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ABSTRACT: The accurate processing of complex liquid
chromatography coupled to tandem mass spectrometry (LC−
MS/MS) data from biological samples is a major challenge for
metabolomics, proteomics, and related approaches. Here, we
present the pipelines and systems for threshold-avoiding
quantification (PASTAQ) LC−MS/MS preprocessing toolset,
which allows highly accurate quantification of data-dependent
acquisition LC−MS/MS datasets. PASTAQ performs compound
quantification using single-stage (MS1) data and implements novel
algorithms for high-performance and accurate quantification,
retention time alignment, feature detection, and linking annota-
tions from multiple identification engines. PASTAQ offers
straightforward parameterization and automatic generation of
quality control plots for data and preprocessing assessment. This design results in smaller variance when analyzing replicates of
proteomes mixed with known ratios and allows the detection of peptides over a larger dynamic concentration range compared to
widely used proteomics preprocessing tools. The performance of the pipeline is also demonstrated in a biological human serum
dataset for the identification of gender-related proteins.

■ INTRODUCTION

Liquid chromatography coupled to tandem mass spectrometry
(LC−MS/MS) is a powerful analytical technique for the
quantitative profiling of proteins, peptides, and metabolites in
complex biological samples. In the last decade, advances in
instrumentation such as faster acquisition speed, improved
sensitivity, and increased dynamic range have made LC−MS/
MS the method of choice for routine analyses in clinical and life
science applications,1,2 as well as a widely used tool for
biomarker discovery, quantitative protein and metabolite
profiling, and drug screening.3−6

LC−MS/MS data are complex and require the use of
sophisticated data preprocessing pipelines that allow extraction
of quantitative and identification information of compounds.
For this purpose, numerous tools and pipelines exist, both
commercial and freely available ones, such as MaxQuant,7

OpenMS,8 and XCMS.9 Some of these tools are used mainly for
proteomics, while others are more flexible in their usage, with
support for metabolomics or lipidomics analyses. In general,
tools developed for label-free data-dependent acquisition
(DDA) proteomics applications rely on the quantification of
isotope clusters (features), which have been identified using
MS/MS spectra to match the quantitative information of the
same peptide across multiple samples. One limitation of this

approach is that for DDA analyses, only a fraction of the most
abundant compounds is selected for fragmentation. Further-
more, identifications might not be possible for all compounds
due to the inherent stochasticity of the selection of precursor
ions for fragmentation in the MS/MS sampling process, and
thus, compounds present in the sample in a low concentration
(or compounds that ionize poorly) will be less likely to be
selected for fragmentation.
Chimeric spectra can also occur with typical DDA

fragmentation windows of 0.4−2.0 m/z,10 making the correct
identification of peptides challenging. Single-stage (MS1)
spectra in DDA LC−MS/MS data reflect a stable quantitative
profile of compounds that can be detected by the mass
spectrometer and are not subjected to a stochastic selection
procedure such as DDA precursor selection for compound
fragmentation. We argue that MS1 data offer the most stable
information to perform comprehensive and accurate processing
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of DDA LC−MS/MS datasets. This approach relies only on the
m/z and retention time information of the compounds’ features
and depends on accurate correction of any shifts existing in these
separation domains.
Here, we present the pipelines and systems for threshold-

avoiding quantification (PASTAQ), a set of tools and algorithms
that can be used to preprocess and quantify compounds present
in LC−MS/MS data, regardless of the existence of MS/MS
spectra. PASTAQ is built on the algorithmic and workflow
design of the threshold-avoiding proteomics pipeline,11 which is
focused on accurately processing single-stage LC−MS data at
the isotope level. PASTAQ performs the quantification of LC−
MS/MS compounds exclusively with MS1 information, and
MS/MS based identification is used for annotation of matched
MS1 features. PASTAQ includes an improved version of the
Warp2D retention time alignment algorithm and allows
assessment of alignment accuracy by evaluating the similarity
of the chromatograms after retention time alignment. PASTAQ
offers a comprehensive set of tools, a prebuilt DDA pipeline, and
an easy to use graphical user interface (GUI) that enables the
quantification and exploration of LC−MS/MS data tailored for
metabolomics and proteomics analyses. Furthermore, PASTAQ
allows the use of any identification engine that supports
exporting identifications in the mzIdentML format,12 including
postprocessing tools such as PeptideShaker,13 PeptidePro-
phet,14 ProteinProphet,15 or Percolator16 to adjust the false
discovery rate (FDR).
To evaluate both the quantitative and computational

performance of this pipeline, we used two different datasets.
The first one consists of a proteome mixture of HeLa, yeast, and
Escherichia coli (E. coli) at three different ratios: (A) 10:5:1, (B)
5:10:1, and (C) 1:5:10. The second dataset is composed of a
HeLa matrix with an artificial concatemer protein17 spiked at
increasing ratios to cover 3 orders of magnitude of compound
concentration and concomitant measured ion intensities. The
first and second datasets are hereinafter referred to as the HYE
dataset and the QconCAT dataset, respectively. Both datasets
were acquired with a nano-LC system coupled to an Orbitrap
QExactive Plus mass spectrometer. Additionally, we demon-
strate the use of PASTAQ with publicly available serum LC−
MS/MS datasets18 to show its performance with a biologically
relevant dataset.

■ METHODS
Preparation of Complex Proteome Samples. HYE

Dataset. To generate complex proteome samples with known
composition, a tryptic HeLa protein digest (Pierce HeLa Protein
Digest Standard, Thermo Fisher Scientific, Dreieich, Germany),
a tryptic yeast protein digest (Mass Spec-Compatible Yeast
Extract, Promega, Walldorf, Germany), and an E. coli
(Escherichia coli) tryptic protein digest (Waters, Manchester,
UK) were used. For differential proteomics, three proteome
mixtures (A, B, and C) were prepared, composed of the HeLa
proteome, yeast proteome, and E. coli proteome. (A) 20 μg of
HeLa digest (dissolved in 0.1% FA) was combined with 10 μg of
yeast digest (dissolved in 0.1% FA) and 2 μg of E. coli digest
(dissolved in 0.1% FA). (B) 10 μg of HeLa digest (dissolved in
0.1% FA) was combined with 20 μg of yeast digest (dissolved in
0.1% FA) and 2 μg of E. coli digest (dissolved in 0.1% FA). (C) 2
μg of HeLa digest (dissolved in 0.1% FA) was combined with 10
μg of yeast digest (dissolved in 0.1% FA) and 20 μg of E. coli
digest (dissolved in 0.1% FA). The sample mixtures A, B, and C
had a final concentration of 2 μg·μL−1 (dissolved in 0.1% FA).

