IP than the input, where we observed 186,362 more
reads (Fig 8I) (95% confidence interval: 158,030 to 214,693). Analysis of 6H3F-AGO1-bound
small RNAs by strand revealed an average ratio of 1.3 sense to antisense (Fig 8]), indicating
that viral small RNAs loaded into AGO1 originated from both strands without a strong bias. A
size distribution analysis determined that 21 nt was the predominant size in the 6H3F-AGO1
IPs (Fig 8K), and a 5" nucleotide preference for 6H3F-AGO1-bound small RNAs was clear as
nearly 99% of viral small RNAs loaded into AGO1 had a 5°U (Fig 8L). The strong 5’ nucleotide
preference of AGOL1 further demonstrates that the sequences observed in the AdclI and
AdcllAdcl2 datasets are not likely to be functional as these small RNAs are not the preferred
substrate to be loaded into AGO1 for targeting the viral genome. 6H3F-AGO1-bound viral
small RNAs originated from both strands and were distributed across the ChNRV1 genome
(Fig 8M). Regions with the greatest signal in the 6H3F-AGO1 IP corresponded to the hotspots
observed in the controls and mutant strains proficient at silencing ChNRV1 (see Fig 8G), sug-
gesting that small RNAs from these loci were specifically being loaded into AGOL1.

Here we used RNA-seq and small RNA datasets from high-throughput sequencing to char-
acterize the antiviral role of RNA silencing machinery in C. higginsianum. Specifically, AGO1
and DCL1 were identified as crucial components as loss of either resulted in an increased accu-
mulation of viral mRNA and genomic RNAs. DICER-like genes have been implicated in the
antiviral response of other fungi. Characterization of the two DCL genes of C. parasitica
revealed that the C. higginsianum dcll homolog, dcl2, had a diminished response to infection
by either the dsRNA reovirus MyRV1-Cp9B21 or the p29 suppressor mutant of the ssRNA
hypovirus CHV1-EP713 [14]. Additionally, increased levels of viral RNAs were observed in the
Adcl2 and Adcl1Adcl2 double mutant of C. parasitica [14] and viral small RNAs were no longer
detected by Northern blot in the C. parasitica dcl2 mutant [90]. Here we show direct evidence
that AGO1 binds ChNRV1 small RNAs and the properties of AGO1-bound viral small RNAs,
~21-nt, 5’U preference, are consistent with previous reports for mycoviruses [90-92]. Argo-
naute-like proteins have also been identified as important for antiviral responses in fungi. Viral
small RNAs from Aspergillus virus 341-infected A. nidulans were only detected in an rdsA
mutant background, the C. higginsianum AGO1 homolog [91], indicating that the loss of this
gene lead to an increase in levels of viral small RNAs. Further, the C. parasitica ortholog of C.
higginsianum AGO1, AGL2, was also shown to be required for induction of an antiviral defense
in response to infection by Ap29-CHV1-EP713 hypovirus [25]. The putative role(s) of RARP
proteins during C. higginsianum antiviral response remain to be determined; recent work with
single and multiple mutants of rdr in C. parasitica indicated no contribution by RARP genes to
the antiviral response [26], and work in A. nidulans demonstrated that an RARP was not
required for silencing of transgene elements [93].

Conidiation levels are restored in ChNRV1-free Adcl/1 strains

After determining that DCL1 and AGO1 were involved in virus regulation, we hypothesized
that the defects in conidiation observed in these strains might be due to the activity of
ChNRV1 rather than endogenous regulatory activity of RNA silencing. Therefore, we used a
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Fig 9. Conidiation in C. higginsianum Adcl1 and wild-type strains with and without ChNRV1. (A)
Conidia production in the Control and Adc/7 mutant strains before cycloheximide treatment (—Cycloheximide/
+ChNRV1) and after cycloheximide treatment (+Cycloheximide/~ChNRV1). Conidia were collected after 7
days of growth in Mathur's medium and counted with a hemocytomer. Mean conidia counts are indicated by
the red dash; significantly different pairwise comparisons are indicated by shared lowercase letters (p < 0.05).
(B) RT-PCR analysis of C. higginsianum total RNA for the presence of ChNRV1, DCL1, and tubulin (control).
The presence of dsRNA was determined by gel electrophoresis of total RNA (lower panel).

doi:10.1371/journal.ppat.1005640.g009

cyclohexamide treatment to obtain a C. higginsianum wild-type strain IMI 349063A cured of
ChNRV1. DCLI deletion mutants were generated by targeted gene replacement using the C.
higginsianum wild-type cured strain as the recipient background. Gene disruptions were con-
firmed by RT-PCR analysis of DCLI, identifying two independent deletion mutants for conidia
quantification (Fig 9B). Virus-free Adcll strains produced an average of 10.7x10° conidia/ml
more than ChNRV 1-infected Adcll (95% confidence interval: 9.6x10°-11.9x10° conidia/ml),
demonstrating an 8.8X increase in conidia production (Fig 9A). Further, conidiation levels in
the Adcll strain were restored to nearly 80% of the levels observed in the cured wild-type strain.
These results indicate that virus proliferation in the AdclI strain is the major contributing fac-
tor to the severe conidiation defect observed in the ChNRV1-infected AdclI strains. Further
work to generate and characterize of virus-free strains will be used to elucidate the contribution
of RNA silencing during conidia production, particularly as work with T. atroviride strains
lacking the ChDCLI ortholog demonstrated severe deficiencies in conidia production [13]. As
well, the virus-free strain can be used as a system to query the effects of viral RNA versus viral
proteins in an RNA-silencing deficient strain to better understand the relative contribution of
each element to the conidiation phenotype observed.

