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SUMMARY

We present a computational modeling protocol that can accurately predict changes
in both in vitro and in vivo gene expression levels in response to the application of
various siRNA formulations. We describe how to use this Python-based pipeline to
obtain crucial information, namely maximum silencing level and duration of
silencing, toward the design of therapeutically relevant dosing regimens. The proto-
col details the steps for running internalization rate fitting to produce predictions
based on experimental measurements from a single time point.
For complete details on the use and execution of this protocol, please refer to
Roh et al., 2021.

BEFORE YOU BEGIN

The protocol below describes the specific steps and values necessary to predict green fluorescent

protein (GFP) silencing in B16F10 cells using electrotransfection in vitro and apolipoprotein B

(apoB) silencing in mouse models using siRNA-lipid nanoparticles. However, we have also used

this protocol for various scenarios with different vectors (e.g., naked siRNA, jetPRIME�, Lip-

ofectamine�, Oligofectamine�, chitosan, polymer conjugates, photo-responsive polymers, multi-

functional envelope-type nanodevices, calcium phosphate nanoparticles), different target genes

(e.g., Luciferase, GFP, glyceraldehyde 3-phosphate dehydrogenase, interleukin 1 beta, voltage

dependent anion channel 1, PTEN), and different cell types (e.g., B16F10, Neuro2A, HeLa, LNCaP,

H1299, A549).

The ability to simulate numerous experimental gene silencing scenarios, as described in this proto-

col, has not been demonstrated previously with other RNA interference (RNAi) models.

Downloading and launching Python platform

Timing: 0.5–1 h

This section includes the minimal hardware requirements, software requirements, and input param-

eters needed to run the model.

1. Hardware: Personal computer with a minimum of 5 GB free disk space and 32 GB random-access

memory.
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2. Software requirements: A convenient method to run Python on any operating system is to use

Anaconda, an open-source distribution of Python for scientific computing.

a. Anaconda can be downloaded from https://www.anaconda.com/ according to individual

computer specifications.

b. Once Anaconda Distribution - Python v.3.9 is installed, open the Anaconda Navigator, click on

the ‘Environments’ tab to the left, and make sure the following Anaconda packages are

installed: notebook v.6.0.3, numpy v.1.18.1 (Harris et al., 2020), scipy v.1.4.1 (Virtanen

et al., 2020), scikit-learn v.0.22.1 (Pedregosa et al., 2011), and matplotlib v.3.1.3 (Hunter,

2007). All of the packages mentioned should be pre-installed in the base environment (Fig-

ure 1A).

Figure 1. Launching Anaconda and preparing required Python packages

(A) After launching Anaconda, make sure that the appropriate Python packages are available in the ‘Environments’ tab.

(B) Once all packages are available, launch Jupyter Notebook in the ‘Home’ tab.
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c. Click on the ‘Home’ tab to the left and launch Jupyter Notebook (Figure 1B).

Preparing input parameters

Timing: 0.5–72 h

3. To employ the kinetic model provided in this protocol, users are required to provide the values

for the following parameters.

a. siRNA half-life

b. mRNA half-life

c. protein half-life

d. cell doubling time

e. transfection volume

f. transfection time

g. transfection concentration

h. in vitro experimental measurements of gene expression levels at one or more time points,

preferably between 48–72 h

Note: There are numerous protocols available from either commercial websites (e.g., Thermo

Fisher Scientific, Dharmacon) or peer-reviewed literature (Sakurai et al., 2010) that detail steps

for obtaining this type of experimental measurement.

KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

Fitting for internalization rate

Timing: 15–30 min

CRITICAL: To proceed with the following steps, make sure to first install all software and

packages listed in ‘Software requirements.’

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Anaconda Anaconda Inc. https://www.anaconda.com/

Python Anaconda Inc. https://www.anaconda.com/

Fitting internalization rate This paper N/A

In vitro model This paper N/A

In vivo model This paper N/A

Other

Internalization rate of external siRNA (kint) This paper N/A

Transfection volume (Vex) Specified experimentally N/A

Intracellular volume (Vin) (Wittrup et al., 2015; Bartlett and Davis, 2006) Vi

Dilution rate of siRNA due to cell division (ks,dil) Calculated from cell doubling time N/A

Intracellular degradation rate of siRNA (ks,deg) (Bartlett and Davis, 2006) kdeginna

Intracellular RISC concentration (RISCtot) (Bartlett and Davis, 2006) rtot

Formation rate of active RISC (kRISC) (Bartlett and Davis, 2006) kformRISC

Intracellular RISC degradation rate (kr,deg) (Bartlett and Davis, 2006) kdegRISC

Intracellular mRNA production rate (kmRNA) Calculated from mRNA half-life N/A

Intracellular mRNA degradation rate (km,deg) Calculated from mRNA half-life N/A

Cleavage rate of mRNA (kcleav) (Roh et al., 2021) kcleav

Intracellular protein production rate (kprot) Calculated from protein half-life N/A