QconCAT Dataset. The complex proteome samples with the
spiked isotopically labelled standards covering the 3 orders of
magnitude in the dynamic range were prepared with MS-
compatible human protein extract (V694A, whole-cell protein
extract prepared from human H562 cells, Promega), which was
digested with an in-gel digestion protocol as described
previously.17 Digestates were resuspended in 0.1% FA at a
final concentration of 1 μg·μL−1 and mixed 1:1 with isotopically
labeled standard peptides. The isotopically labeled peptides
were digested from the three concatamers targeting a specific set
of mitochondrial proteins as described previously.17 The
standard peptides were added at increasing log10(ng/μg)
amounts from −3.0 up to 1.0. In log10(ng\μg) ng reflect the
amount of spiked-in concatemer and μg the amount of the
background cell line proteome.

LC−MS/MS Analysis. For LC−MS/MS analysis, 1 μL was
injected on a nano-ultrapressure LC system (Dionex UltiMate
3000 RSLCnano pro flow, Thermo Scientific, Bremen,
Germany) coupled via nano-electrospray ionization (ESI) to a
quadrupole orbitrap mass spectrometer equipped with a nano-
electrospray ion source (Orbitrap Q Exactive Plus, Thermo
Scientific, Bremen, Germany). Chromatographic separation of
the peptides was performed using a nano-LC column (Acclaim
PepMapC100 C18, 75 μm × 50 cm, 2 μm, 100 Å, Dionex, buffer
A: 0.1% v\v formic acid (FA), dissolved in H2O, buffer b: 0.1% v
\v FA, dissolved in acetonitrile). The peptides were loaded onto
a trap column (μPrecolumn cartridge, Acclaim PepMap100
C18, 5 μm, 100 Å, 300 μm × 5 mm, Dionex) with a flow-rate of
20 μL·min−1 and 3% buffer B. The peptides were separated on
the nano-LC column with a flow-rate of 300 μL·min−1 using a
linear gradient from 3 to 30% buffer B in 85 min, followed by
30−50% buffer B in 5 min. The mass spectrometer was operated
in the positive ion mode and DDAmode using a top-10 method.
The MS spectra were acquired at a resolution of 70,000 at m/z
200 over a scan range of 350−1300 m/z with an automatic gain
control (AGC) target of 106 ions and a maximum injection time
of 50 ms. Peptide fragmentation was performed with higher-
energy collision dissociation using a normalized collision energy
of 28. The intensity threshold for ion selection was set at 2.0 ×
104 with a charge exclusion of ≤1 and ≥7. The MS/MS spectra
were acquired at a resolution of 17,500 at 200 m/z, an AGC
target of 105 ions, and a maximum injection time of 50 ms, and
the quadrupole isolation window set to 1.6 m/z. The same
instrument was used for the QconCAT dataset with the
following alterations compared to the HYE dataset: a total of
3 μL was injected, and the mass spectrometer was operated with
a top-15 method, with a charge exclusion of≤1 and≥5. The raw
data are available via ProteomeXchange with identifier
PXD024584.

Preprocessing and Parameterization Details. Format
Conversion. The raw Orbitrap data files were processed directly
in MaxQuant (Version 1.6.10.43), but PASTAQ requires files in
the mzXML19 or mzML20 format and SearchGUI21 (Version
3.3.17) only works properly with centroided mgf22 files. File
conversion was performed with ProteoWizard’s msConvert23

(Version 3.0.18342-01b48c0f0), with a binary encoding
precision of 64 bits. The mzXML conversion was performed
without additional processing. For the mgf conversion,
centroiding was performed using the vendor’s peak picking
algorithm included in msConvert.

Peptide and Protein Identification. For protein identifica-
tion, UP000005640 (Homo sapiens, updated on August 21,
2019), UP000002311 (Baker’s yeast, updated on July 25, 2019),
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and UP000000625 (E. coli, strain K12, updated on August 21,
2019) Swissprot24 protein sequences were used. The canonical
sequence of each proteome was downloaded in the FASTA
format from the UniProt Knowledgebase (UniProtKB) website
on October 31, 2019.
Prior to identification, the FASTA files of the three proteomes

were concatenated. This FASTA file was used directly in
MaxQuant7 and MSFragger25 (Version 3.1.1). When using
SearchGUI,21 this FASTA file was modified with the addition of
reverse decoy sequences using the built-in tools.
Fixed modification of cysteine by carbamidomethylation (C)

and the variable modification of methionine through oxidation
to the sulfoxide (M) were used for all datasets. The QconCAT
dataset was searched with the additional variable modifications
of 13C+6 on lysine (K) and arginine (R) due to the presence of
stable isotopes in these amino acids for this artificial protein.
SearchGUI was used to perform peptide and protein

identification with the aforementioned FASTA file and PSM
settings. The precursor mass tolerance was set to 5 ppm and the
fragment ion mass tolerance to 0.02 Da. The search engines
selected for identification were (1) X!Tandem,26 (2) MS
Amanda,27 and (3) MS-GF+.28 The SearchGUI results were
unified into a consensusmzIdentML12 identification file for each
sample using PeptideShakerCLI (Version 1.16.42)13 and less
than 1% false discovery rate (FDR) at PSM, peptide, and protein
levels.
HYE Analysis. We performed an exhaustive analysis of

quantified isotopes, features, peptides, and protein groups
obtained with PASTAQ and MaxQuant. When PASTAQ
quantification was used, we used SearchGUI/PeptideShaker
for identifications.
For both PASTAQ and MaxQuant, we assigned the

corresponding “human”, “yeast”, or “E. coli” proteome to each
of the identified clusters. In case a cluster contained a consensus
identification sequence that could belong to more than one
proteome, the said cluster was not considered for the analysis.
Clusters without any linked identification information were
assigned an “unknown” proteome. For consistency in the
comparisons, only clusters within the retention time range
between 1500 and 5700 s were considered since data outside of
this region contain mostly contaminants or undigested proteins.
In the case of MaxQuant, the data are clustered only at the
peptide (“peptides.txt”) and protein levels (“proteinG-
roups.txt”). Thus, to assess feature-level quantification, the
results from the “evidence.txt” file were grouped by the
combination of peptide sequences and charge states.
The following statistics are calculated overall (all samples)

and per group (A, B, and C): (1) mean, (2) median, (3)
standard deviation, (4) coefficient of variation (CV), (5)median
of log10 transformed data, (6) standard deviation of log10
transformed data, (7) percentage of zero values, and (8)
number of zero values. Afterward, the difference in median log10
data between sample groups A and C, A and B, and B and C was
calculated.
To explore the influence of intensity on the distribution of

CVs, we generated 2D density plots of median log10 intensity
versus CV % for each sample group (Figure S1).
Finally, the accuracy of the quantification was assessed by

comparing the log10 ratio of the different groups as a factor of the
intensity with the known expected values for each ratio: log10(A/
C) versus log10(C), log10(A/B) versus log10(B), and log10(B/C)
versus log10(C). For each of these groups, scatter plots of median
log10 values were generated alongside a corresponding density

plot (Figure S2). Similarly, the overall distribution of median
log10 values in each proteome was also explored in the form of
violin plots (Figure S3).