Conclusions

Here we describe the antiviral role of Colletotrichum higginsianum silencing machinery against
ChNRV1, a novel dsRNA virus present in the wild-type strain (IMI 349063A). When the
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fungal silencing machinery is functional, ChNRV1 is maintained at low levels. However, loss of
either DCL1 or AGO1 leads to de-repression of ChNRV1, which consequently accumulates at
very high levels. Increase in viral accumulation is responsible for the severe conidiation defect
observed in Adcll, Adcl1Adcl2 strains, as virus-free AdclI strains show strong recovery of the
phenotype. The question remains why and how is ChNRV1 able to avoid the full impact of the
antiviral defense. Possibly ChNRV1 confers some advantage to C. higginsianum in a yet to be
studied environment, or it may act as vector a contributing to fungal genomic plasticity,
enhancing the emergence of new virulence traits through evolution.

Materials and Methods

Fungal strains, mycelial growth and conidiation

The Colletotrichum higginsianum (IMI 349063 A) wild-type strain used in this study corre-
sponds to the sequenced strain isolated from Brassica rapa (Trinidad Tobago), kindly provided
by Dr. Richard O’Connell [35]. The fungal strains deficient in the RNA silencing machinery
(Aagol, Aago2, Adcll, Adcl2, AdcllAdcl2 (Adcll/2), Ardrl, Ardr2, and Ardr3) were obtained in
this study by gene replacement. The fungal strains expressing the 6His-3FLAG-tagged AGO1
and AGO2 proteins were generated in this study by transformation of the previously generated
Aagol and Aago2 strains, respectively. Specific details related to the generation and confirma-
tion of knock-out and tagged strains can be found in S2 Text. Growth tests were performed by
culturing the fungus in Potato Dextrose Agar (PDA), Czapek dox agar (CDA), or Mathur’s
Agar (Conidiation media) [94] at 25°C in dark conditions. Growth tests under nutrient limita-
tions were performed using CDA depleted in carbon (CDA-C) or nitrogen (CDA-N) at 25°C
in dark conditions. For growth tests under osmotic stress conditions, fungal strains were grown
for 10 days in Mathur’s agar supplemented with 0.4 M NaCl, 0.2 M LiCl, 0.5 M Sorbitol, or 0.6
M Sucrose. Oxidative stress responses were analysed in Mathur’s media supplemented with 2
mM H,0,. Fungal conidiation was induced by growing the fungus on Mathur’s agar for 7 days
at 25°C and dark conditions. Conidia were collected from fungal mycelium by adding sterile
water to the surface of the mycelium. After filtration and microscopic observation, conidia
were counted with a Neubauer counting chamber.

Identification of the core components of the silencing machinery in
Ascomycetes

The search for putative homologs of the RDR, DCL and AGO proteins in Ascomycete fungi
analyzed in this work was done with BLASTP, using N. crassa protein domain sequences as
input. Identification of homologs was as follows: RDR proteins were required to have an RNA-
dependent Polymerase Domain, DCL proteins were required to have two RNAselII-domains,
and AGO proteins were required to have a PAZ and a PIWI domain. C. higginsianum gene
names were assigned based to the silencing pathway to which they belong: AGO1, DCL1 and
RDR3 for the Quelling pathway; AGO2, DCL2 and RDR1 for the MSUD pathway; and RDR2
for the Unknown pathway.

Sequence and phylogenetic analysis

The deduced amino acid sequence for each RNA silencing protein was aligned with MAFFT
[95]. Aligned sequences were imported into Molecular Evolutionary Genetics Analysis (MEGA
v6.06) [96], and trimmed to exclude positions with gaps. The best model of protein evolution
was determined using Prottest [97], based on the Akaike Information Criterion (AIC). The LG
+G+F model was determined by Prottest to be the best-fit for both fungal RNA silencing
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protein and the viral RDR alignments. A maximum likelihood (ML) phylogenetic tree was con-
structed with RAXML [98] using the appropriate model of amino acid substitution. The tree
was drawn using Dendroscope v3.2.10 [99].

Light microscopy

For conidia enumeration, a 10 pl drop of conidia suspension was placed in a Neubauer cham-
ber and covered with a cover slip. Three biological replicates from four individual transfor-
mants were counted for each genotype. Three different mm* were analyzed from each
biological replicate. For conidia measurements, pictures were taken using a Planapo x20 water
immersion objective with a Confocal Laser Scanning microscope Leica TCS SP8, and image
analysis was done with open-source Image]/Fiji v1.48 software (http://fiji.sc/Fiji). At least 200
conidia were measured for each genotype.

Purification and observation of virus particles

Viral particles were partially isolated from the Adcll, Adcl1Adcl2 and Aago1 strains following
the methods described by Dunn and colleagues [69] with minor modifications. Fungal mycelia
were grown for one month with constant agitation at (150 rpm, 25°C, dark). Approximately 70
mg of mycelia were homogenized with 6 ml of Tris buffer (0.1 M Tris-HCl, 0.15 M NaCl, 5
mM EDTA (pH 7.8). Hyphal debris was removed by centrifugation (10,000 rcf for 20 min at
4°C). The supernatant was collected and filtered through four layers of Miracloth (Calbio-
chem). To concentrate the virus particles, 0.15 M NaCl and 6% PEG6000 was added to the
solution, incubated 1 h on ice, and precipitated by low-speed centrifugation (3,600 rcf for 20
min at 4°C). The supernatant was removed and the pellet was resuspended in 100 pl 0.1 M
Tris-buffer (pH 7.8). Samples were analyzed immediately. The coat protein from viral particles
was observed by running a 5 pl aliquot of resuspended viral particles on a NUPAGE-Novex
4-12% Bis-Tris protein gel (Invitrogen) and stained with Commassie blue G-250. dsRNA from
viral particles was extracted from a 5 pl aliquot by phenol-chloroform-isoamyl alcohol, fol-
lowed by ethanol precipitation and visualized on a 1% (wt/vol) agarose gel.