Intracellular protein degradation rate (kp,deg) Calculated from protein half-life N/A
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One of the core aims of our protocol is to provide users with the ability to easily predict changes in

gene expression levels both in vitro and in vivo upon application of any siRNA formulation of inter-

est. Traditionally, modeling the efficacy of various siRNA formulations is challenging because the

RNAi process consists of multiple steps that are difficult to characterize experimentally (Haley and

Zamore, 2004; Cuccato et al., 2011; Bartlett and Davis, 2006). In particular, cellular uptake

and necessary post-uptake processing, including endosomal escape, comprises multiple steps,

and the parameters that describe these steps are unique to each delivery system. In this mathemat-

ical framework, we define the internalization rate as a single aggregated parameter so that this rate is

the only unknown variable, and thus, can be fit from a single experimental time point. By fitting for an

aggregated internalization rate, users can reduce the number of parameters needed to implement

the model in various experimental scenarios. This fitting process is performed as follows:

1. To call the packages that will be used for this protocol, copy and paste the following code into

Jupyter Notebook (Figure 2A).

Note: Full code is also available in the ipynb file, ‘Fitting for internalization rate.ipynb,’ that is

included in the electronic information associated with this publication (Data S1).

Figure 2. Fitting for an optimized internalization rate

(A) After opening Jupyter Notebook, choose the correct directory in which to save your notebook (blue box). Click on

the ‘New’ box and create a new Python 3 notebook (red box).

(B) After copy and pasting all of the code provided in the ‘fitting for internalization rate’ section, run code (red box). If

there is an error and users must re-run the code for any reason, make sure to reset the kernel (blue box) before re-

running. Make sure that the kernel is trusted (green box).

(C) Once the code is finished, the optimized internalization rate and root-mean-square error (RMSE) for that rate are

displayed.

# Import packages

import numpy as np

import matplotlib.pyplot as plt
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2. Copy and paste the following code, and modify the values for the seven variables accordingly.

Note: Cell-doubling rates are needed to correctly account for the dilution of intracellular

siRNA over time. The next three parameters are required to compute the component degra-

dation rates and the production rates of mRNA and protein assuming steady-state values in

the absence of siRNA. The last three parameters are needed to correctly scale and account

for the initial siRNA concentration available to the cells.

3. Copy and paste the following code, and define the final time point of interest as the variable

‘‘tf_transfection’’.

Note: The accuracy of model predictions is enhanced as more steps are taken. However,

increasing the number of steps results in an escalation of computation cost (e.g., time).

A minimum value of 0.01 is recommended based on characteristic time calculations of

the fastest rate (cleavage rate of mRNA = 500 nM-1h-1). (Roh et al., 2021; Wittrup et al.,

2015).

4. Copy and paste the following code.

a. Input the time points of experimental data as parameters of variable ‘‘x’’.

b. Input the respective gene expression levels at each time point as parameters of var-

iable ‘‘y’’.

Note: Data for y-array are defined as protein expression levels post-siRNA exposure that are

scaled between the values of 0 and 1.

from scipy.optimize import minimize

from sklearn.metrics import mean_squared_error, r2_score

# Inputs

cell_doubling = 17.0 # cell doubling time (h)

siRNA_half_life = 24.0 # siRNA half-life (h)

mRNA_half_life = 7 # mRNA half-life (h)

prot_half_life = 26 # protein half-life (h)

siRNA0 = 1500 # transfection concentration (nM)

transfection_time = 0.08 # transfection time (h)

V_ex = 100 * 10 ** -6 # transfection volume (L)

# Time and steps

t0 = 0

tf_transfection = 200.0

dt = 0.01

t = np.linspace(t0,tf_transfection,int(tf_transfection/dt + dt))

n = len(t)
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5. Copy and paste the following code, and input an initial guess for internalization rate.

Note: The recommended starting value is 10-10 h-1.

6. Copy and paste the following code, run code, and obtain an optimized internalization rate

(Figures 2B and 2C). Troubleshooting 1–4.

Note: Do not change any values within the code provided in step 6. At the end of the run, the

code will automatically report the optimized internalization rate along with the RMSE associ-

ated with that rate.

# Experimental measurements

x = [48] # time of measurement (h)

y = [0.49] # gene expression levels

# Initial guess for internalization rate

k_int_init = 1 * 10 ** -10 # (h-1)

# Parameters for volume scaling

V_in = 2000 * 10 ** -15 # Intracellular volume (L)

# Unit conversions

mol_M = 6.022 * 10 ** 23 # (number/mole)

rtot = 1.9 * 10 ** 15 # (number/L)

r_tot = rtot / mol_M * (10 ** 9) # (nM)

# Initial concentrations

z0 = [siRNA0,0,0,100,100] # External siRNA, intracellular siRNA, RISC, mRNA, prot