QconCAT Analysis. For the analysis of the QconCAT dataset,
the goal was to study the effect of the dynamic range of
compounds on the quantitative performance. We decided to
focus on feature-level quantification. The applied QconCATs
are artificial proteins created from concatenated peptides
selected for the intended human and mouse targets. After
digestion, the peptides only differ from the endogenous peptides
by the presence of the isotope label that each peptide carries on
the lysines or arginines.
To ensure that the features being compared are the same

across pipelines, we selected only those features in which the
peptide sequence and charge states were the same and for which
the retention times and m/z are within ±50 s and ±0.05 m/z,
respectively.
The wide range of 3 orders of magnitude of spiked-in relative

amounts means that we could not assume that detected
QconCAT compounds will follow a linear distribution
throughout the entire range. Furthermore, to perform linear
fitting between the log10(ng/μg) and log10 intensity values on
any given feature cluster, we started by considering all the points
in the cluster for themodel fit and assessing the resultingR2. IfR2

< 0.98, we iteratively removed low intensity values until the
constraint is satisfied. To avoid spurious matches, we only
considered features in which the aforementioned linear fit
contains values in at least three spiked-in levels. If the fitting is
successful, the CV and sum of squared errors (SSE) are
calculated for all points in the fitted linear range. Only features
that were successfully fitted in both PASTAQ and MaxQuant
were considered for further analysis. An example of the fitted
models for different compounds can be found in Figure S4.
Additionally, we obtained the extracted ion chromatograms
(XICs) of the monoisotopic peaks for all selected features after
retention time alignment (Figure S5) with an m/z window of
±0.01.

■ THEORY
Preprocessing of DDA data comprises detecting isotopic peaks
or peptide features, aligning the retention time of all chromato-
grams to a common reference, linking isotopic peaks and
features with identification information, matching peaks/
features across chromatograms, and generating quantitative
tables amenable for statistical analysis.
The parameterization of PASTAQ is very intuitive to anyone

familiar with LC−MS instrumentation settings and theory since
it is based on the well-understood notions of peak widths and
compound separation in chromatography and mass spectrom-
etry. PASTAQ calculates the theoretical width of peaks in the
retention time and m/z dimensions by considering the physics
of the ion separation and detection process in different MS
instruments11 as well as chromatographic separation theory.29

For example, peak width modeling in mass spectra is based on
the ion separation equation of the mass analyzers, while
chromatographic peak modeling is based on the assumption of
a constant peak width, as predicted by the linear solvent strength
theory for reverse-phase linear gradient elution.29

Another important feature of PASTAQ is the automatic
generation of quality control plots, which allow us to assess the
overall dataset similarity between samples, distribution of peak
widths, as well as retention time and mass shifts. These quality
control plots can be used to evaluate the quality of the
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preprocessed data and identify issues with the acquired LC−
MS/MS data or with the given parameterization (Figure S6).
The default parameters were established to accurately process
data acquired with the most common acquisition settings, and
the user is only required to set three key parameters: the type of
mass spectrometer used, the resolution at the referencem/z, and
the average full width at half-maximum of chromatographic
peaks. Many other parameters in the pipeline, such as the
selection of regions of interest for peak detection, the level of
smoothing, and the radius for feature/peak matching across
chromatograms, are automatically derived from these parame-
ters.
One of the goals of PASTAQ is to provide full data traceability

from the beginning to end of the analysis. This allows for
posthoc analyses and data exploration. For example, by tracing
back all processing steps and intermediate results that comprise
a quantified peptide, we can find each fragment ion spectrum
associated with the isotopic peaks in all available files and display
relevant information of retention time and mass shifts in all
datasets. The spectra associated with a matched isotope or
matched peptide feature can also be extracted from the raw data.
The core of PASTAQ is built as a C++ library, with bindings

in the Python programing language. It can be used in all major
operating systems (i.e., Windows, Mac, and Linux), including
high-performance computing clusters. This allows PASTAQ to
be easily integrated into existing workflows and LC−MS/MS
analysis pipelines. Additionally, the Python bindings enable
PASTAQ to be extended to suit the needs of different datasets
and allow quick iteration and prototyping of new ideas, such as
the generation of consensus spectra from matched and/or
identified MS/MS spectra. The source code is available under a
permissive open-source license (MIT) and are publicly available
at https://pastaq.horvatovichlab.com.
This combination of features makes PASTAQ suitable for

beginners and advanced users alike. Running the basic pipeline is
simple, but more complex analyses can be performed using the
Python bindings to derive further insights from the data.
Many of the steps necessary for LC−MS/MS data

preprocessing can be computationally demanding. For instance,
when considering a large number of samples, millions of isotopic
peaks need to be quantified, aligned, and matched with suitable
candidates throughout the entire dataset. Moreover, selecting
the proper preprocessing parameters can be challenging due to
the complexity of LC−MS/MS data, which often needs to be
analyzed multiple times to test different identification or
quantification parameters. PASTAQ circumvents this by
separating the identification and quantification steps, and the
main preprocessing algorithms try to take advantage of
multicore processing when available.
The datasets presented here were analyzed on a workstation

with an Intel(R) Core(TM) i7-8700K CPU running at 3.7 GHz
and 64 GB of RAMmemory running Linux 5.9.3. The data were
stored in four Western Digital WD Blue 6TB hard drives in a
RAID10 configuration under the BTRFS file system.
A brief description of the main preprocessing modules of the

DDA pipeline is provided below, and a more detailed
explanation can be found in Supporting Information. A diagram
of how the different modules are connected in PASTAQ’s DDA
pipeline can be seen in Figure S7.