Protein digestion and identification using liquid chromatography—
tandem mass spectrometry (LC-MS/MS)

The gel bands were cut, de-stained and in-gel digested as previously described [100]. Five
microliters of the digested peptides were injected to the LC-MS/MS system. The LC-MS/MS
was carried out on a LTQ-Orbitrap Velos Pro (ThermoFisher Scientific, Waltham, MA) cou-
pled with a U3000 RSLCnano HPLC (ThermoFisher Scientific, Waltham, MA). The protein
digests were first loaded onto a Cyg trap column (PepMap100, 300 um ID x 5 mm, 5 um parti-
cle size, 100 A; ThermoFisher Scientific) at a flow rate of 5 uL/min for 4 min equilibrated with
2% acetonitrile, 0.1% formic acid. Peptide separation was carried out on a C;5 column (Acclaim
PepMap RSLC, 15 cm x 75 um nanoViper, C18, 2 um, 100 A, ThermoFisher Scientific) at a
flow rate of 0.3 pL/min and the following gradient: 0-3 min, 2% B isocratic; 3-41 min, 2-45%
B; 45-47.8 min, 45-98% B. Mobile phase A, 0.1% formic acid; mobile phase B, 0.1% formic
acid in 80:20 acetonitrile:water. The Orbitrap mass analyzer was operated in positive ionization
mode using collision induced dissociation (CID) to fragment the HPLC separated peptides.
The mass range for the MS survey scan done using the FTMS was 300 to 2000 m/z with resolu-
tion set to 60,000 @ 400 m/z and the automatic gain control (AGC) target set to 1,000,000 ions
with a maximum fill time of 10 ms and 1 pscan. The 20 most intense signals in the survey scans
were selected and fragmented in the ion trap using an isolation window of 1.5 m/z, an AGC tar-
get value of 10,000 ions, a maximum fill time of 100 ms, normalized collision energy of 35 and
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activation time of 30 ms. Dynamic exclusion was performed with a repeat count of 1, exclusion
duration of 30 s, and a minimum MS ion count for triggering MS/MS set to 5,000 counts. All
MS/MS samples were analyzed using Mascot (Matrix Science, London, UK; version 2.5.0).
Mascot was set up to search the Colletotrichum higginsianum database from http://www.
broadinstitute.org/annotation/genome/colletotrichum_group/ToolsIndex.html, (16,263
entries) including the sequence from CP, RARP and CP-RdRP assuming the digestion enzyme
trypsin. Mascot was searched with a fragment ion mass tolerance of 0.80 Da and a parent ion
tolerance of 15 PPM. Deamidated of asparagine and glutamine, oxidation of methionine and
carbamidomethyl of cysteine were specified in Mascot as variable modifications. Scaffold (ver-
sion Scaffold_4.3.4, Proteome Software Inc., Portland, OR) was used to validate MS/MS based
peptide and protein identifications. Peptide identifications were accepted if they could be estab-
lished at greater than 95.0% probability by the Peptide Prophet algorithm [101] with Scaffold
delta-mass correction. Protein identifications were accepted if they could be established at
greater than 99.0% probability and contained at least 2 identified peptides. Protein probabilities
were assigned by the Protein Prophet algorithm [102]. Proteins that contained similar peptides
and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the
principles of parsimony. Proteins sharing significant peptide evidence were grouped into
clusters.

Electron microscopy

Cells were packed in specimen carriers in 75 mM PIPES buffer (pH 6.8) containing 50 mM
sucrose, and ultra-rapidly frozen in a Bal-Tec high-pressure freezer (HPM 010, Technotrade
International). Frozen samples were substituted in 2% osmium tetroxide plus 0.1% uranyl ace-
tate in acetone for 5 days at -85°C, slowly thawed to 20°C and embedded in Spurr’s resin. Thin
sections were cut using a LeicaUCT ultramicrotome, stained in uranyl and lead salts, and
observed using a LEO 912 AB energy filter TEM (Zeiss).

The viral particles were stained with 2% (wt/vol) uranyl-acetate solution (pH 7.4) and
observed using a transmission electron microscope.

Curing experiments

Cycloheximide treatment was used to remove ChNRV1 from the wild-type C. higginsianum
strain. In order to increase the chances of obtaining single conidia free of virus, mycelial plugs
were inoculated in Mathur’s Agar supplemented with Cycloheximide at 10 ug/ml (Crescent
Chemical Company) and allowed to conidiate for 15 days at 25°C in dark conditions. Conidia
were collected by adding sterile water, then counted with a Neubauer counting chamber.
About 100 conidia were spread onto 1% agar plates containing 0.5 ug/ml cycloheximide, and
allowed to germinate at 25°C. After 3—4 days the margin of the colonies were collected and
transferred to fresh Mathur’s agar.

