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a b s t r a c t

Recent studies of automatic diagnosis of vertebral compression fractures (VCFs) using deep learning mainly 
focus on segmentation and vertebral level detection in lumbar spine lateral radiographs (LSLRs). Herein, we 
developed a model for simultaneous VCF diagnosis and vertebral level detection without using adjacent 
vertebral bodies. In total, 1102 patients with VCF, 1171 controls were enrolled. The 1865, 208, and 198 LSLRS 
were divided into training, validation, and test dataset. A ground truth label with a 4-point trapezoidal 
shape was made based on radiological reports showing normal or VCF at some vertebral level. We applied a 
modified U-Net architecture, in which decoders were trained to detect VCF and vertebral levels, sharing the 
same encoder. The multi-task model was significantly better than the single-task model in sensitivity and 
area under the receiver operating characteristic curve. In the internal dataset, the accuracy, sensitivity, and 
specificity of fracture detection per patient or vertebral body were 0.929, 0.944, and 0.917 or 0.947, 0.628, 
and 0.977, respectively. In external validation, those of fracture detection per patient or vertebral body were 
0.713, 0.979, and 0.447 or 0.828, 0.936, and 0.820, respectively. The success rates were 96 % and 94 % for 
vertebral level detection in internal and external validation, respectively. The multi-task-shared encoder 
was significantly better than the single-task encoder. Furthermore, both fracture and vertebral level de-
tection was good in internal and external validation. Our deep learning model may help radiologists per-
form real-life medical examinations.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Lumbar spine lateral radiographs (LSLRs), with or without ante-
roposterior views, are commonly used to diagnose vertebral com-
pression fractures (VCFs) [1]. LSLR is a widely used and cost-effective 
diagnostic tool for VCF screening [2]. Radiographic criteria for VCFs 
include at least a 20 % compression in vertebral body height or a 
4 mm reduction from baseline height [3]. In postmenopausal 
women, VCFs are the most prevalent osteoporotic fractures, and 
osteopenic or osteoporotic bones make it challenging to detect 
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subtle VCFs [4]. In addition, radiologists perform the tedious chore of 
screening for VCFs; therefore, automated diagnosis is needed [5].

Recent advances in deep learning enable automatic diagnosis of a 
variety of illnesses using two-dimensional radiographs [6,7]. Parti-
cularly, studies using deep learning in LSLRs have recently been 
published. Seo et al. reported dual deep learning models for ver-
tebral body segmentation and vertebral compression measurement 
using adjacent vertebral bodies [8]. Kim et al. reported automated 
segmentation and lumbar vertebral level detection models using 
LSLRs [5]. Kim et al. reported another automated vertebral seg-
mentation-based manual vertebral compression ratio measurement 
model using LSLRs [9]. Li et al. reported automated vertebral com-
pression fracture detection in LSLRs using you only look once (YOLO) 
version 3 detection and other classification ensemble models [10]. 
However, upon analysis, these previous studies mainly focused on 
segmentation and vertebral level detection in LSLRs [5,8,9]. In ad-
dition, previous studies had the disadvantage of making a diagnosis 
only when clinically meaningful VCFs were discontinuous. In other 
words, the diagnosis could only be made when the vertebral bodies 
above and below the fractured vertebral body were normal.

Unlike previous studies, this study first attempted to improve the 
performance of vertebral body segmentation; second, it attempted 
to develop a VCF diagnosis model that is not dependent on adjacent 
bones; and third it attempted to develop a model of vertebral level 
detection, simultaneously. Finally, we intended to develop a deep 
learning model that diagnoses the level of VCF to help radiologists 
perform actual readings.

2. Methods

2.1. Dataset

This retrospective study was conducted according to the princi-
ples of the Declaration of Helsinki and in accordance with the cur-
rent scientific guidelines. The research protocol was approved by the 
Institutional Review Board of our institution (S2019–2003–0005), 
which waived the requirement for informed consent considering the 
retrospective nature of the study and deidentification of the char-
acteristics of the dataset in accordance with the Health Insurance 
Portability and Accountability Act privacy rule. A total of 83,005 
people with LSLRs from medical check-ups performed between 2011 
and 2019 at our institution were reviewed. (Fig. 1 and Supplemental 
Fig. 1) Of the 83,005 people, 1102 patients with VCF were enrolled, 
and 1171 controls were selected; therefore, a total of 2273 patients 
were enrolled.