■ RESULTS
Peak Detection and Feature Detection. PASTAQ

detects isotopic peaks by considering their three-dimensional

nature in LC−MS/MS data.While mass spectra are smoothed in
Orbitrap high-resolution mass spectrometers on the acquisition
electronic board, which reduces the noise in them/z dimension,
noise is unaffected in the chromatographic dimension. Time-of-
flight and quadrupole-based mass spectrometers tend to have a
higher level of noise in both separation dimensions. The width of
peaks in the m/z dimension is highly dependent on the
instrument resolution at a given m/z, as well as the type of the
mass spectrometer used. For accurate quantification, PASTAQ
performs a simultaneous 2D Gaussian kernel smoothing and
resampling of the spectra that maps the acquired raw data into a
regular grid, keeping the number of sampling points per isotope
peak constant throughout the entire m/z range independent of
their width. This results in consistently sized peaks across the
entire m/z range as well as reduced memory usage.
The smoothed grid is searched for the local maxima, and a

novel, fast method for noniterative 3DGaussian fitting is used to
minimize the error of the Gaussianmodel applied to the raw data
using the location of peak maxima in the smoothed grid. This
results in superior quantitative performance while being
computationally efficient, which makes PASTAQ suitable for
processing large datasets in a reasonable time. This process
results in a list of modeled peaks for each chromatogram,
describing their m/z and retention time location as well as their
height and width in the respective dimensions. In our work,
PASTAQ detected an average of 550,393 isotopic peaks for the
chromatograms of the HYE dataset and 398,521 for the
QconCAT dataset.
For this first stage of the pipeline, it took an average of 17 s to

parse 6 GB profile mzXML files for MS1 spectra and 33 s for
MS2. Peak detection was performed in around 10 s for
resampling and 4 s for peak detection, 2D Gaussian fitting and
quantification per file. The total mzXML parsing time for the 30
samples in the HYE dataset, including saving the detected raw
spectra to disk in binary format, was 32 min. The peak detection
procedure finished in less than 40 min.
It is often desirable to group peaks belonging to the same

isotopic envelope into “features”. To achieve this, PASTAQ uses
the previously obtained peak lists to generate undirected graphs,
in which the peaks are tentatively linked if they are within a close
retention time range and their m/z location difference
corresponds to 1.0033 divided by the candidate charge state.
The range of candidate charge states is set by the user and should
be typically between 1 and 8. The tolerance for retention time
and m/z is set as a unit of peak width (sigma) in the respective
dimensions. Features are formed by using these graphs to find
the best matching isotopic patterns to the appropriate Averagine
model.30 By using this approach, an average of 150,793 features
was obtained for the HYE dataset and 116,519 for the
QconCAT dataset. This corresponds to respective averages of
3.42 and 3.65 isotopes per detected feature. Despite the inherent
complexity of the task, feature detection was performed in
around 4 s per file and less than 5 min for all the 30 samples in
the HYE dataset.

Retention Time Alignment. Aligning the retention time of
all chromatograms in a dataset is a crucial step to be able to
match compounds between samples using predominantly MS1-
based approach. For this purpose, PASTAQ uses an improved
version of the Warp2D algorithm.31 This method allows the
alignment of two chromatograms by maximizing the similarity
function of their respective peak lists based on the sum of
overlapping 2D Gaussian peaks. An extra benefit of this
approach is that the calculation of similarity values across all
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samples allows the identification of potential outliers. For
example, in Figure 1a,b, the similarity matrix before and after
alignment shows a remarkable improvement after Warp2D,
where the replicates of the three different ratios of the HYE
dataset are clearly differentiated.
Performing retention time alignment of two samples takes

roughly 12 s with the default parameters. If a given sample is
used as a reference, the 30 replicates of the HYE dataset can be
aligned in less than 6 min. If no reference is given for retention
time alignment, an exhaustive search is performed in order to
select the best reference to maximize the average similarity for all
samples. This optional step can become the most computation-
ally expensive part of the pipeline for large datasets as the time
required will increase proportionally to the square of the number
of samples in the dataset. In the case of large datasets, it is
possible to skip this step or to select a subset of samples on which
alignment between all pairs can be performed. For the HYE
dataset, the exhaustive reference search took 86 min until
completion.
Peak Matching and Feature Matching. Matching peaks

and features belonging to the same compounds across multiple
samples is necessary for assessing relative differences in intensity.

In PASTAQ, this task is greatly simplified thanks to the robust
and accurate retention time alignment algorithm used in the
pipeline. The process consists of comparing the retention time
and m/z locations within a tolerance range dictated by a given
number of sigmas in the retention time and m/z dimensions.
The matching is the same for peaks and features, but in the case
of features, the monoisotopic m/z is used and only features that
share the same charge state (as determined by the feature
matching procedure in PASTAQ) are considered. At the end of
this process, a list of clustered isotopic peaks and features is
obtained.
To reduce the effect of noise on the data, an optional filtering

step will keep the clusters in which at least a minimum
percentage of samples from any of the groups under study
contain detected values. Matching based exclusively on the MS1
location allows consistent matching of all detectedMS1 peaks or
features, independent of their identification. This approach
avoids the common risk of identification-based methods,
namely, using two different types of matching for identified
and unidentified peaks, where the latter is often based on
identification transfer. The MS/MS-based annotation of MS1
peaks in individual samples allows us to assess consistency of

Figure 1. Effect of the retention time alignment on the similarity matrix of the HYE dataset (top) and the extracted ion chromatogram of an isotopic
peak from the QconCAT dataset (bottom), before (a,c) and after (b,d) alignment.
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identification annotation in matched clusters and for the
creation of a consensus identification for each cluster. With
our matching algorithm, the matching of 639,543 isotopic peak
clusters in the HYE dataset took 3 min and 30 s and 65 s for
83,295 feature clusters. Similarly, we obtained 828,801 isotopic
peaks and 229,307 feature clusters for the QconCAT dataset.
MS1-Based Quantification, Combined with Thresh-

old-Avoiding Peak Rejection, Boosts the Accuracy,
Precision, and Number of Quantified Compounds.
Analysis of the chosen datasets mainly focuses on the
quantitative performance of PASTAQ compared with the
widely used MaxQuant software. The first quantitative metric
assessed was the CV of each of the 10 replicates in each group for
all measured peptides in the HYE dataset. The CV is calculated
for features, peptides, as well as protein groups. For MaxQuant,
we used the “evidence.txt” file for assessment of features, the
“peptides.txt” file for peptide level quantification, and the
“proteinGroups.txt” file for protein group quantification. The
combination of PASTAQ quantification with PeptideShaker
consensus identifications resulted in lower CV between
replicates, as indicated in Table S1. A more detailed overview
of the analysis process can be found in Supporting Information.
Furthermore, when comparing the distribution of the CV for all
quantified features, peptides, and proteins, PASTAQ has a
smaller interquartile range. As shown in Figure 2a−c and Table
S1, this applies for features as well as protein groups, but the
difference is smaller for the latter, likely due to the error inherent
to the aggregation of peptides to proteins, which relates to the
so-called protein inference problem.32

