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Abstract: High-risk genetic multiple myeloma (HRMM) remains a major therapeutic
challenge, as patients harboring adverse genetic abnormalities, such as del(17p), TP53
mutations, and biallelic del(1p32), continue to experience poor outcomes despite recent
therapeutic advancements. This review explores the evolving definition and molecular
features of HRMM, focusing on recent updates in risk stratification and treatment strategies.
The new genetic classification proposed at the 2025 EMMA meeting offers improved
prognostic accuracy and supports more effective, risk-adapted treatment planning. In
transplant-eligible patients, intensified induction regimens, tandem autologous stem cell
transplantation, and dual-agent maintenance have shown improved outcomes, particularly
when sustained minimal residual disease negativity is achieved. Conversely, in the relapsed
or refractory setting, novel agents have demonstrated encouraging activity, although
their specific efficacy in HRMM is under investigation. Moreover, treatment paradigms
are shifting toward earlier integration of immunotherapy, and therapeutic strategies are
individualized based on refined molecular risk profiles and clone dynamics. Therefore,
a correct definition of HRMM could help in significantly improving both clinical and
therapeutic management of a subgroup of patients with an extremely aggressive disease.

Keywords: multiple myeloma; molecular mechanism; genomic stratification; high-risk
genetic MM; anti-CD38 agents; CAR-T; BiTEs; proteasome inhibitors; CD38; BCMA; MRD

1. Introduction
MM is a clonal hematological malignancy characterized by the uncontrolled prolif-

eration of malignant plasma cells in the bone marrow, associated with overproduction of
monoclonal immunoglobulins (M-proteins), resulting in end-stage organ damage [1]. Over
the last decade, the OS of MM patients has significantly improved, largely due to the advent
of innovative therapeutic strategies, including monoclonal antibodies and T-cell redirecting
therapies [2]. Despite these advances and the use of novel treatments, approximately
15-20% of patients continue to experience poor outcomes, with a median OS shorter than
three years. These patients typically exhibit aggressive disease biology driven by specific
high-risk genetic abnormalities, and they represent a clinically distinct subset, defined as
high-risk multiple myeloma (HRMM), that could overlap with a recently introduced entity,
the functional high-risk multiple myeloma (FHRMM), which includes patients with early
relapse or suboptimal response to therapies. [3]. To date, the presence of these adverse
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prognostic high-risk genetic features remains a major unmet clinical challenge, even in the
era of novel agents. While several reviews have discussed therapeutic options in MM, few
have comprehensively addressed the specific challenges posed by HRMM, such as risk
classification systems and specific therapeutic strategies. Therefore, in this review, we aim
at (i) outlining the historical evolution and updated definitions of HRMM; (ii) summarizing
current therapeutic landscapes, including the role of monoclonal antibodies and T-cell
redirecting therapies; and (iii) highlighting future directions, such as molecularly guided
MRD-adapted treatment approaches.

2. High-Risk Genetic Abnormalities
An overview of high-risk cytogenetic abnormalities in MM is summarized in Table 1.

The presence of these abnormalities at diagnosis remains one of the principal barriers to
long-term efficacy with current anti-myeloma therapies.

Table 1. High-risk genetic abnormalities in multiple myeloma.

Abnormality Frequency Gene/Pathway Prognostic
Significance Clinical Impact

All 14q32 (IGH)

t(4;14)
t(14;16)
t(14;20)