DNA extraction and Southern blots

Total nucleic acid from C. higginsianum was extracted using previously described methods
[103], but with a mixed alkyltri-methylammonium bromide solution (MATAB) [0.1 M Tris
HCI, pH 8.0, 1.4 M NaCl, 20 mM EDTA, 2% MATAB, 1% PEG 6000, 0.5% sodium sulfite] as
the extraction buffer. DNA was purified by chloroform-isoamyl alcohol, followed by RNase
treatment, chloroform-isoamyl alcohol, and ethanol precipitation. Ten pug of DNA was digested
to completion with the indicated restriction enzymes (S3, S4 and S5 Figs) (New England Bio-
labs), separated on a 1% (wt/vol) agarose gel, and desired fragments were visualized after
hybridized with the corresponding digoxigenin (DIG)-dUTP-labelled probe. Oligonucleotides
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used for probe preparation are listed in S7 Table. Probes were labeled with digoxigenin (DIG)-
dUTP using the Random Primed DNA Labeling Kit (Roche).

dsRNA 3’'RACE analyses

To determine the terminal sequence of the dsSRNA ChNSV1 genome, a RNA ligase mediated
RACE (RLM-RACE) protocol was followed [59]. or dsSRNA enrichment, total RNA was
extracted using Trizol reagent (Life Technologies), followed by precipitation with 2M LiCl to
remove single stranded (ss) RNA. Supernatant was collected and dsRNAs were precipitated
with 4 M LiCl. dsRNAs were fractionated by 1% (wt/vol) agarose gel electrophoresis, gel-puri-
fied (PureLink Quick Gel Extraction Kit—Life Technologies) and denatured at 95°C for 5 min.
The miRNA Cloning Linker 1 (IDT) (5'App/CTGTAGGCACCATCAAT/3'ddC/) was ligated
to the 3’end of each strand of the denatured RNA using AIR Ligase (Bioscientific) in the pres-
ence of RNAseOUT (Invitrogen). The ligated products were used as templates for cDNA syn-
thesis using Superscript III Reverse Transcriptase (Invitrogen) following the manufacturer’s
instructions but with a denaturation step of 98°C for 10 min. The resulting cDNAs were ampli-
fied with the primers ORFI-reverse/P7-modban and ORF2-forward/P7-Modban to amplify the
3’ end from each strand. A total of 12 PCR reaction products for both strands were cloned into
pCR-BluntII (Invitrogen) for sequence analysis.

Semi-quantitative (RT-PCR), quantitative real-time PCR (RT-qPCR) and
northern blot analysis

Total RNA from C. higginsianum tissue was extracted using TRIzol reagent (Life Technolo-
gies). One microgram was treated with TURBO DNase I DNA-free (Ambion) to remove geno-
mic DNA contamination. cDNA synthesis was performed using the Superscript III system
(Life Technologies) following the manufacturer’s instructions. RT-PCR analysis was performed
using 10% of the first-strand reaction and 40 cycles of amplification to guarantee the detection
of the amplicon. RT-qPCR analysis used 3% of the first strand reaction as previously described
[104,105]. Oligonucleotides used for RT-PCR and RT-qPCR analysis are listed in S7 Table.

For Northern blot analysis of viral siRNAs, 2.5 ug of Total RNA was subjected to 17% poly-
acrylamide (containing 7M Urea) electrophoresis, and transferred to a positively charged,
nylon membrane (Roche) using a semi-dry electroblotting apparatus (Biostep). Blots were pre-
hybridized in PerfectHyb Hybridization buffer (Sigma), followed by hybridization with a DIG-
labeled DNA probe corresponding to the CP (ORF1) sequence. The DIG-labeled DNA probe
was created by amplifying the coat protein sequence using oligonucleotides listed in S7 Table,
cloning the resulting amplicon into pCR4 (Life Technologies), digestion with EcoRI (NEB) and
gel purification (Life Technologies), then labeled following the manufacturer’s instructions for
the DIG DNA Labeling Kit (Roche).

RNA immunoprecipitation for high-throughput small RNA sequencing

One gram of mycelia tissue from wild-type, Aago1/6H3F-AGO1 and Aago2/6H3F-AGO2 C.
higginsianum strains was used as the starting material for AGO-immunoprecipitation
described in Carbonell et al. [104], but with the following modifications. Clarified lysates were
incubated with 4 pg/ml of Monoclonal ANTI-FLAG M2 Antibody (Sigma) for 3 h at 4°C, fol-
lowed by 100 pl of Protein-G agarose (Roche) per milliliter for 30 min at 4°C. RNAs recovered
from input (before immunoprecipitation) and IP fraction were used for preparation of small
RNA libraries as described below.
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Preparation of small RNA libraries

Small RNA libraries were prepared following the detailed protocol previously described
[105,106]. Specific modifications include using 40 ug of total RNA of C. higginsianum 4-days
old mycelia and a 2 hr incubation for the 3’ ligation reaction.

Small RNA sequencing analysis

Libraries were sequenced using the Illumina HiSeq 2000, v3 chemistry at the Genome Technol-
ogy Access Center (GTAC) (Washington University, Saint Louis, Missouri). Scripts used for
initial processing of the small RNA data are available on GitHub (https://github.com/
carringtonlab/srtools). LibParse.pl was used to remove the 3" adaptor and de-multiplex the
sequences in the raw (FASTQ) file. For all lanes of data, the following common settings were
used: -t fastq -r 50 -m 18 -e CTGTAG-E (comma-separated list of the 10-12 barcodes used to
index the individual samples during library preparation) -1 (log_file.txt) -a (failed_parsing_file.
txt). Reads less than 18 nt in length and reads containing one or more N nucleotides were dis-
carded. Remaining small RNA reads were aligned to the C. higginsianum genome (version 1
assembly; Colletotrichum Sequencing Project, Broad Institute of Harvard and MIT (http://
www.broadinstitute.org/)) using the Bowtie algorithm [53] (version 0.12.8) allowing only per-
fect matches and reporting all mappings for reads that map multiple times to the genome.
Reads that mapped and reads that did not map to the genome were quantified using the Bowtie
output files and get_parsed_mapped_unmapped_stats.pl.