To assess how well the different pipelines perform to detect
and quantify peptides spiked across 3 orders of magnitude, we
used the QconCAT dataset. The features reported in the
“evidence.txt” file from MaxQuant were matched with the
corresponding features from PASTAQ using their associated
peptide sequence and charge state, excluding ambiguous
identifications. For each of the matched features between

PASTAQ andMaxQuant, a linear fitting was performed over the
log10 transformed intensity versus the nanograms of the spiked
protein over micrograms of the total protein (ng/μg) to select
the spiked-in levels that fall within the linear range (Figure S4),
as described in more detail in Supporting Information. This
resulted in 118 features, for which the CV, SSE of the linear fit,
and number of features present in replicates at each spiked-in
level were calculated. While both pipelines performed similarly
in groups with higher concatemer amount (1.00−10.00 ng/μg)
(±5% difference in the number of quantified peptides), we
observe an increase of 16.7−72.5% in the number of quantified
peptides with PASTAQ compared to MaxQuant (using the
match-between-runs option) when the spiked-in amount is
below 1 ng/μg. All spiked-in features show similar or smaller CV
and SSE in PASTAQ, as shown in Figure 2d−f and Table 1.
The threshold-avoiding methodology in PASTAQ is key to

the larger number of peptides detected at the low spiked-in levels
since faint peaks are retained when they appear consistently
across samples, increasing the faint true positives, while more

Figure 2. (a−c) Comparison of the CV (%) between PASTAQ quantification with PeptideShaker’s consensus identifications and MaxQuant for (a)
features, (b) peptides, and (c) proteins in the HYE dataset. (d−f) Evaluation of (d) number, (e) CV, and (f) sum of square errors of quantified peptide
for each log10 spiked-in level in the QconCAT dataset.

Table 1. Difference in the Number of Detected Peptides
between PASTAQ andMaxQuant for the Different Spiked-In
Levels in the QconCAT Dataset

spiked-in amount num. peptides

ng/μg log10(ng/μg) PASTAQ MaxQuant difference (%)

10.0000 1.0 374 381 −1.85
3.16230 0.5 371 370 0.27
1.00000 0.0 354 336 5.36
0.31623 −0.5 301 258 16.67
0.10000 −1.0 181 139 30.22
0.03162 −1.5 69 40 72.50
0.01000 −2.0 8 8 0.00
0.00316 −2.5 4 0 NA
0.00100 −3.0 0 0 NA
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abundant peaks that appear less consistently are rejected,
decreasing the strong false positives.
Enhanced Detection of Faint Peaks Enables Identi-

fication of a Larger Number of Quantified Proteins in
Biological Datasets. To show the performance of PASTAQ
for preprocessing biological LC−MS/MS data, we have used
two label-free LC−MS/MS proteomics datasets of human
serum acquired with a short gradient for blood-based biomarker
profiling.18 First, we focused on evaluating the reproducibility
(CV%) and number of protein groups using a set of 15 technical
replicates from a male subject. For these analyses, we used
PASTAQ with the MSFragger identification engine, which
resulted in 448 protein groups quantified in more than 60% of
the replicates (Table S2). The data processed with MaxQuant
with the match-between-runs option enabled contain 278
quantified protein groups in more than 60% of the replicates.

The median CV of the quantified protein groups with PASTAQ
was 14.6%, which is between the values obtained with the
original MaxQuant quantification (16.9%) and after MaxLFQ33

normalization (12.4%). The standard deviation of the CV values
is of 10.8% for PASTAQ, approximately 2 times lower than
MaxQuant (23.9%) or MaxLFQ (19.5%), indicating the
consistency of the quantification by PASTAQ when analyzing
serum sample replicates (Figure 3a).
LC−MS/MS data are often used for biomarker discovery. To

demonstrate the suitability of PASTAQ for this task, we
processed the datasets from 5 male and 5 female subjects (in
triplicate) from the aforementioned work of Geyer et al.18 The
data processing parameterization and 60% filtering with
PASTAQ were the same as in the previous example, yielding
291 protein groups. We performed a principal-component
analysis (PCA), in which a difference between the male and

Figure 3. Evaluation of PASTAQ performance on human serum datasets: (a) distribution of CVs on the peptide and protein group quantification
levels for the 15 technical replicate dataset. (b) PCA of the male−female dataset, showing a clear separation between groups. (c) Volcano plot showing
selected gender-related proteins for the male−female dataset based on the adjusted p-values from Welch’s t-test and the log2 fold-change.
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female groups can be clearly observed (Figure 3b). A log2
transformation was applied to the data to account for its log−
normal distribution. In addition, Welch’s t-test was performed
on each protein group and the resulting p-values were adjusted
for multiple testing using the Benjamini−Hochberg34 method,
resulting in 100 significant protein groups (adjusted p < 0.05).
The statistical results are visualized as a volcano plot in Figure
3c. We focused on protein groups with a log2 fold-change of
more than 1.5, yielding several proteins already documented in
the literature, including two of the reported significant proteins
in the original work of Geyer et al.:18 pregnancy-zone protein
(PZP) and sex hormone-binding globulin (SHBG). Further-
more, we found fetuin-B (FETUB), phospholipid-transporting
ATPase VD (ATP10D), and tetratricopeptide repeat protein 22
(TTC22) to be different between males and females. The level
of FETUB is known to follow the menstrual cycle and correlates
with women’s fertility,35 while TTC22 and ATP10D are known
to be highly expressed in female tissues based on the human
protein atlas.36−38