45–50%
10% to 15%

<5%
<5%

FGFR3/MMSET
Upregulation

MAF overexpression
MAFB overexpression

Poor

Uncertain; mainly poor
Uncertain; mainly poor

Rapid progression. Double ASCT

Double ASCT, especially with HR abn
Double ASCT, especially with HR abn

1q21 gain
2–3 copies
≥4 copies

40%
20–30%
5–20%

CKS1B, MCL1,
ADAR1 overexpression Intermediate

Poor
Aggressive with organ failure

Double ASCT, especially with HR abn

1p32 deletion
Monoallelic

Biallelic
10% FAF1/CDKN2C deficit Poor

Highly poor
Double ASCT, especially with HR abn
Double ASCT + intensive maintenance

del(17p)/TP53
mutation
Single hit

Double hit

8–15%

Deletion
Deletion +
mutation

TP53 Poor

Highly poor

Poor sensitivity to therapy

Double ASCT + intensive maintenance

The gold standard for detecting these genetic alterations in approximately 90% of
patients is FISH analysis performed on CD38+-enriched bone marrow plasma cells [4].
Using this technique, several cytogenetic and molecular abnormalities associated with
HRMM have been identified, including translocations involving the IGH locus (e.g., t(4;14),
t(14;16), and t(14;20)), del(17p), gain or amplification of 1q, and deletion of 1p [5]. Overall,
hyperdiploidy and chromosomal abnormalities involving the IGH locus (14q32 region)
are detected in ~45–50% of MM cases. In detail, t(11;14) is found in ~20% of patients and
is considered a standard-risk abnormality; conversely, t(4;14) (10–15% of cases), t(14;16)
(~5%), and t(14;20) (~5%) are less frequent and are associated with high-risk genetic disease
due to their correlation with poorer outcomes [6,7].

Chromosome 1 abnormalities are the most frequent cytogenetic alterations in newly
diagnosed MM, occurring in 30–40% of cases, and are considered important prognostic
markers. In particular, 1q gain and 1q amplification, defined as the presence of one or ≥2
additional copies of the 1q region [8], have a proportional adverse prognostic impact that
increases with the number of additional 1q21 copies, as 1q21 amplification is associated
with a worse outcome compared to simple gain [9,10]. Deletions of the 1p32 region
are rare, as they are detected in ~10% of newly diagnosed MM cases; however, they
represent a strong and independent adverse prognostic factor, especially in cases of biallelic
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deletions [11,12]. Loss of the short arm of chromosome 17—del(17p)—is the worst adverse
prognostic factor in MM, particularly when co-occurring with TP53 mutations, a condition
known as “double-hit TP53 multiple myeloma” [13]. The prevalence of del(17p) ranges
from 8% to 15%, depending on the threshold used to define the proportion of clonal plasma
cells, as a cut-off of ≥55% del(17p)-positive plasma cells is the only value significantly
linked to worse prognosis [14,15]. The functional loss of TP53 results in profound genomic
instability and is strongly associated with pan-resistance to anti-myeloma agents, as MM
cells become largely insensitive to apoptosis [16].

3. Evolution of High-Risk Genetic Classification
In 2015, the standard ISS was revised to incorporate adverse cytogenetic abnormalities,

including t(4;14), t(14;16), t(14;20), del(17p), and TP53 mutations, as well as elevated serum
LDH values, leading to the creation of the R-ISS [17]. Subsequently, in 2016, the IMWG
further refined the definition of HRMM by including additional cytogenetic abnormalities,
such as 1q gain/amplification and 1p32 deletions, which were not yet formally integrated
into the R-ISS, leading to a discrepancy between these two staging systems [3]. This gap
highlights the urgent need to revise current risk stratification models by incorporating the
full spectrum of genetic abnormalities with validated prognostic relevance. In this context,
a novel risk stratification system has been proposed and validated by Hervé Avet-Loiseau
at the 30th EMMA meeting held in Vienna in January 2025 [18]. This updated model
demonstrated superior prognostic accuracy compared to the IMWG system, identifying
del(17p) with a cut-off >20% of positive cells, TP53 mutations, and biallelic del(1p32)
as independent negative prognostic markers. Additionally, specific combinations were
identified as high-risk, including chromosome 14 translocations co-occurring with 1q gain
or monoallelic del(1p32) and 1q21 gain combined with monoallelic del(1p32) (Table 2) [18].
If definitively validated, the new genetic risk model will allow a deeper understanding of
HRMM, and therapies can be tailored based on specific patient characteristics.