DNA = 100

# Rates

k_sdeg = 0.69315 / siRNA_half_life # (h-1)

k_sdil = 0.69315 / cell_doubling # (h-1)

k_mRNA = 0.69315 / mRNA_half_life # (h-1)

k_mdeg = 0.69315 / mRNA_half_life # (h-1)

k_risc_orig = 2 * 10 ** -19 # (L/h/number)

k_risc_M = k_risc_orig * mol_M # (M-1h-1)

k_risc = k_risc_M * 10 ** -9 # (nM-1h-1)

k_rdeg = 0.077 # (h-1)

k_mRNA = 0.69315 / mRNA_half_life # (h-1)

k_mdeg = 0.69315 / mRNA_half_life # (h-1)

k_cleav = 5 * 10 ** 2 # (nM-1h-1)

k_prot = 0.69315 / prot_half_life # (h-1)
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k_pdeg = 0.69315 / prot_half_life # (h-1)

# Unpopulated lists

siRNA_ex = np.ones(n) * z0[0]

siRNA = np.ones(n) * z0[1]

RISC = np.ones(n) * z0[2]

mRNA = np.ones(n) * z0[3]

prot = np.ones(n) * z0[4]

# Changing time points to array for optimization code

x_array = np.array(x)

x_opt_array = x_array * 100

x_indices_to_access = x_opt_array.tolist()

print(x_indices_to_access)

# Optimization code

def kint_rmse(k_int):

for i in range(1,n):

siRNA_ex[i] = (-k_int * siRNA_ex[i-1]) * dt + siRNA_ex[i-1]

if i > (transfection_time / dt):

siRNA_ex[i] = 0

siRNA[i] = (k_int * (siRNA_ex[i-1] * (V_ex/V_in)) - k_sdeg * siRNA[i-1] - k_sdil * siRNA[i-

1]) * dt + siRNA[i-1]

RISC[i] = (k_risc * siRNA[i-1] * (r_tot - RISC[i-1]) - k_rdeg * RISC[i-1])* dt + RISC[i-1]

if RISC[i] > r_tot:

RISC[i] = r_tot

mRNA[i] = (k_mRNA * DNA - k_mdeg * mRNA[i-1] - k_cleav * RISC[i-1] * mRNA[i-1]) * dt + mRNA[i-

1]

if mRNA[i] < 0:

mRNA[i] = 0

prot[i] = (k_prot * mRNA[i-1] - k_pdeg * prot[i-1]) * dt + prot[i-1]

if prot[i] < 0:

prot[i] = 0

prot_norm = prot / z0[4]

prot_norm_array = np.array(prot_norm)

y_pred_array = prot_norm_array[x_indices_to_access]

y_pred = list(y_pred_array)

rmse = np.sqrt(mean_squared_error(y,y_pred))

return rmse

# Define empty array for internalization rate

optimized_kint = 0

i = kint_rmse(k_int_init)
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Modeling siRNA-induced changes in gene expression levels in vitro

Timing: 15 min

CRITICAL: To proceed with the following steps, make sure to first obtain an optimized

internalization rate using the procedure listed in ‘fitting for internalization rate.’

To expand the applicability of the model described in this protocol, the number of parameters

required to accurately predict gene silencing in vitro following the delivery of an siRNA formulation

is further reduced by including only the most important parameters within the mathematical frame-

work to get quantitative agreement with experimental data. Major rate-limiting kinetic steps for the

four main components of the RNAi process (i.e., siRNA, RNA-induced silencing complex (RISC),

mRNA, and protein) are identified from literature and incorporated into the model. The parameters

that are considered for each component and the values of these parameters are listed in Tables 1

and 2. In the paragraph below, the rationale for choosing those specific kinetic rates for in vitro

modeling of siRNA-induced gene silencing is detailed.

d½siRNAin�
dt

= kint � Vex

Vin
� ½siRNAex � � ks;dil½siRNAin� � ks;deg½siRNAin� (Equation 1)

d½RISC�
dt

= kRISC ½siRNAin�½RISCtot � RISC� � kr ;deg½RISC� (Equation 2)

d½mRNA�
dt

= kmRNA½DNA� � km;deg½mRNA� � kcleav ½mRNA�½RISC� (Equation 3)

d
�
prot

�

dt
= kprot ½mRNA� � kp;deg

�
prot

�
(Equation 4)

As noted in the previous section, the increase in intracellular siRNA concentration is defined to

depend solely on a single aggregated internalization rate (kint, Equation 1). Additionally, the amount

of intracellular siRNA is affected by (i) dilution of the local intracellular siRNA concentration as cells

divide (ks,dil, Equation 1); and (ii) siRNA degradation (ks,deg, Equation 1). To model the RISC concen-

tration, we assume that the concentration of active RISC, e.g., the species that can recognize and

updated_k_int = k_int_init + (0.1 * 10 ** -11)

j = kint_rmse(updated_k_int)

while i > j:

print(i)

k_int_init = k_int_init + (0.1 * 10 ** -11)

i = kint_rmse(k_int_init)

updated_k_int = k_int_init + (0.1 * 10 ** -11)

j = kint_rmse(updated_k_int)

if i <= j:

print(k_int_init)

optimized_kint = k_int_init

break

print("Optimized internalization rate: ", optimized_kint)

print(kint_rmse(optimized_kint))
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cleave mRNA, depends solely on the binding of free siRNA to RISC (kRISC, Equation 2) and RISC

degradation (kr,deg, Equation 2). Although previous studies have shown that RISC has multiple inter-

mediates, (Pratt and MacRae, 2009) our assumption is reasonable because the formation of the

siRNA-RISC intermediate has the slowest kinetic rate of all steps in active RISC formation (Pratt

and MacRae, 2009). Meanwhile, the mRNA concentration is modeled to depend on innate mRNA

production (kmRNA, Equation 3), degradation (km,deg, Equation 3), and cleavage (kcleav, Equation 3)

rates. Finally, protein concentration depends directly on protein production from the mRNA tem-

plate (kprot, Equation 4), along with protein degradation (kp,deg, Equation 4).