RepeatMasker (version open-3.3.0 [107]) and IRF (Inverted Repeats Finder, version 3.05)
[108] were used to identify repetitive elements within the C. higginsianum genome. These fea-
tures were added to the features table in a custom SQLite3 database along with the C. higginsia-
num version 1 gene annotation available from the Colletotrichum Sequencing Project (Broad
Institute of Harvard and MIT, http://www.broadinstitute.org/).

Preparation of strand-specific RNAseq libraries

Strand-specific RNAseq libraries were produced using the same RNA samples used for prepa-
ration of small RNA libraries. Ten pg of total RNA was treated with TURBO DNase I DNA-
free (Ambion). For depletion of ribosomal RNAs, 1.5ug of DNase-treated RN A was treated
with the Yeast RiboZero Magnetic Gold Kit (Epicentre) according to manufacturer’s instruc-
tions. cDNA synthesis was performed using 70 ng of RiboZero-treated RNA as previously
described [104,109] with the following modifications. RNAs were fragmented at 94°C for 7
min, and 12 cycles were used in the linear PCR reaction. DNA adaptors 1 and 2 were annealed
to generate the Y-shape adaptors, and oligonucleotides PE-Primer-F and PE-Primer-R (series
N701-N712) were used for linear PCR and multiplexing of transcript libraries (S7 Table). DNA
amplicons were analyzed with a Bioanalyzer (DNA HS kit, Agilent) to ensure a library size of
~250 bp, quantified using the Qubit HS Assay Kit (Invitrogen) and sequenced on a HiSeq 2000
sequencer (Illumina) at GTAC (Washington University).

RNA-seq analysis
FASTAQ files of RNA-seq data were de-multiplexed using the script parseFastq.pl and then
Bowtie2 (version 2.1.0) [52] was used to align the reads to the reference genome. The indexed

bam output from bowtie2 and the script get RNAseq_mapped_unmapped_stats.pl were used
to identify the total number of reads that mapped and that did not map for each genotype.
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De novo transcriptome assembly

The program Trinity (version Trinityrnaseq_r20131110, http://trinityrnaseq.github.io/) was
used for de novo assembly of RNA-seq reads. The FASTQ files for the four AdclI replicates
were combined into one FASTQ file and used as the input for Trinity. Separately the
unmapped reads from the bowtie2 alignment for AdclI (replicate 1) were converted into
FASTQ format (bam_2_fastq.noHit.pl), and aligned to the Trinity contigs using the utility pro-
gram alignReads.pl provided with the r20131110 version of Trinity. As the C. higginsianum
genome does not contain the mitochondrial genome, a custom BLAST database was created
from the mitochondrial sequences of C. graminicola (available at http://www.broadinstitute.
org/) and C. lindemuthianum (http://www.ncbi.nlm.nih.gov/nuccore/KF953885.1). Trinity
contigs were aligned to this mitochondrial database using BLASTN. A non-redundant set of 26
contigs was concatenated together to create the C. higginsianum mitochondrial RNA feature.
To identify high-coverage contigs, the samtools idxstats command was used on the output
from alignReads.pl: coordSorted.bam. Putative gene identities were determined using BLASTX
and the nr database. In total, three additional features were added to the features table of the
SQLite3 database and the C. higginsianum genome sequence: (1) viral sequence (2,923 bp), (2)
a large subunit rRNA sequence (4,077 bp), and (3) mitochondrial RNA sequence (30,330 bp).

Small RNA and RNA-seq analyses using a modified C. higginsianum
genome sequence

A new reference genome sequence was created with the addition of the three contigs to the C. hig-
ginsianum genome sequence. RNA-seq reads were aligned to the modified genome using Bowtie2
(version 2.1.0) [52]. Mapped and unmapped reads were determined using get RNAseq_mapped_
unmapped_stats.pl. To determine the distribution of the newly mapped reads, the script reads_
mapped_2_chromNum.RNAseq.pl was used. The distribution of RNA-seq by strand mapped to
the virus sequence was determined using readsPerFeature.strand.byRep.RNAseq.pl.

Small RNAs were aligned to the new reference sequence using bowtie, with perfect matches
only allowed. An SQLite3 database was created from the parsed and aligned reads using the
scripts PopulateDB.pl and Merge.pl (https://github.com/carringtonlab/srtools). Mapped and
unmapped read counts were determined using the script get_parsed_mapped_unmapped_
stats.pl. The distribution of newly mapped reads was determined using reads_mapped_2_
chromNum.FinalGenome.pl. To determine the distribution of mapped reads by genomic fea-
ture category sizeNT_byCatID.FinalGenome.pl was used. This script also created the 5’ nucleo-
tide profile data. Small RNAs mapped by strand to the virus were identified using
readsPerFeature.strand.byRep.smRNA.pl. Size distribution of viral small RNAs by strand was
determined using the script sizeNT_byCatID.byRep.byStrand.FinalGenome.pl.

Statistical analysis and data visualization of viral small RNA and RNA-
seq

Small RNA and RNA-seq reads mapped to the virus genome were scaled using the total num-
ber of reads in each respective library. Additionally, the scaled abundance of reads mapped to
the sense strand and antisense strand were also determined. Data were analyzed in R (version
3.0.3) with a one-way ANOV A with Tukey post hoc analysis. Visualization of scaled and ratio
data were also performed in R.

For plotting small RNAs along the virus genome, first the scaled read count per nucleotide,
by strand, was determined using hitsPerNT.smRNA strand.pl. The per-nucleotide values were
then each divided by the average number of scaled RN A-seq reads mapped to that strand of
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the virus. A density map of reads along the sense and antisense strands of the virus was created
in R. The hits per nucleotide per strand from the small RNA data of the AGO1 IP similarly
plotted, but was not normalized by RNA-seq data.