Normal individuals in their 40 s were intentionally selected for 
the control group to make deep learning more effective. 
(Supplemental Fig. 1C) Furthermore, the 2073 LSLRs obtained earlier 
were selected and randomly split into 1865 and 208 for training and 
validation. Two hundred consecutive LSLRs obtained afterward were 
used as the test dataset. In the test set, two LSLRS were excluded due 
to severely fused vertebrae. (Supplemental Fig. 2) The fractured 
group had an average of 2.04 VCFs (95 % confidence interval [CI] 
1.96–2.11)

We used VinDr-SpineXR images for external validation [11]. In 
this public data, the training and test sets were separated originally. 
Then, the label was grouped based on "vertebral collapse" and "no 
finding". Among them, the number of LSLR images of VCF cases with 
identifiable ages, sex, and pixel-spacing information was 47. The 
same number of controls were also selected and matched according 
to age and sex.

2.2. Ground truth labeling

The ground truth label of the internal dataset was made using 
ITK-SNAP based on radiological reports of normal findings or 

fractures at some vertebral level [12]. (Supplemental Fig. 3) We used 
case only when the word "fracture" was reported. The labels were 
divided into five classes: background, lumbar, thoracic, fracture, and 
sacrum. Based on the radiologist’s report, a professional labeler with 
years of experience conducted the entire labeling using a trapezoid 
shape.

2.3. Definition of segmentation and evaluation methods

For vertebral body segmentation, performance was evaluated 
using a Dice score [13,14]. The ground truth labeling for detecting 
VCF was categorized into four classes: background, VCF, other 
normal (nonfractured) vertebral bodies, and sacrum. A Dice loss was 
used as a loss function. Output was evaluated using accuracy, sen-
sitivity, and specificity per patient.

For vertebral level detection, the ground truth was categorized 
into four classes: background, thoracic spine, lumbar spine (L-spine), 
and sacrum. The LSLRs of VCF were excluded in the classes. The Dice 
loss function was also used. The accuracy of vertebral level detection 
was evaluated for normal examinees and patients with VCF.

2.4. Image preprocessing

There were four steps in image preprocessing. First, intensity 
outlier clipping was applied to 1 % of the upper margins to remove 
the left/right mark, metal implant, etc.; z-score normalization (the 
mean of 3028.37 and standard deviation of 1720.31 were calculated 
for the intensity outlier clipped training set) was then performed. 
Next, resizing to 1024 × 1024 with zero padding and contrast limited 
adaptive histogram equalization (CLAHE) were performed [15], and 
finally, the images were saved as portable network graphic (PNG) 
files [16] from digital imaging and communications in medicine 
(DICOM) files [17]. (Supplemental Fig. 4) The image mask was also 
transformed into the same size as the LSLR. In addition, the mask 
was modified according to the VCF and level detection tasks as 
mentioned in Section 2.3. Definition of segmentation and evalua-
tion methods.

Fig. 1. Flowchart summarizing the study design. 
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2.5. Deep learning architecture and experiment setting

We applied modified the U-Net architecture [18], in which the 
single encoder is ResNet [19], and the decoders were trained for two 
tasks [20], including VCF and vertebral level detection (Fig. 2). Be-
cause our objective was to obtain the results of two multiclass 
segmentation tasks using the same radiographs, we designed the 
model to share the encoder, as shown on the right, to achieve sy-
nergy. Each decoder output has four channels (task classes and 
background), and the class of one pixel is decided by taking the 
softmax function and taking the largest value channel. In this model, 
we used Adam optimizer (in PyTorch [21]), the initial learning rate of 
1e-4, and ExponentialLR scheduler [22] with gamma of 0.9. We also 
trained the model for 100 epochs early stopping patience of 5.

ResNet101, ResNet34, ResNet50, and ResNet152 are all ResNet 
architectures. These ResNet architectures were designed to solve the 
problem of gradients vanishing in very deep layers, which can in-
hibit the training process of the network.

These 4 ResNet architectures differ in the number of layers and 
filters used. Therefore, the numbers, in the end, represent the 
number of layers, respectively. As a result, more layers tend to have 
higher representational power and can achieve better performance 
on tasks with large and complex datasets [23,24]. However, they also 
require more computational resources and may need to train faster 
than fewer layers. In this study, we ablated these 4 ResNet archi-
tectures and selected the most powerful and efficient layers among 
these architectures.

2.6. Image postprocessing at inference stage

The opening method was used for both tasks to remove small 
clusters, with a 5-by-5 kernel and 5 iterations based on OpenCV [25]. 
We then used the criteria to eliminate stains such that each vertebral 
body had just one class. Finally, we set the number of vertebral 
bodies in the L-spine to five. Through experimentation, the 30 % stain 
removal threshold was defined. (Supplemental Figure 5).