7. To call the packages that will be used for this protocol, copy and paste the code provided below

into Jupyter Notebook (Figure 3A).

Note: Full code is also available in the ipynb file, ‘Modeling siRNA-induced changes in gene

expression levels in vitro.ipynb,’ that is included in the electronic information associated with

this publication (Data S2).

8. Copy and paste the following code, and modify the values for the seven variables accordingly.

9. Copy and paste the following code, and define the final time point of interest as the variable

‘‘tf_transfection’’.

Table 1. Model variables

Variable (name) Description (Units)

siRNAex Extracellular siRNA (nM)

siRNAin Intracellular siRNA (nM)

RISC Activated RISC (RISC + siRNA) (nM)

mRNA Intracellular mRNA (nM)

DNA Intracellular DNA (nM)

prot Intracellular protein (nM)

Reprinted with permission from (Roh et al., 2021). Copyright 2021 American Chemical Society.

# Import packages

import numpy as np

import matplotlib.pyplot as plt

# Inputs

cell_doubling = 17.0 # cell doubling time (h)

siRNA_half_life = 24.0 # siRNA half-life (h)

mRNA_half_life = 7 # mRNA half-life (h)

prot_half_life = 26 # protein half-life (h)

siRNA0 = 1500 # transfection concentration (nM)

transfection_time = 0.08 # transfection time (h)

V_ex = 100 * 10 ** -6 # transfection volume (L)
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10. Copy and paste the following code, and input the internalization rate fitted using the previous

procedure.

11. Copy and paste the following code, run code, and obtain changes in mRNA and protein concen-

tration levels (Figure 3B). Troubleshooting 5.

# Time and steps

t0 = 0

tf_transfection = 200.0

dt = 0.01

t = np.linspace(t0,tf_transfection,int(tf_transfection/dt + dt))

n = len(t)

# Internalization rate

k_int = 7.2 * 10 ** -11 # (h-1)

# Parameters for volume scaling

V_in = 2000 * 10 ** -15 # Intracellular volume (L)

# Unit conversions

mol_M = 6.022 * 10 ** 23 # (number/mole)

rtot = 1.9 * 10 ** 15 # (number/L)

r_tot = rtot / mol_M * (10 ** 9) # (nM)

# Initial concentrations

z0 = [siRNA0,0,0,100,100] # External siRNA, intracellular siRNA, RISC, mRNA, prot

DNA = 100

# Rates

k_sdeg = 0.69315 / siRNA_half_life # (h-1)

k_sdil = 0.69315 / cell_doubling # (h-1)

k_mRNA = 0.69315 / mRNA_half_life # (h-1)

k_mdeg = 0.69315 / mRNA_half_life # (h-1)

k_risc_orig = 2 * 10 ** -19 # (L/h/number)

k_risc_M = k_risc_orig * mol_M # (M-1h-1)

k_risc = k_risc_M * 10 ** -9 # (nM-1h-1)

k_rdeg = 0.077 # (h-1)

k_mRNA = 0.69315 / mRNA_half_life # (h-1)

k_mdeg = 0.69315 / mRNA_half_life # (h-1)

k_cleav = 5 * 10 ** 2 # (nM-1h-1)

k_prot = 0.69315 / prot_half_life # (h-1)

k_pdeg = 0.69315 / prot_half_life # (h-1)
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12. Copy and paste the following code, and plot desired data accordingly (Figure 3C).

Note: In this example code, experimental data regarding GFP expression levels over time are

incorporated into the code. Users can change data within the x-, y-, and err1-arrays for time

points, gene expression levels, and associated error, respectively. The ‘# Experimental

data’ section of the code can be omitted if users do not wish to plot experimental and

modeling data together. Also, plot details including plot type, x-axis and y-axis ticks, and

x-axis and y-axis limits can be customized to meet the users’ needs. Detailed explanations

and examples can be found at matplotlib.org (Hunter, 2007).