■ DISCUSSION
In this work, we show how the innovative design of the
preprocessing and quantification methods of PASTAQ lead to
the detection of a large number of low-intensity signals from
LC−MS/MS data while offering excellent reproducibility and
accurate quantification for low abundant peptides and proteins.
This is due to the combined use of smoothed and raw data for
peak detection and quantification, the avoidance of early
thresholding, which enlarges the dynamic quantification range,
the use of overlapping peak volumes inWARP2D retention time
alignment to automatically and accurately align multiple
chromatograms, as well as the exclusive MS1-based peak
matching. Quality metrics such as exhaustive pairwise similarity
matrices before and after alignment may be used to assess the
accuracy of data processing. Linking preprocessing parameters
to peak widths in the mass and retention time domains allows
straightforward parameterization. Furthermore, the speed of the
preprocessing algorithms used in PASTAQ allows rapid
iteration of different parameters and/or identification engines
when analyzing large datasets, thus enabling an efficient
parameter optimization in order to obtain higher quantification
accuracy.
The stochasticity of fragmentation in DDA LC−MS/MS can

lead to situations where no identification information is available
for the detected features in the data. This has important
consequences for experiments that emphasize the search for new
biomarkers since the information in the entire dataset can be
used to select a list of candidates even when no identification is
available. PASTAQ allows us to collect all MS/MS spectra
linked to matched peaks or features and allows manual
interpretation of individual or consensus spectra in order to
elucidate the compound to which they belong. This is
particularly relevant for metabolomics and lipidomics datasets,
where identification remains a considerable challenge.
In this paper, we highlighted the use of PASTAQ for

preprocessing DDA proteomics data, but the given tools are not
limited to this domain. Data-independent acquisition (DIA)
methods attempt to address the stochasticity issue by perform-
ing comprehensive fragmentation of the entire mass range using
consecutive and large precursor selection windows. Thismethod
has proven to be more effective in extracting a large number of
identifications from the data,39 but it has some disadvantages,
including the increased complexity of data analysis due to

heavily convoluted MS/MS spectra that require more elaborate
approaches for data processing and quantification. We are
actively working toward the implementation of novel DIA
quantifications methods in PASTAQ, as well as its usage with
metabolomics and lipidomics datasets.
In summary, PASTAQ represents a step forward in LC−MS/

MS data preprocessing. The straightforward set of tools in its
suite allow the user to extract additional and more reliable
biological insights from the data and identify potential sources of
error, enabling faster analysis cycles and providing the necessary
tools for the in-depth exploration of LC−MS/MS datasets.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.1c01892.

Detailed description of PASTAQ’s algorithms: peak
detection and isotope quantification, 2D Gaussian fitting
using least-squares and SVD, retention time alignment,
linkage of peaks to MS/MS events and identifications,
feature detection, matching isotopic peaks and features
across samples, peptide and protein group quantification,
quantitative table generation, quality control plots,
Supplementary figures: 2D density distribution of CVs
versus intensity, scatterplot of log(A/C) versus log(C) of
detected features, violin plot with log distribution of
intensity ratios, example of linear fitting of two QconCAT
features, XIC for two features at different spiked-in levels,
example of automatically generated quality control plots,
diagram of PASTAQ’s main modules for the DDA
pipeline, comparison of the distribution of CVs between
PASTAQ and MaxQuant, number of quantified protein
groups, and distribution of CVs for the biological dataset
(PDF)

■ AUTHOR INFORMATION

Corresponding Author
Péter Horvatovich − Department of Analytical Biochemistry,
Groningen Research Institute of Pharmacy, University of
Groningen, 9713 AV Groningen, The Netherlands;
orcid.org/0000-0003-2218-1140;

Email: p.l.horvatovich@rug.nl

Authors
Alejandro Sánchez Brotons − Department of Analytical
Biochemistry, Groningen Research Institute of Pharmacy,
University of Groningen, 9713 AV Groningen, The
Netherlands

Jonatan O. Eriksson − Department of Biomedical Engineering,
Lund University, 221 84 Lund, Sweden

Marcel Kwiatkowski − Department of Analytical Biochemistry,
Groningen Research Institute of Pharmacy, University of
Groningen, 9713 AV Groningen, The Netherlands; Functional
Proteo-Metabolomics, Department of Biochemistry, University
of Innsbruck, A-6020 Innsbruck, Austria; orcid.org/0000-
0002-5804-6031

Justina C. Wolters − Department of Pediatrics, University
Medical Center Groningen, University of Groningen, 9713 GZ
Groningen, The Netherlands

Ido P. Kema − Department of Laboratory Medicine, University
Medical Center Groningen, University of Groningen, 9700 RB

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.1c01892
Anal. Chem. 2021, 93, 11215−11224

11222

https://pubs.acs.org/doi/10.1021/acs.analchem.1c01892?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c01892/suppl_file/ac1c01892_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pe%CC%81ter+Horvatovich"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-2218-1140
https://orcid.org/0000-0003-2218-1140
mailto:p.l.horvatovich@rug.nl
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alejandro+Sa%CC%81nchez+Brotons"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jonatan+O.+Eriksson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marcel+Kwiatkowski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-5804-6031
https://orcid.org/0000-0002-5804-6031
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Justina+C.+Wolters"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ido+P.+Kema"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.1c01892?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Groningen, The Netherlands; orcid.org/0000-0003-1166-
6169

Andrei Barcaru − Department of Analytical Biochemistry,
Groningen Research Institute of Pharmacy, University of
Groningen, 9713 AV Groningen, The Netherlands

Folkert Kuipers−Department of Pediatrics, University Medical
Center Groningen, University of Groningen, 9713 GZ
Groningen, The Netherlands; Department of Laboratory
Medicine, University Medical Center Groningen, University of
Groningen, 9700 RB Groningen, The Netherlands

Stephan J. L. Bakker − Department of Internal Medicine,
Division of Nephrology, University Medical Center Groningen,
University of Groningen, 9713 GZ Groningen, The
Netherlands

Rainer Bischoff − Department of Analytical Biochemistry,
Groningen Research Institute of Pharmacy, University of
Groningen, 9713 AV Groningen, The Netherlands;
orcid.org/0000-0001-9849-0121

Frank Suits − IBM ResearchAustralia, Southbank 3006
Victoria, Australia

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.analchem.1c01892

Author Contributions
P.H., F.S. and R.B. designed and supervised the study; A.S.B.,
P.H., F.S. and A.B. contributed to the design of computational
algorithms, A.S.B. designed and implemented PASTAQ; J.O.E.
performed independent testing of PASTAQ; M.K. and J.C.W.
performed sample preparation and acquisition of LC−MS/MS
datasets; A.S.B., S.J.L.B., I.K., F.K., M.K., R.B., and F.S.,
discussed assessment and quality metrics and contributed to
interpretation of the results; A.S.B. and P.H. wrote the paper
with contributions from all authors.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This research was part of the Netherlands X-omics Initiative and
partially funded by NWO, project 184.034.019.