2.7. Detecting the center of the vertebral body

For the quantitative evaluation of our model, we adopted the 
Euclidian distance error between the model’s inference and the 
ground-truth centers of the vertebral bodies considering pixel spa-
cing. The error was determined for the cases where the five lumbar 

vertebrae were successfully detected. Incorrect cases were excluded 
during calculation.

The four corners of the lumbar vertebral bodies in the test da-
taset can be determined so that the ground truth mask label can be 
determined. The center of mass of each mask could be calculated 
using SciPy [26], and the order from L1 to L5 could be determined 
depending on the superior to inferior location. The mean square 
error between the same numbering dots from the ground truth mask 
and the interference mask was determined as the Euclidean distance 
by reflecting pixel spacing.

2.8. Statistical analysis

The means and 95 % CIs were calculated using Python with 
Numpy and Pandas libraries. Paired t-test and area under the re-
ceiver operating characteristic curve (AUROC) analyses were per-
formed using SciPy (version 1.6.3) library [26]. DeLong’s method was 
used for the comparison between AUROCs [27]. The AUROC value 
was calculated by changing the threshold value of stain removal. 
Levels of statistical significance that can be mentioned without 
further explanation are indicated using * (P  <  0.05) in the tables.

3. Results

3.1. Fracture detection per patient

The performances of true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN) per patient are listed in the 
test dataset in Table 1. The accuracy, sensitivity, specificity, and F1 
scores are also listed in Table 1. Although ResNet152 has more layers 
than Resnet101, it does not necessarily mean that it is more complex 
or has more parameters. In fact, Resnet101 has about 44.5 million 
parameters, while ResNet152 has about 60.2 million parameters 
[28]. Therefore, we believe that Resnet101 is a more efficient back-
bone for multi-task learning than ResNet152, as it achieves similar or 
better performance with fewer parameters. In our model (ResNet101 
with multi-task), accuracy, sensitivity, and specificity were 0.929, 
0.944, and 0.917, respectively, which were higher than 0.9. Based on 
the AUROC values, the multi-task model was significantly better 
than the single-task model.

Fig. 2. Schematic diagram of the multi-task model (ours) compared with single-task models. 
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3.2. Fracture detection per vertebral body

The performances of TP, TN, FP, and FN per vertebral body are 
listed in Table 2. The accuracy, sensitivity, and specificity were 0.947, 
0.628, and 0.977, respectively. One group example is shown in 
Fig. 3A. Based on sensitivity, the multi-task model was significantly 
better than the single-task model.

3.3. Level detection per patient

The success rate was 96 % for 198 test datasets. Incorrect cases 
were excluded. The distance errors (mm) are shown in Table 3. The 
error of center point prediction in our model was less than 1 mm for 
all lumbar vertebrae. One group example is shown in Fig. 3B.

3.4. Segmentation performance

The pixel based semantic segmentation performance is pre-
sented in Supplemental Table 1 and Supplemental Figure 6. The Dice 

Table 1 
Ablation studies for fracture detection per patient (198 cases). 

Models Performances

TP FP FN TN Accuracy Sensitivity Specificity F1 score DOR AUROC†

Within ResNet101
ResNet101 

- multi-task (ours)
84 9 5 100 0.929 0.944 0.917 0.923 186.667 0.953

ResNet101 
- single-task

77 9 12 100 0.894 0.865 0.917 0.880 71.296 0.906*

Within multi-task
ResNet101 (ours) 84 9 5 100 0.929 0.944 0.917 0.923 186.667 0.953
ResNet34 82 19 7 90 0.869 0.921 0.826 0.863 55.489 0.908*
ResNet50 81 8 8 101 0.919 0.910 0.927 0.910 127.828 0.934
ResNet152 84 9 5 100 0.929 0.944 0.917 0.923 186.667 0.962

Note: TP, True positive; TN, True negative; FP, False positive; FN, False negative; DOR, Diagnostic odds ratio; AUROC, Area under the receiver operating characteristic curve 
†Statistically significant differences between our model and others in the comparison between AUROCs using DeLong’s method are indicted using *(P  <  0.05) in the tables.

Table 2 
Ablation studies for fracture detection per vertebral body (2127 vertebral bodies). 