# Number of cells

rtot = 1.9 * 10 ** 15 # (number/L)

mol_M = 6.022 * 10 ** 23 # (number/mole)

intracellular_vol = 2000 * 10 ** -15 # (L/cell)

r_tot = rtot / mol_M * (10 ** 9) # (nM)

# Unpopulated lists

siRNA_ex = np.ones(n) * z0[0]

siRNA = np.ones(n) * z0[1]

RISC = np.ones(n) * z0[2]

mRNA = np.ones(n) * z0[3]

prot = np.ones(n) * z0[4]

# ODEs

for i in range(1,n):

siRNA_ex[i] = (-k_int * siRNA_ex[i-1]) * dt + siRNA_ex[i-1]

if i > (transfection_time / dt):

siRNA_ex[i] = 0

siRNA[i] = (k_int * (siRNA_ex[i-1] * (V_ex/V_in)) - k_sdeg * siRNA[i-1] - k_sdil * siRNA[i-

1]) * dt + siRNA[i-1]

RISC[i] = (k_risc * siRNA[i-1] * (r_tot - RISC[i-1]) - k_rdeg * RISC[i-1])* dt + RISC[i-1]

if RISC[i] > r_tot:

RISC[i] = r_tot

mRNA[i] = (k_mRNA * DNA - k_mdeg * mRNA[i-1] - k_cleav * RISC[i-1] * mRNA[i-1]) * dt + mRNA[i-1]

if mRNA[i] < 0:

mRNA[i] = 0

prot[i] = (k_prot * mRNA[i-1] - k_pdeg * prot[i-1]) * dt + prot[i-1]

if prot[i] < 0:

prot[i] = 0

# Normalized values

siRNA_norm = siRNA / z0[0]

mRNA_norm = mRNA / z0[3]

prot_norm = prot / z0[4]
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Modeling siRNA-induced changes in gene expression levels in vivo

Timing: 15 min

CRITICAL: To proceed with the following steps, make sure to first obtain an optimized

internalization rate using the procedure listed in ‘fitting for internalization rate.’

A major difference between biological parameters that directly affect intracellular siRNA concentra-

tions in vitro vs. in vivo is that the clearance of nucleic acids at the target tissue in vivo results in siRNA

dilution rates that are significantly different from the dilution rates in vitro (Oraiopoulou et al., 2017).

More specifically, the dominating siRNA dilution factor in vitro is cell division. However, siRNA dilu-

tion in vivo is governed by additional extracellular delivery barriers. Additional terms were added to

the mathematical framework to account for this difference in extracellular siRNA concentration prior

to cellular processing. Again, parameters were lumped into two process-related terms – accumula-

tion and clearance from the tissue of interest – to eliminate the need to characterize a series of hard-

to-measure transport steps (Blanco et al., 2015). The accumulation of siRNA in the tissue of interest

was defined as a constant and approximated from fractional biodistribution values characterized in

the literature, (Hoshyar et al., 2016; Jasinski et al., 2018; He et al., 2010; Pérez-Campaña et al., 2013)

because transport steps before accumulation into the target tissue, such as clearance from blood,

occur rapidly and can be assumed to be instantaneous in comparison to the rates of later steps

(Alexis et al., 2008). Particle clearance rates from specific tissues are not as widely characterized

as accumulation percentages, and users are required to vary the clearance rate to obtain an accurate

kinetic profile for in vivo gene silencing.

13. To call the packages that will be used for this protocol, copy and paste the code provided below

into Jupyter Notebook (Figure 4A).

Note: Full code is also available in the ipynb file, ‘Modeling siRNA-induced changes in gene

expression levels in vivo.ipynb,’ that is included in the electronic information associated with

this publication (Data S3).

# Experimental data

x = [0,24,48,72,96,168] # time of measurement (h)

y = [1.00,0.84,0.49,0.43,0.50,0.95] # gene expression levels

err1 = [0.00,0.06,0.04,0.03,0.04,0.00] # standard deviation associated with each

measurement

# Plot figure

plt.errorbar(x,y,yerr=err1,fmt = ’bo’)

plt.plot(t,prot_norm,’k’)

plt.ylim(0,1.05)

plt.yticks(np.arange(0,1.1,0.2))

plt.xlim(0,192)

plt.xticks(np.arange(0,193,24))

plt.xlabel(’Time(h)’)

plt.ylabel(’Relative GFP expression’)

plt.show()
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14. Copy and paste the code below.

a. Modify the values for the eight parameters accordingly.

Note: Users can directly input the seven parameters used in the ‘modeling siRNA-induced

changes in gene expression levels in vitro’ section IF the in vitro data set uses the same siRNA

formulation to target the same cell type. The example code given here includes different

parameter values from the previous section because the in vivo example is modeling a

different experimental scenario.

b. Estimate the percentage of particles that arrive at the tissue of interest (defined as the vari-

able ‘‘pen’’) from existing literature.

Note: Accumulation (‘‘pen’’) is defined as the fractional biodistribution within the tissue of in-

terest, ranging between values of 0 and 1, and is needed to accurately account for the initial

external siRNA concentration that is available for cellular internalization. Users are encour-

aged to estimate this value from literature on the basis of particle size and material.