■ REFERENCES
(1) Wiener, M. C.; Sachs, J. R.; Deyanova, E. G.; Yates, N. A. Anal.
Chem. 2004, 76, 6085−6096.
(2) Levin, Y.; Schwarz, E.; Wang, L.; Leweke, F. M.; Bahn, S. J. Sep. Sci.
2007, 30, 2198−2203.
(3) McCormack, A. L.; Schieltz, D. M.; Goode, B.; Yang, S.; Barnes,
G.; Drubin, D.; Yates, J. R. Anal. Chem. 1997, 69, 767−776.
(4) Maurer, H. H. Clin. Biochem. 2005, 38, 310−318.
(5) Lee, M. S.; Kerns, E. H. Mass Spectrom. Rev. 1999, 18, 187−279.
(6) Fernie, A. R.; Trethewey, R. N.; Krotzky, A. J.; Willmitzer, L. Nat.
Rev. Mol. Cell Biol. 2004, 5, 763−769.
(7) Cox, J.; Mann, M. Nat. Biotechnol. 2008, 26, 1367−1372.
(8) Weisser, H.; Nahnsen, S.; Grossmann, J.; Nilse, L.; Quandt, A.;
Brauer, H.; Sturm, M.; Kenar, E.; Kohlbacher, O.; Aebersold, R.;
Malmström, L. J. Proteome Res. 2013, 12, 1628−1644.
(9) Smith, C. A.; Want, E. J.; O’Maille, G.; Abagyan, R.; Siuzdak, G.
Anal. Chem. 2006, 78, 779−787.
(10) Houel, S.; Abernathy, R.; Renganathan, K.; Meyer-Arendt, K.;
Ahn, N. G.; Old, W. M. J. Proteome Res. 2010, 9, 4152−4160.
(11) Suits, F.; Hoekman, B.; Rosenling, T.; Bischoff, R.; Horvatovich,
P. Anal. Chem. 2011, 83, 7786−7794.
(12) Mayer, G.; Proteom-center, M.; Bochum, R.-u.; Eisenacher, M.
mzIdentML: Exchange Format for Peptides and Proteins Identified from
Mass Spectra, 2011, pp 67.report

(13) Vaudel, M.; Burkhart, J. M.; Zahedi, R. P.; Oveland, E.; Berven, F.
S.; Sickmann, A.; Martens, L.; Barsnes, H. Nat. Biotechnol. 2015, 33,
22−24.
(14) Keller, A. D.; Nesvizhskii, A. I.; Kolker, E.; Aebersold, R.
Empirical statistical model to estimate the accuracy of protein
identifications made by MS/MS and database search. Proceedings
50th ASMS Conference on Mass Spectrometry and Allied Topics, 2002;
Vol. 74, pp 37−38.
(15)Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R.Anal. Chem.
2003, 75, 4646−4658.
(16) Käll, L.; Canterbury, J. D.; Weston, J.; Noble, W. S.; MacCoss, M.
J. Nat. Methods 2007, 4, 923−925.
(17) Wolters, J. C.; Ciapaite, J.; Van Eunen, K.; Niezen-Koning, K. E.;
Matton, A.; Porte, R. J.; Horvatovich, P.; Bakker, B. M.; Bischoff, R.;
Permentier, H. P. J. Proteome Res. 2016, 15, 3204−3213.
(18) Geyer, P. E.; Kulak, N. A.; Pichler, G.; Holdt, L. M.; Teupser, D.;
Mann, M. Cell Syst. 2016, 2, 185−195.
(19) Pedrioli, P. G. A.; Eng, J. K.; Hubley, R.; Vogelzang, M.; Deutsch,
E. W.; Raught, B.; Pratt, B.; Nilsson, E.; Angeletti, R. H.; Apweiler, R.;
Cheung, K.; Costello, C. E.; Hermjakob, H.; Huang, S.; Julian, R. K.;
Kapp, E.; McComb, M. E.; Oliver, S. G.; Omenn, G.; Paton, N. W.;
Simpson, R.; Smith, R.; Taylor, C. F.; Zhu, W.; Aebersold, R. Nat.
Biotechnol. 2004, 22, 1459.
(20) Martens, L.; Chambers, M.; Sturm, M.; Kessner, D.; Levander,
F.; Shofstahl, J.; Tang, W. H.; Römpp, A.; Neumann, S.; Pizarro, A. D.;
Montecchi-Palazzi, L.; Tasman, N.; Coleman, M.; Reisinger, F.; Souda,
P.; Hermjakob, H.; Binz, P.-A.; Deutsch, E. W. Mol. Cell. Proteomics
2011, 10, R110.000133.
(21) Barsnes, H.; Vaudel, M. J. Proteome Res. 2018, 17, 2552−2555.
(22) Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, J. S.
Electrophoresis 1999, 20, 3551−3567.
(23) Chambers, M. C.; MacLean, B.; Burke, R.; Amodei, D.;
Ruderman, D. L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.;
Egertson, J.; Hoff, K.; Kessner, D.; Tasman, N.; Shulman, N.; Frewen,
B.; Baker, T. A.; Brusniak, M.-Y.; Paulse, C.; Creasy, D.; Flashner, L.;
Kani, K.; Moulding, C.; Seymour, S. L.; Nuwaysir, L. M.; Lefebvre, B.;
Kuhlmann, F.; Roark, J.; Rainer, P.; Detlev, S.; Hemenway, T.; Huhmer,
A.; Langridge, J.; Connolly, B.; Chadick, T.; Holly, K.; Eckels, J.;
Deutsch, E. W.; Moritz, R. L.; Katz, J. E.; Agus, D. B.; MacCoss, M.;
Tabb, D. L.; Mallick, P. Nat. Biotechnol. 2012, 30, 918−920.
(24) Consortium TU. Nucleic Acids Res. 2021, 49, D480−D489.
(25) Kong, A. T.; Leprevost, F. V.; Avtonomov, D. M.; Mellacheruvu,
D.; Nesvizhskii, A. I. Nat. Methods 2017, 14, 513−520.
(26) Craig, R.; Beavis, R. C. Bioinformatics 2004, 20, 1466−1467.
(27) Dorfer, V.; Pichler, P.; Stranzl, T.; Stadlmann, J.; Taus, T.;
Winkler, S.; Mechtler, K. J. Proteome Res. 2014, 13, 3679−3684.
(28) Kim, S.; Pevzner, P. A. Nat. Commun. 2014, 5, 5277.
(29) Blumberg, L. M. Chromatographia 2014, 77, 189−197.
(30) Senko, M. W.; Beu, S. C.; Mclafferty, F. W. J. Am. Soc. Mass
Spectrom. 1995, 6, 229.
(31) Suits, F.; Lepre, J.; Du, P.; Bischoff, R.; Horvatovich, P. Anal.
Chem. 2008, 80, 3095−3104.
(32) Nesvizhskii, A. I.; Aebersold, R. Mol. Cell. Proteomics 2005, 4,
1419−1440.
(33) Cox, J.; Hein, M. Y.; Luber, C. A.; Paron, I.; Nagaraj, N.; Mann,
M. Mol. Cell. Proteomics 2014, 13, 2513−2526.
(34) Benjamini, Y.; Hochberg, Y. J. Roy. Stat. Soc. B 1995, 57, 289−
300.
(35) Fang, L.; Hu, X.; Cui, L.; Lv, P.; Ma, X.; Ye, Y. J. Assist. Reprod.
Genet. 2019, 36, 1101−1107.
(36) Uhlen, M.; Fagerberg, L.; Hallström, B. M.; Lindskog, C.;
Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.;
Asplund, A.; Olsson, I. M.; Edlund, K.; Lundberg, E.; Navani, S.;
Szigyarto, C. A. K.; Odeberg, J.; Djureinovic, D.; Takanen, J. O.; Hober,
S.; Alm, T.; Edqvist, P. H.; Berling, H.; Tegel, H.; Mulder, J.; Rockberg,
J.; Nilsson, P.; Schwenk, J. M.; Hamsten, M.; Von Feilitzen, K.;
Forsberg, M.; Persson, L.; Johansson, F.; Zwahlen, M.; Von Heijne, G.;
Nielsen, J.; Pontén, F. Science 2015, 347, 1260419.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.1c01892
Anal. Chem. 2021, 93, 11215−11224