Table 2. Risk stratification systems.

Stage ISS R-ISS

I Sβ2M < 3.5 mg/L
Serum albumin ≥ 3.5 g/dL

Sβ2M < 3.5 mg/L
Serum albumin ≥ 3.5 g/dL
Standard-risk CA by iFISH

Normal LDH

II
Sβ2M > 3.5 mg/L and

serum albumin < 3.5 g/dL OR
3.5 mg/L < Sβ2M > 5.5 mg/L

Not R-ISS stage I or III

III Sβ2M ≥ 5.5 mg/L Sβ2M ≥ 5.5 mg/L and either high-risk CA by FISH OR high LDH

Genetic risk

R-ISS Standard-risk CA
Deletion of chromosome 17, or 17p-, translocation of chromosomes
14 and 16, or t(14;16), and translocation of chromosomes 4 and 14,

or t(4;14)

EMMA High genetic risk CA

del(17p) > 20%
TP53 mutation

Biallelic del1p32
1q gain and monoallelic del1p32

t(4;14) or t(14;16) or t(14;20) and either 1q gain or monoallelic del1p32
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4. Molecular Mechanisms in HRMM
In HRMM, the presence of specific molecular alterations confers aggressive disease be-

havior, drug resistance, and clonal evolution [19], which can be pharmacologically targeted.
Del(17p), with or without TP53 mutations, results in the loss of p53 tumor suppressor
function, promoting genomic instability, impaired DNA repair, and apoptosis resistance,
thereby contributing to unresponsiveness to conventional therapies [20]. Gain or ampli-
fication of chromosome 1q21, another hallmark of HRMM, involves several oncogenes,
which accelerate cell cycle progression, drug resistance, and adverse outcomes [21]. IGH
translocations lead to altered chromatin structure and epigenetic regulation, DNA damage
tolerance, resistance to proteasome inhibitors, cell adhesion, migration, and angiogenesis
(Figure 1) [12,22]. These molecular events not only drive disease progression but also
induce an immunosuppressive microenvironment, impacting the efficacy of monoclonal
antibodies and T-cell redirecting agents. A deeper understanding of these mechanisms is
essential for the development of targeted therapeutic strategies tailored to the genetic and
molecular landscape of HRMM [23,24].

Figure 1. Genomic events at disease initiation and progression from MGUS to MM. Hyperdiploidy
could be a first-hit event that facilitates the addition of secondary events, such as mutations in NRAS,
KRAS, and BRAF. Similarly, translocations involving the immunoglobulin heavy chains (IGH) gene
could be a different primary event that more frequently is associated with mutations in MAF/MAFB,
FGFR3, or CCND1 genes, as well as with gains of 1q. TP53 mutations and/or del(17p) are usually late
pathogenic events, occurring in both cases.

In detail, there are different pathogenetic events occurring at disease initiation and at
progression (Figure 2) [25,26].

4.1. IGH Translocations

Translocations involving the IGH loci place various oncogenes next to the strong
enhancer region of these immunoglobulin regions, which are highly active in mature B cells;
thus, translocated oncogenes result in increased expression, ultimately resulting in cell cycle
dysregulation and proliferation and reduced DNA repair ability [27,28]. IGH translocations
and hyperdiploidy usually are present at disease initiation and lead to cell cycle dysreg-
ulation by affecting CDK4 and CDK6 complexes that favor the dissociation transcription
factor E2F by RB phosphorylation [29–31]. Consequently, E2F concurs to transcription of
genes involved in the G1/S checkpoint step and to upregulation of FGFR3 and MMSET
(also known as NSD2) [32,33]. This latter, a histone methyltransferase, highly influences
the methylation status of cells by increasing H3K36me2 and reducing H3K27me3 [34]. In
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neoplastic plasma cells, MMSET upregulation leads to altered methylation, cell adhesion,
increased proliferation and survival, and genomic instability [35,36]. Moreover, MMSET
can promote non-homologous end-joining at deprotected telomeres, altering the DNA
repair process [37]. Other IGH translocations, including t(14;16) and t(14;20), are associ-
ated with overexpression of the oncogenes MAF and MAFB, integrins such as integrin β7,
and apolipoprotein B mRNA editing enzyme catalytic subunit-induced mutation signa-
ture [38,39]. All these alterations are linked to tumor invasion, metastasis, higher ability to
resist starvation and stress, and increased genomic and chromosomal instability [37].