Table 2. Model parameters and values

Parameter (name) Description Determination Value (Units)

kint Internalization rate of external siRNA Fit to each system (h-1)

Vex Transfection volume Specified experimentally (L)

Vin Intracellular volume (Wittrup et al., 2015; Bartlett and Davis, 2006) 2 * 10-12 (L)

ks,dil Dilution rate of siRNA due to cell division Calculated from cell doubling time (h-1)

ks,deg Intracellular degradation rate of siRNA Calculated from siRNA half-life (h-1)

RISCtot Intracellular RISC concentration (Bartlett and Davis, 2006) 3.2 (nM)

kRISC Formation rate of active RISC (Bartlett and Davis, 2006) 1.2*10-4 (nM-1h-1)

kr,deg Intracellular RISC degradation rate (Bartlett and Davis, 2006) 7.7*10-2 (h-1)

kmRNA Intracellular mRNA production rate Steady-state approximation, calculated from mRNA half-life (h-1)

km,deg Intracellular mRNA degradation rate Calculated from mRNA half-life (h-1)

kcleav Cleavage rate of mRNA (Roh et al., 2021) 5*102 (nM-1h-1)

kprot Intracellular protein production rate Steady-state approximation, calculated from protein half-life (h-1)

kp,deg Intracellular protein degradation rate Calculated from protein half-life (h-1)

Reprinted with permission from (Roh et al., 2021). Copyright 2021 American Chemical Society.

# Import packages

import numpy as np

import matplotlib.pyplot as plt

# Inputs

cell_doubling = 27.0 # cell doubling time (h)

siRNA_half_life = 24.0 # siRNA half-life (h)

mRNA_half_life = 16 # mRNA half-life (h)

prot_half_life = 3.3 # protein half-life (h)

siRNA0 = 3760 # transfection concentration (nM)

transfection_time = 530 # transfection time (h)

V_ex = 0.4 * 10 ** -3 # transfection volume (L)

pen = 0.106/100
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15. Copy and paste the following code, and define the final time point of interest as the variable

‘‘tf_transfection’’.

Figure 3. Modeling changes in gene expression levels in vitro using the fitted internalization rate

(A) As mentioned in previous section, after opening Jupyter Notebook, choose the correct directory in which to save

your notebook (blue box). Click on the ‘New’ box and create a new Python 3 notebook (red box).

(B) Copy and paste all code provided in the ‘modeling siRNA-induced changes in gene expression levels in vitro’

section. Make sure that the internalization rate is the same as the optimized rate obtained in the ‘fitting for

internalization rate’ section. If there is an error and users must re-run the code for any reason, make sure to reset the

kernel (blue box) before re-running. Make sure that the kernel is trusted (green box).

(C) Once the code is finished, a plot will be generated with the details and data provided in the ‘# Plot figure’ section of

the code.

# Time and steps

t0 = 0

tf_transfection = 530.0

dt = 0.01

t = np.linspace(t0,tf_transfection,int(tf_transfection/dt + dt))

n = len(t)
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16. Copy and paste the following code, and input the internalization rate fitted using the previous

procedure in the ‘fitting for internalization rate’ section (Figure 4B).

Note:Make sure that the internalization rate is the same as the optimized rate obtained in the

‘fitting for internalization rate’ section. The example code given here includes a different inter-

nalization rate value from the previous section because the in vivo example is modeling a

different experimental scenario.

17. Copy and paste the following code, and vary the clearance rate (Figure 4B).

Note: The clearance rate is used to correctly depict the amount of external siRNA over time.

CRITICAL: Exact clearance rates for different tissues are not as widely characterized

experimentally, and users may have to vary this rate manually until a good alignment is

achieved between experimental and modeling data.

18. Copy and paste the following code, run code, and obtain changes in mRNA and protein concen-

tration levels.

# Internalization rate

k_int = 9 * 10 ** -12 # (h-1)

# Clearance rate

k_clear = 0.03 # (h-1)

# Parameters for volume scaling

V_in = 2000 * 10 ** -15 # Intracellular volume (L)

# Unit conversions

mol_M = 6.022 * 10 ** 23 # (number/mole)

rtot = 1.9 * 10 ** 15 # (number/L)

r_tot = rtot / mol_M * (10 ** 9) # (nM)

# Initial concentrations

z0 = [siRNA0*pen,0,0,100,100] # External siRNA, intracellular siRNA, RISC, mRNA, prot

DNA = 100

# Rates

k_sdeg = 0.69315 / siRNA_half_life # (h-1)

Figure 4. Modeling changes in gene expression levels in vivo using the fitted internalization rate

(A) As mentioned in previous section, after opening Jupyter Notebook, choose the correct directory in which to save

your notebook (blue box). Click on the ‘New’ box and create a new Python 3 notebook (red box).

(B) Copy and paste all code provided in the ‘modeling siRNA-induced changes in gene expression levels in vivo’

section. Make sure that the internalization rate is the same as the optimized rate obtained in the ‘fitting for

internalization rate’ section. If there is an error and users must re-run the code for any reason, make sure to reset the

kernel (blue box) before re-running. Make sure that the kernel is trusted (green box). Input an initial guess for the

clearance rate.

(C) Once the code is finished, a plot will be generated with the details and data provided in the ‘# Plot figure’ section of

the code.