Structure prediction

3D structure prediction of ORF1 of the viral genome was performed with I-Tasser (version 3)
on-line server [65]. The known structure of the Saccharomyces cerevisiae L-A virus major coat
protein (PDBID: 1mlc) [64] was used as a template. The resulting protein structures were visu-
alized using Chimera (http://www.cgl.ucsf.edu/chimera) [110].

Accession numbers

Accession numbers for the fungal protein sequences analyzed in this study are listed in S1
Table. Accession numbers for Colletotrichum destructivum/higginsianum species are listed in
S4 Table. Accession numbers for viral proteins are listed in S6 Table. The complete nucleotide
sequence of the dsRNA virus ChNRV1 was deposited at NCBI in GenBank under the accession
number KM923925. De-multiplexed fastq files of the small RNA, IP, and RNA-seq libraries,
along with a gff3 file of counts and alignments to the viral genome, are available at the Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) under the SuperSeries acces-
sion GSE62708; subseries GSE62705, GSE62706, and GSE62707.

Supporting Information

S1 Text. Sequences of rRNA and mtRNA contigs identified via de novo assembly of Adcl1
RNA-seq reads.
(DOCX)

$2 Text. Supplementary Methods.
(DOCX)

S$1 Movie. Animation of the ChNRV1 ORF1, putative coat protein, aligned to Saccharomy-
ces cerevisiae virus L-A (ScV-L-A) coat protein. ChNRV1-CP is in white and ScV-L-A-CP in
cyan. N-terminal and C-terminal ends of ChNRV1 are denoted in purple and orange respec-
tively.

(MOV)

S1 Fig. Dicer and Argonaute domains in eukaryotes. (A) Domain arrangement of Dicer
(DCL) proteins from several species. Accession numbers for DCLs of Colletotrichum higginsia-
num (ChDCL1: CH063_06582, ChDCL2: CH063_02619), Neurospora crassa (NcDCL2:
NCU06766), Schizosaccharomyces pombe (SpDCR: NP_588215), Toxoplasma gondii (TgDCR:
TGME49_267030), Chlamydomonas reinhardtii (CrDCR: XP_001692436), Homo sapiens (Hs-
DCR: Q9UPY3), and Arabidopsis thaliana (AtDCL1: Q9SP32). (B) MAFFT alignment of
amino acid residues involved in the 5" phosphate binding (MID domain) and slicer activity
(PIWI domain) in the selected AGO proteins. Position shown to interact specifically with the
5’ phosphate (MID) and Mg" coordinating residues (PIWI) are labeled with a red asterisk
[111-114]. Accession numbers for AGOs of Colletotrichum higginsianum (ChAGOL1:
CHO063_04066, ChAGO2: CH063_09722), Neurospora crassa (NcQDE2: NCU04730, NcSMS2:
NCU09434), Magnaporthe oryzae (MG1: MGG_01294), Arabidopsis thaliana (AtAGOL1:
U91995, AtAGO2: Q9SHEFE3), Drosophila melanogaster (DmAGO1: CG6671) and Homo sapi-
ens (HsAGO2: Q9UKVS).

(TIF)
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S2 Fig. Expression analysis of RDR, DCL and AGO genes in C. higginsianum in different
stages of fungal development. Gene expression in (A) Conidia and (B) Germinated Conidia
was analyzed. Silencing genes belonging to the Quelling pathway (left panel), MSUD pathway
(middle panel) and Unknown pathway (right panel) are indicated. Values represent means +/-
SE of three biological replicates normalized to ACTIN and TUBULIN genes as a relative value
to AGOI, as determined by qRT-PCR.

(TIF)

S3 Fig. Targeted gene disruption of the C. higginsianum RDRI1, RDR2, and RDR3 genes.
(A-C) Schematic diagram showing the target replacement strategy (TGR) for (A) RDRI
(CH063_02767), (B) RDR2 (CH063_05776) and (C) RDR3 (CH063_08349). Hygromycin
(HPH) resistance was used as a selectable marker. Colored arrows indicate primers used for
amplification and generation of TGR constructs (S7 Table). For D-H, one gel was used for each
gene and probe or primer set; non-contiguous lanes are separated by white space. (D-F) Inte-
gration analysis by Southern blot for (D) RDRI, (E) RDR2 and (F) RDR3. One wild-type (WT)
and four independent mutant strains were analyzed. (D) A single 7.02 kb band was observed in
Stul-digested genomic DNA of WT strains when using the 1.89 kb RDRI probe (within the
deleted region of RDR1I). A 7.05 kb unique band was detected in only the Ardrl mutant strains
when using the 2 kb HPH probe; no band observed in the WT strain. (E) A single 4.90 kb band
was observed in Sall-digested genomic DNA of WT when using the 1.90 kb RDR2 probe. A
5.38 kb unique band was detected in only the Ardr2 mutant strains when using the 2 kb HPH
probe. (F) A single 3.99 kb band was observed in Pvull-digested genomic DNA of WT when
using the 2.11 kb RDR3 probe. A 5.00 kb unique band was detected in only the Ardr3 mutant
strains when using the 2 kb HPH probe. (G-H) Confirmation of gene knock-out by semi-quan-
titative RT-PCR analysis of (G) RDR1, RDR2, and RDR3 and (H) tubulin in the corresponding
mutant and WT strains. Black arrows in (A-C) denote primers located in exon junctions
designed for specific amplification of the RNA transcripts (57 Table).