Models Numbers Performances

Vertebral body Fractured TP FP FN TN Accuracy† Sensitivity† Specificity† F1 score† DOR AUROC‡

Within ResNet101
ResNet101 

– multi-task (ours)
2127 183 115 44 68 1900 0.947 0.628 0.977 0.673 73.028 0.861

ResNet101 
– single-task

2127 183 105 44 78 1900 0.943 0.574* 0.977 0.633 58.129 0.826

Within multi-task
ResNet101 (ours) 2127 183 115 44 68 1900 0.947 0.628 0.977 0.673 73.028 0.861
ResNet34 2127 183 111 48 72 1896 0.944 0.607 0.975 0.649 60.896 0.855
ResNet50 2127 183 107 40 76 1904 0.945 0.585 0.979 0.648 67.016 0.824
ResNet152 2127 183 115 46 68 1898 0.946 0.628 0.976 0.669 69.779 0.866

Note: TP, True positive; TN, True negative; FP, False positive; FN, False negative; DOR, Diagnostic odds ratio; AUROC, Area under the receiver operating characteristic curve 
†Statistically significant differences between our model and others in the paired T test are shown using *(P  <  0.05) in the tables. ‡Statistically significant differences between our 
model and others in the comparison between AUROCs using DeLong’s method are shown using *(P  <  0.05) in the tables.

Fig. 3. Two cases of (A) fracture detection and (B) level detection using the models in internal validation. Red arrows indicate the wrong classification. LSLR: lumbar spine lateral 
radiograph.
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score of our models were 0.941 and 0.947 in fracture detection de-
coder and level detection decoder, respectively. The accuracies of our 
models were 0.989 and 0.991, respectively.

3.5. External validation

The fracture detection results per patient are listed on the ex-
ternal dataset in Supplemental Table 2. (Fig. 4A) Our model had an 
accuracy of 0.713, sensitivity of 0.979, and specificity of 0.447. The 
result of external validation per patient had higher sensitivity and 
more FP than the result of internal validation.

The fracture detection results per vertebral body are listed in 
Supplemental Table 3. Our model had an accuracy of 0.828, sensi-
tivity of 0.937, and specificity of 0.820. The external validation result 
per vertebral body also had higher sensitivity and more FPs than the 
internal validation result.

The success rate of vertebral level detection was 94 % for 94 
external validation datasets. Incorrect cases were also excluded. The 
distance errors in mm are shown in Supplemental Table 4. One 
group example is shown in Fig. 4B. The center point prediction of our 
model was also less than 1 mm for all lumbar vertebrae. Similar 
distance differences were also obtained during internal validation.

The pixel based semantic segmentation performance is pre-
sented in Supplemental Table 5. The Dice scores of our models were 
0.911 and 0.910 in the fracture and level detection decoders, re-
spectively. The accuracies of our models were both 0.991. The Dice 

score was approximately 0.03 lower in the external validation than 
in the internal validation. However, the accuracy was similar.

4. Discussion

In this study, we developed a multi-task deep learning model 
using LSLRs. Our model had favorable outcomes, with 0.9 or higher 
values in all metrics, including accuracy, sensitivity, specificity, and 
F1 score per patient. Our model also showed a high specificity of 
0.977 when evaluated per vertebral body. In addition, our model 
showed good accuracy of 96 % in vertebral level detection.

In this study, we proved that multi-task models are superior to 
single-task models, with values of 0.929 versus 0.894 for accuracy 
and 0.923 versus 0.880 for F1 scores per patient, respectively, within 
the same resnet101 backbone. In addition, the values were 0.947 
versus 0.943 for accuracy and 0.673 versus 0.633 for F1 score per 
vertebral body, respectively. By utilizing all information to maximize 
the performance of a single goal or the general performance of all 
tasks, multi-task learning seeks to learn many tasks simultaneously. 
This method generally improves performance and benefits tasks that 
have similar characteristics [29,30].

All errors from L1 to L5 were less than 1 mm when our model 
was used to compare the Euclidian distance error of the mass center 
of the vertebral body. Furthermore, our model showed better results 
than that of a study by Kim et al., in which the mean Euclidian 
distance error from L1 to L5 was 4.83–5.37 mm. This study used a 

Table 3 
Vertebral level detection results per patient (198 cases). 