(D) Vary the clearance rate until model results and experimental data are in good agreement.
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k_sdil = 0.69315 / cell_doubling # (h-1)

k_mRNA = 0.69315 / mRNA_half_life # (h-1)

k_mdeg = 0.69315 / mRNA_half_life # (h-1)

k_risc_orig = 2 * 10 ** -19 # (L/h/number)

k_risc_M = k_risc_orig * mol_M # (M-1h-1)

k_risc = k_risc_M * 10 ** -9 # (nM-1h-1)

k_rdeg = 0.077 # (h-1)

k_mRNA = 0.69315 / mRNA_half_life # (h-1)

k_mdeg = 0.69315 / mRNA_half_life # (h-1)

k_cleav = 5 * 10 ** 2 # (nM-1h-1)

k_prot = 0.69315 / prot_half_life # (h-1)

k_pdeg = 0.69315 / prot_half_life # (h-1)

# Unpopulated lists

siRNA_ex = np.ones(n) * z0[0]

siRNA = np.ones(n) * z0[1]

RISC = np.ones(n) * z0[2]

mRNA = np.ones(n) * z0[3]

prot = np.ones(n) * z0[4]

# ODEs

for i in range(1,n):

siRNA_ex[i] = (-k_int * siRNA_ex[i-1] - k_clear * siRNA_ex[i-1]) * dt + siRNA_ex[i-1]

if i > (transfection_time / dt):

siRNA_ex[i] = 0

siRNA[i] = (k_int * (siRNA_ex[i-1] * (V_ex/V_in)) - k_sdeg * siRNA[i-1] - k_sdil * siRNA[i-

1]) * dt + siRNA[i-1]

RISC[i] = (k_risc * siRNA[i-1] * (r_tot - RISC[i-1]) - k_rdeg * RISC[i-1])* dt + RISC[i-1]

if RISC[i] > r_tot:

RISC[i] = r_tot

mRNA[i] = (k_mRNA * DNA - k_mdeg * mRNA[i-1] - k_cleav * RISC[i-1] * mRNA[i-1]) * dt + mRNA[i-1]

if mRNA[i] < 0:

mRNA[i] = 0

prot[i] = (k_prot * mRNA[i-1] - k_pdeg * prot[i-1]) * dt + prot[i-1]

if prot[i] < 0:

prot[i] = 0

# Normalized values

siRNA_norm = siRNA / z0[0]

mRNA_norm = mRNA / z0[3]

prot_norm = prot / z0[4]
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19. Copy and paste the following code and plot desired data accordingly (Figure 4C).

Note: In this example code, experimental data regarding apoB expression levels over time are

incorporated within the code. Users can change data within the x-, y-, and err1-arrays for time

points, gene expression levels, and associated error, respectively. The ‘# Experimental data’

section of the code can be omitted if users do not wish to plot experimental and modeling

data together. Also, plot details including plot type, x-axis and y-axis ticks, and x-axis and

y-axis limits can be customized to meet the users’ needs. Detailed explanations and examples

can be found at matplotlib.org (Hunter, 2007).

20. Vary the clearance rate in step 17, if needed, until model results and experimental data are in

good agreement (Figure 4D).

EXPECTED OUTCOMES

Determining a reasonable internalization rate

By running the code provided in ‘fitting for internalization rate,’ users will obtain an internalization

rate that results in the lowest RMSE when using the experimental data point(s) defined in step 4.

In an earlier publication (Roh et al., 2021) and as shown in Figure 5, we have validated that an inter-

nalization rate fitted from an in vitro experimental measurement of gene expression at a single time

point produced predictions for gene silencing efficiencies that were in remarkable agreement with

the predictions using an internalization rate fitted from experimental measurements of gene expres-

sion at multiple time points.

# Experimental data

x = [24,72,168,336]

y = [0.18,0.35,0.7,0.9]

err1 = [0.08,0.08,0.11,0.18]

# Plot figure

plt.figure(1,figsize=(12,4))

fig,ax = plt.subplots(figsize=(7,5.5))

plt.errorbar(x,y,yerr=err1,fmt=’bo’,label=’Experimental’)

plt.plot(t,mRNA_norm,’k’,label=’Model’)

plt.ylim(0,1.05)

plt.yticks(np.arange(0,1.1,0.2),fontsize=18)

plt.xlim(0,530)

plt.xticks(np.arange(0,530,48),fontsize=18)

ax.set_xticklabels([’0’,’2’,’4’,’6’,’8’,’10’,’12’,’14’,’16’,’18’,’20’,’22’])

plt.xlabel(’Time (d)’,fontsize=18)

plt.ylabel(’Relative apoB mRNA expression’,fontsize=18)

plt.legend(loc=4,fontsize=15)

plt.savefig(’Strapps’,dpi=240)

plt.show()
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For this procedure, we recommend using a time point between 48 and 72 h, if possible, as

mentioned in the troubleshooting and limitations sections. This time point is appropriate because

(1) it is not short enough to run into the limitations associated with our definition of internalization

rate as an aggregated parameter of multiple steps; (2) it is long enough to reflect changes in protein

concentrations; and (3) it is not too long so that protein expressions start recovering back to normal

expression levels. An example of model predictions obtained from a single-time-point fit of time

points ranging from 24 to 168 h is shown in Figure 6.

Generating model predictions for siRNA formulation efficacy in vitro and in vivo

If a reasonable internalization rate was obtained using the above procedure, users will be able to get

good agreement between model predictions and experimental data by running the code provided

in ‘modeling siRNA-induced changes in gene expression levels in vitro.’ An example result is shown

in Figure 7.