(TIF)

S4 Fig. Targeted gene disruption of the C. higginsianum DCL1 and DCL2 genes. (A-C)
Schematic diagram showing the target replacement strategy (TGR) for (A) DCL1
(CHO063_06582), (B) DCL2 (CH063_02619) and (C) both DCLI and DCL2. Hygromycin
(HPH) resistance was used as a selectable marker for single mutants (A-B). Phleomycin
(PHLE) resistance was used as a selectable marker for generation of double Adcl12Adcl2 mutant
in the single mutant Adcl2 background (hph resistance) (C). Colored arrows indicate primers
used for amplification and generation of TGR constructs (S7 Table). (D-F) Integration analysis
by Southern blot for (D) DCLI, (E) DCL2 and (F) DCLI in Adcl2 background. Four indepen-
dent mutant and wild-type (WT) strains were analyzed. (D) A single 5.34 kb band was
observed in BglII-digested genomic DNA of wild-type when using the 3kb DCL1 probe (deleted
region in Adcll mutants). A 5.44 kb unique band was detected in all the Adcll mutant strains
when using the 2kb HPH probe. (E) Two bands were observed in the Xhol-digested genomic
DNA of the wild-type strain as expected; this was due to the initially designed probe, from the
deleted region of DCL2, hybridizing across the digestion site. A single 5.58 kb band was
detected in all the Adcl2 mutant strains when using the 2 kb HPH probe. (F) A single 5.34 kb
was observed in BgllI-digested genomic DNA of wild-type when using the 3 kb DCLI probe. A
6.41 kb unique band was detected in all the Adcl1Adcl2 mutant strains when using the 2.93 kb
probe PHLE probe. Disruption of the DCL2 (CH063_02619) gene was re-confirmed using an
improved probe that hybridized to a single, unique band in wild-type. (G-I) Confirmation of
gene knock-out by expression analysis of DCLI (G), DCL2 (H), and DCL1 and DCL2 (I) in the
corresponding mutant backgrounds as determined by semi-quantitative RT-PCR. Black arrows
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in (A-C) denote primers located in exon junctions designed for specific amplification of the
corresponding RNA transcripts (S7 Table).
(TIF)

S5 Fig. Targeted gene disruption of the C. higginsianum AGO1 and AGO2 genes. (A-B)
Schematic diagram showing the target replacement strategy (TGR) for (A) AGOI
(CHO063_04066) and (B) AGO2 (CH063_09722). Hygromycin (HPH) resistance was used as a
selectable marker. Colored arrows indicate primers used for amplification and generation of
TGR constructs (S7 Table). (C-D) Integration analysis by Southern blot for (D) AGOI and (E)
AGO2. Four independent mutants and one wild-type (WT) strain were analyzed. (D) A single
7.14 kb band was observed in Sall-digested genomic DNA of wild-type when using the 2 kb
AGOI probe (deleted region in Aagol mutants). A 7.02 kb unique band was detected in all the
Aagol mutant strains when using the 2 kb HPH probe. (E) A single 4.94 kb band was observed
in Xhol-digested genomic DNA of wild-type when using the 0.8 kb AGO2 probe. A larger,
unique band was detected in all the Aago2 mutant strains when using the 2 kb HPH probe.
(E-F) Confirmation of gene knock-out by expression analysis of (G) AGOI and (F) AGO2 in
the corresponding mutant backgrounds as determined by semi-quantitative RT-PCR. Black
arrows in (A-B) denote primers located in exon junctions designed for specific amplification of
the corresponding RNA transcripts (S7 Table).

(TIF)

S6 Fig. Disruption of RNA silencing genes in C. higginsianum does not negatively affect
vegetative growth. Vegetative growth in the RDRs (A), DCLs (B) and AGOs (C) mutant strains
on PDA and CDA media. Representative images of colony morphology after six days of growth
(left panel) and measurements of radial growth from 2 to 5 days (right panel) (mean +/- SE).
Scale bar = 1 cm. PDA, Potato Dextrose Agar. CDA, Czapek Dox Agar.

(TIF)

S7 Fig. Disruption of DCL1, DCL2, or DCLIDCL2 in C. higginsianum does not negatively
affect vegetative growth under stress-related conditions. Colony morphology of AdclI, Adcl2,
Adcl1Adcl2 and wild-type (WT) under selected stress -related conditions. Cultures were grown
at 25°C and dark conditions. Scale bar = 1 cm. (A) Strains were grown for four days on
Mathur’s media alone (-) or supplemented with a stress component: 2 mM H,0,, 5 mM
Methyl Viologen (MV), 200 mg/ml Calcofluor white (CFW). (B) Strains were grown for three
days on Mathur’s media alone (-) or supplemented with an osmotic stress component: 0.4 M
NaCl, 0.2 M LiCl, 0.5 M Sorbitol and 0.6 M Sucrose. (C) Strains were grown for seven days on
CDA media without Carbon (CDA-C) or without Nitrogen (CDA-N).

(TTF)