11223

https://orcid.org/0000-0003-1166-6169
https://orcid.org/0000-0003-1166-6169
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrei+Barcaru"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Folkert+Kuipers"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stephan+J.+L.+Bakker"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rainer+Bischoff"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9849-0121
https://orcid.org/0000-0001-9849-0121
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Frank+Suits"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c01892?ref=pdf
https://doi.org/10.1021/ac0493875?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac0493875?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jssc.200700189
https://doi.org/10.1002/jssc.200700189
https://doi.org/10.1021/ac960799q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.clinbiochem.2005.01.014
https://doi.org/10.1002/(sici)1098-2787(1999)18:3/4<187::aid-mas2>3.0.co;2-k
https://doi.org/10.1038/nrm1451
https://doi.org/10.1038/nrm1451
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1021/pr300992u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac051437y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/pr1003856?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac201332j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nbt.3109
https://doi.org/10.1038/nbt.3109
https://doi.org/10.1021/ac0341261?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac0341261?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nmeth1113
https://doi.org/10.1021/acs.jproteome.6b00419?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cels.2016.02.015
https://doi.org/10.1038/nbt1031
https://doi.org/10.1038/nbt1031
https://doi.org/10.1074/mcp.r110.000133
https://doi.org/10.1074/mcp.r110.000133
https://doi.org/10.1021/acs.jproteome.8b00175?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/(sici)1522-2683(19991201)20:18<3551::aid-elps3551>3.0.co;2-2
https://doi.org/10.1038/nbt.2377
https://doi.org/10.1038/nmeth.4256
https://doi.org/10.1093/bioinformatics/bth092
https://doi.org/10.1021/pr500202e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/ncomms6277
https://doi.org/10.1007/s10337-013-2556-x
https://doi.org/10.1016/1044-0305(95)00017-8
https://doi.org/10.1016/1044-0305(95)00017-8
https://doi.org/10.1021/ac702267h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac702267h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1074/mcp.r500012-mcp200
https://doi.org/10.1074/mcp.r500012-mcp200
https://doi.org/10.1074/mcp.m113.031591
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1007/s10815-019-01454-5
https://doi.org/10.1007/s10815-019-01454-5
https://doi.org/10.1126/science.1260419
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.1c01892?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(37) Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.;
Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; Sanli, K.; Von
Feilitzen, K.; Oksvold, P.; Lundberg, E.; Hober, S.; Nilsson, P.;
Mattsson, J.; Schwenk, J. M.; Brunnström, H.; Glimelius, B.; Sjöblom,
T.; Edqvist, P. H.; Djureinovic, D.; Micke, P.; Lindskog, C.;
Mardinoglu, A.; Ponten, F. Science 2017, 357, No. eaan2507.
(38) Thul, P. J.; Akesson, L.; Wiking, M.; Mahdessian, D.; Geladaki,
A.; Ait Blal, H.; Alm, T.; Asplund, A.; Björk, L.; Breckels, L. M.;
Bäckström, A.; Danielsson, F.; Fagerberg, L.; Fall, J.; Gatto, L.; Gnann,
C.; Hober, S.; Hjelmare, M.; Johansson, F.; Lee, S.; Lindskog, C.;
Mulder, J.; Mulvey, C. M.; Nilsson, P.; Oksvold, P.; Rockberg, J.;
Schutten, R.; Schwenk, J. M.; Sivertsson, A.; Sjöstedt, E.; Skogs, M.;
Stadler, C.; Sullivan, D. P.; Tegel, H.; Winsnes, C.; Zhang, C.; Zwahlen,
M.; Mardinoglu, A.; Pontén, F.; Von Feilitzen, K.; Lilley, K. S.; Uhlén,
M.; Lundberg, E. Science 2017, 356, No. eaal3321.
(39) Gillet, L. C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter,
L.; Bonner, R.; Aebersold, R. Mol. Cell. Proteomics 2012, 11,
O111.016717.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.1c01892
Anal. Chem. 2021, 93, 11215−11224

11224

https://doi.org/10.1126/science.aan2507
https://doi.org/10.1126/science.aal3321
https://doi.org/10.1074/mcp.o111.016717
https://doi.org/10.1074/mcp.o111.016717
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.1c01892?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