For the in vivomodeling, users will be required to vary tissue clearance rates manually because these

rates are not widely available in literature. Example results of how model predictions change with

different clearance rates are shown in Figure 8.

LIMITATIONS

Due to the assumptions made throughout the model, there is some limitation to the single-time-

point fit approach. Specifically, we suspect that there are limitations to obtaining accurate fits for

the single unknown parameter, the internalization rate, using earlier time points because we are

aggregating multiple steps that are hard to characterize for the internalization process. For reason-

able model predictions, users should select a time point that is consistent with the expected kinetics

of the comprehensive internalization process. A suggested time point would be 48 h post-siRNA

exposure because this time point is longer than most protein half-lives (i.e., a time point that would

reflect changes in protein concentrations after siRNA internalization).

Figure 5. Comparison of model predictions using a single-time-point fit vs. multiple-time-point fit

GFP expression kinetics modulated by naked siRNA via electrotransfection in B16F10 cells predicted by the kinetic

model using either a single-time-point fit at 48 h (red line) or a multiple-time-point fit (black line) plotted in

conjunction with experimental data (blue dots). All data points and error bars for standard deviations were generated

using data reported by the original authors (Paganin-Gioanni et al., 2011; Roh et al., 2021).
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TROUBLESHOOTING

Problem 1

Optimization takes a very long time to complete (during internalization rate fitting, step 6).

Potential solution

A possible reason for this problem is the initial guess was far from the optimal value or an excessive

number of experimental time points was specified. Update the internalization rate value in step 5

(recommended starting value is 10-10 h-1) or reduce the number of experimental measurement

inputs.

Problem 2

Optimization takes a very long time to complete (during internalization rate fitting, step 6) even after

implementing the potential solution for problem 1.

Potential solution

This problem may occur when the updated internalization rate is on a significantly different order of

magnitude. Change the steps taken during the internalization rate so that the order of magnitude is

on the same scale as the updated internalization rate. For example, if the updated internalization

rate in step 5 is 10-9, change the steps in the linked section of the code to 0.1*10-9.

Problem 3

Optimization takes a very long time to complete (during internalization rate fitting, step 6) even after

implementing the potential solutions for problems 1 and 2.

Potential solution

This problem may persist when there is a large number of time steps in step 3. The accuracy of model

predictions is enhanced as more time steps are taken, but this increase results in an escalation in time

needed to compute the ordinary differential equations. Adjust the value of the final time point of interest,

tf_transfection, to be similar to the experimental time point that is used for optimizing the internalization

Figure 6. Comparison of model predictions using a single-time-point fit of different time points

GFP expression kinetics modulated by naked siRNA via electrotransfection in B16F10 cells predicted by the kinetic

model using a single-time-point fit from experimental data collected at 24 h (red), 48 h (blue), 72 h (green), 96 h

(magenta), and 168 h (cyan) compared to results using all five experimental data points to obtain an internalization

rate (dotted black line). All data points and error bars for standard deviations were generated using data reported by

the original authors (Paganin-Gioanni et al., 2011; Roh et al., 2021).
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rate. For example, if the experimental time point that is used for optimization is 48 h, a value of 50 is

appropriate for tf_transfection. The timestep value, dt, can also be reduced, but a minimum value of

0.01 is recommended based on characteristic time calculations of the fastest rate (i.e., kcleav).

Problem 4

The code reports an optimized internalization rate of 0 after step 6.

Potential solution

This problem occurs when the initial guess for the internalization rate specified in step 5 is too large.

Reduce the k_int_init value in step 5 by an order of magnitude. Repeat this process until the code no

longer reports an optimized internalization rate of 0.

Problem 5

Model results do not align with experimental data using optimized internalization rate based on

fitting data from a single time point (during in vitro modeling, steps 7–11).

Figure 7. Comparison of model predictions and experimental results of in vitro GFP silencing

Model prediction (black) compared to experimental values (blue) for changes in in vitro GFP expression levels within

HeLa cells using calcium phosphate nanoparticles. All data points and error bars for standard deviations were

generated using data reported by the original authors (Chernousova and Epple, 2017; Roh et al., 2021).

Figure 8. Comparison of model predictions using different clearance rates and experimental results of in vivo apoB

silencing

In vivo model predictions (green line, clearance rate = 0.05 h-1; blue line, clearance rate = 0.03 h-1; red line, clearance

rate = 0.01 h-1) compared to in vivo experimental values (black) of mRNA expression levels in response to a single

siRNA dose over time when delivered in the form of a siRNA-polymer conjugate. All data points and error bars for

standard deviations were generated using data reported by the original authors (Strapps et al., 2010; Roh et al., 2021).
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Potential solution

As discussed in the ‘limitations’ section, using experimental data taken at too early of a time point

can result in inaccurate fits for the internalization rate. Choose a time point between 48 and 72 h.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Thomas H. Epps, III (thepps@udel.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The published article includes all datasets/code generated or analyzed during this study. Full code is

also available in ipynb files that are included in the electronic information associated with this

publication.
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