S8 Fig. Generation and molecular analysis of C. higginsianum strains expressing tagged
versions of AGO proteins. (A) Schematic diagram of the constructs. A 6His-3FLAG (6H3F)
epitope was cloned in frame with AGOI or AGO2 and expressed under the control of its own
promoter (prom). C higginsianum Aagol and Aago2 mutant strains expressing the Hygromycin
resistance (HygR) were transformed with the corresponding tagged AGO1 and AGO?2 con-
structs harboring the Phleomycin resistance (PhleR). UTR, Untranslated region. (B) Analysis
of integration by Southern blot using the Phleomycin probe. Only those strains showing a single
hybridization pattern with HindIII-digested genomic DNA, indicative of a single copy integra-
tion event, were selected for further analysis (indicated with an asterisks). Numbers above the
blot refer to the ID of the three AGO1 and two AGO2 independent transformants selected. (C)
Colony morphology after 3 days of growth for the selected C. higginsianum Aagol/
6H3F-AGOI (three independent transformants), Aago2/6H3F-AGO2 (two independent
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transformants), and control (wild-type) strains. Scale bar = 1 cm (D) Conidia production in
controls strains (wild-type and empty vector), Aagol mutant strains, and Aagol/6H3F-AGO1
strains. Conidia were collected after 7 days of growth in Mathur’s medium and counted with a
hemocytomer. Significantly different pairwise comparisons are indicated by shared lowercase
letters (p < 0.05). (E) Immunoblots of protein extracts from Aagol/6H3F-AGO1 (upper panel)
and Aago2/6H3F-AGO2 (lower panel) with a wild-type (WT) control. (F) Immunoprecipita-
tion of C. higginsianum tagged-AGOs. Immunoblots of protein extracts from input (in) and
immunoprecipitated (IP) samples from Aago1/6H3F-AGO1 (upper panel) and Aago2/
6H3F-AGO2 (lower panel) with a wild-type (WT) control. 6H3F-AGO2 was not detected in
the IP samples, even with longer exposures (data not shown).

(TTF)

S9 Fig. Comparison of capsid proteins of ChNRV1 and the selected members from the
Totiviridae, Partitiviridae and Amalgaviridae. Capsid secondary structures o-helix and 3-
sheets are shown in pink and orange, respectively. Colletotrichum higginsianum Non-seg-
mented dsRNA virus 1 (ChNRV1), Saccharomyces cerevisiae virus L-A (ScV-L-A), Penicillium
stoloniferum virus S (PsV-S), Southern tomato virus (STV). aa, amino acids.

(TIF)

$10 Fig. ChNRV1 proteins identified using liquid chromatography—tandem mass spec-
trometry (LC-MS/MS). (A-B) Protein sequence coverage identified for ChNRV1 in samples
p110, p36, p34, and p26 in both replicates (R1 and R2) in the AagoI and wild-type (WT) sam-
ples. Highlighted in blue are the peptides matching to the capsid protein and in orange to
RdRP protein in the Aagol mutant (A) and wild-type (WT) (B) strains. (C) Extracted ion chro-
matograms (XIC) of the selected N-terminal peptide (detected at 810.78 m/z, z = 3) from p36,
p34, and p26 samples from the Aagol mutant strain. Retention time and integrated peak area
are indicated next to the peak.

(TIF)

S11 Fig. Mapping statistics versus original and new reference genome sequence. (A) Percent
of total RNA-seq reads by category: mapped to original reference genome, mapped to new
sequences, or remain unmapped. (B) Breakdown of the source of newly mapping RNA-seq
reads. (C) Percent of total small RNA reads by category: mapped to original reference genome,
mapped to new sequences, or remain unmapped. (D) Breakdown of the source of the newly
mapping small RNA reads.

(TIF)

S12 Fig. qQRT-PCR and northern blot of ChNRV1 RNAs. (A) qRT-PCR analysis of CANRVI
levels in mutant and wild-type backgrounds using primers for the RDRP sequence. Mean fold
change (2A-AACt) relative to CANRV 1 levels in wild-type (+/- standard deviation) is plotted.
Four biological replicates were averaged and ACTIN and TUBULIN genes were used for nor-
malization. (B) Small RNAs in total RN A were separated using a 17% polyacrylamide/urea gel,
followed by transfer to a membrane and probed with a DIG-labeled probe generated from the
coat protein sequence. Top panel is the ethidium bromide stain gel demonstrating equal load-
ing and intactness of RNAs greater than 30 nt for each replicate. Lower panel is the blot of
lower region of the gel. A 21 nt known sequence from the ChNRV1 coat protein sequence was
included as a control for size and probe-specificity. A diffuse signal is visible in the AdclI repli-
cates, while no signal is apparent in either AdclIAdcl2 or the WT sample. The Aagol lanes
show a band at 22 nt in each replicate.

(TTF)
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$13 Fig. Read size distribution by strand and 5’ nucleotide of viral small RNAs. (A) Read
size distribution as a percentage of total viral small RNAs by strand for Ardr1, Ardr2, Ardr3,
Aago2, and Adcl2. The distribution of the control replicates, found also in Fig 8D, is included in
each panel for reference. (B) 5" nucleotide distribution for viral small RNAs from Ardr1, Ardr2,
Ardr3, Aago2, and Adcl2. 5’ nucleotide distribution for control replicates, found also in Fig 8E,
is included for reference.

(TIF)

$14 Fig. Determination for F2dU sensitivity in C. higginsianum. (A) Growth of C. higginsia-
num conidia in the presence of 5-fluoro-2’-deoxyuridine (F2dU) at concentrations ranging
from 0.005-50 mM. Only the highest concentration of F2dU (50 uM) had a visible, negative,
effect on C. higginsianum growth. (B) Growth of C. higginsianum conidia un-transformed
(WT) and transformed with a vector containing the Hvtk and Hyg genes (pGKO2-Hyg) in the
presence of Hygromycin (150 pg/mL) and F2dU at a range of concentration not toxic for C.
higginsianum conidia (0.005-5 uM) as determined in (A). An optimal concentration of 150 pg/
mL Hygromycin and 0.5 pM of F2dU was determined to guarantee an optimal growth of
homologous recombinants (no presence Hvtk gene) and death for ectopic transformant (pres-
ence Hvtk gene). Hyg, Hygromycin. Hvtk, herpes Virus thymidine kinase.

(TTF)

S1 Table. Accession numbers used for generating the phylogenetic tree for the RDRs,
DCLs, and AGOs in the Ascomycota clade.
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