Models Performances Distance errors (mm) in corrected cases

Correct Incorrect Accuracy L1 L2 L3 L4 L5

Within ResNet101
ResNet101 

– multi-task (ours)
190 8 0.960 0.86 

(0.77–0.95)
0.65 
(0.59–0.72)

0.72 
(0.65–0.79)

0.75 
(0.68–0.83)

0.99 
(0.89–1.08)

ResNet101 
– single-task

184 14 0.929 1.04 
(0.72–1.35)

0.89 
(0.55–1.22)

0.87 
(0.46–1.29)

0.94 
(0.56–1.31)

1.19 
(0.80–1.58)

Within multi-task
ResNet101 (ours) 190 8 0.960 0.86 

(0.77–0.95)
0.65 
(0.59–0.72)

0.72 
(0.65–0.79)

0.75 
(0.68–0.83)

0.99 
(0.89–1.08)

ResNet34 182 16 0.919 0.83 
(0.75–0.91)

0.71 
(0.64–0.79)

0.74 
(0.67–0.81)

0.83 
(0.75–0.91)

1.09 
(0.99–1.19)

ResNet50 183 15 0.924 0.86 
(0.77–0.95)

0.65 
(0.59–0.72)

0.72 
(0.65–0.79)

0.75 
(0.68–0.83)

0.99 
(0.89–1.08)

ResNet152 189 9 0.955 0.91 
(0.63–1.2)

0.82 
(0.50–1.14)

0.88 
(0.47–1.29)

0.92 
(0.54–1.30)

1.13 
(0.72–1.54)

Fig. 4. Two cases of (A) fracture detection and (B) level detection using the models in external validation. Red arrows indicate the wrong classification or segmentation. LSLR: 
lumbar spine lateral radiograph.
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deep learning-based pose estimation method to determine the mass 
center of the vertebral body [31–33]. The center point estimation 
using pose estimation method is inherently different from the 
ground truth center position. Since our model determined the mass 
center using segmentation and four corners, we assume that our 
model was slightly better.

In our model, accuracy, sensitivity, specificity, and AUROC per 
vertebral body were 0.947, 0.628, 0.977, and 0.861, respectively, 
which are comparable to that in the study by Li et al. that reported 
0.93, 0.91,and 0.93, respectively [10]. (Supplemental Table 6) The 
sensitivity and accuracy were higher in our model than in this 
model, but the specificity was lower. This might be due to data 
imbalance. Since the dataset of this study was based on medical 
check-up data from healthy people who did not know they had a 
fracture, the distribution of the data is different from that of a study 
based on only fracture patients, such as Li’s study. In addition, our 
model performed well with accuracy, sensitivity, and specificity of 
0.929, 0.944, and 0.917 per patient, respectively. This is probably due 
to the different perspectives of our model and a professional labeler 
in multi-level fracture. Higher performance at the patient level 
would be helpful, as it would give radiologists a chance to take a 
second look at the X-ray.

The maximum average Dice score of semantic segmentation 
using our model was 0.947. This was considered to be slightly su-
perior to the 0.923 reported by Seo et al. [8], 0.916 reported by Kim 
et al. [5], and 0.929 reported by Kim et al. [9]. (Supplemental Table 7) 
However, the fundamental limit of this segmentation result could 
not be perfect because the ground truth label was made based on a 
4-point square. The vertebral body is not a perfect square and may 
be distorted by disc degeneration or osteophyte formation [34]; 
therefore, using a square-based label will not yield perfect results. 
However, the results of the Dice score were close to 0.95, showing 
maximum performance given the resources of this study. Never-
theless, we believe that the Dice score was higher than that of other 
studies because learning was performed using a multi-task model.

The level detection using our model showed 96 % accuracy in 198 
test sets, similar to the 96.25 % in 160 test sets reported by Kim et al. 
[5]. (Supplemental Table 8) We believe that the iliac wing passing 
between the L4–L5 vertebral bodies could have affected the accu-
racy, and better accuracy could be obtained if the deep learning 
model was trained with iliac wing annotations.

Our research had certain limitations. First, the ratio of patients 
with VCF to the controls was set to approximately 1:1 for effective 
learning without reflecting the natural prevalence of VCF. In addi-
tion, since the ratio of patients in the VCF and control groups was 
also set to 1:1 for external validation, the real-world scenario was 
also not reflected. Second, the diagnosis of VCF was not based on CT 
or MRI, just LSLR. Third, this study does not discriminate between 
acute and chronic fractures. Third, the fracture detection sensitivity 
per vertebral body of 0.628 will need to be improved in further 
studies. Finally, this model may not be technically up to date. 
However, clinically, it is the first deep learning model to go beyond 
detecting fractures in 2D X-rays and infer what level they are at.

5. Conclusions

In this study, we developed a deep learning model for detecting 
VCF and vertebral levels using LSLRs. In the process, it was proven 
that the multi-task-shared encoder was superior to the single-task 
encoder. In addition, the results of fracture level and vertebral level 
detection were favorable for internal and external validations. In 
conclusion, our deep learning model would help radiologists per-
form real-life medical examinations.
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