Figure 2. Pathways altered in MM. Principal pathways involved in high-risk disease, including
NF-κB, MAPK, cell cycle, hypoxia, and DNA-damage repair pathways. In detail, the absence of
TP53 results in the lack of cell cycle control through E2F1 and Cyclin D3, and cells continue to the
G1/S phase even though they carry DNA breaks, thus promoting genomic instability, impaired DNA
repair, and apoptosis resistance. The t(4;14), t(14;16), and t(14;20) translocations lead to MMSET and
MAF/MAFB overexpression, ultimately leading to increased E2F1 activation and translocation to
the nucleus, where it promotes the transcription of genes involved in cell proliferation. Similarly, hy-
podiploidy and t(11;14) promote cell cycle progression and proliferation through Cyclin D1/CDK4/9
modulation. Upregulation and/or activating mutations in FGFR3, KRAS, NRAS, and/or BRAF,
and MYC translocations induce cell proliferation by direct gene transcription or by indirectly mod-
ulating cyclin activities, as well as TRAF3 and NF-κB. Moreover, altered BCR signaling is related
to impaired apoptosis through modulation of IRF4, BCL-6, and PAX5. Finally, hypoxia can also
influence RNA splicing of genes for DNA damage repair proteins via upregulation of HIF1α and
lactate dehydrogenase A. Figure made using https://smart.servier.com/.

https://smart.servier.com/
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4.2. Methylation

HDAC6 inhibition results in high pro-apoptotic effects, likely because of a concomi-
tant modulation of protein degradation. HDAC6 binds to polyubiquitinated proteins and
facilitates the removal of protein aggregates by regulating aggresome formation and their
autophagic degradation through HSF1 and HSP90 activation [40]. This abnormal methyla-
tion status in neoplastic plasma cells is also caused by increased expression of the histone
methyltransferase EZH2 [30]. Moreover, mutations in DNA methylation modifiers, such as
in IDH1, can also occur, especially during disease progression, and can contribute to global
gene expression alteration [30].

4.3. MYC Translocations

Secondary events at disease progression are MYC translocations, likely promoted by
genes with super-enhancers active in late B cell stages [41]. Copy number changes usually
occur at 8q24 and are associated with MYC translocation in 30% of cases [42,43].

4.4. Chromosome 1 Abnormalities

Amplification of 1q is also common and starts from the formation of dicentric chro-
mosomes, leading to multiple breakage–fusion–bridge cycles with consequent gene at
1q21 [44]. This chromosomal region comprises several genes, including CKS1B, MCL1
encoding for a BCL-2 family member, ANP32E, and ILF2 encoding for a protein required
for RNA splicing of genes for DNA damage repair proteins [45]. These alterations are
probably induced by hypoxia and aberrant expression of KDM4A, as also demonstrated by
a significant association between RAS mutations, loss of p53 function, and upregulation
of HIF1α and lactate dehydrogenase A [46,47]. Conversely, loss of 1p leads to deletion of
CDKN2C, FAF1, FAM46C, RPL5, and ecotropic viral integration site 5 [48]. In particular,
CDKN2A, together with CDKN2B, CDKN2C, and CDKN2D, regulates cell proliferation by
inhibiting the activity of cyclin D–CDK complexes [49]. Their loss of function can derive
from 1p deletion, homozygous inactivation of RB1, and/or DNA methylation-mediated si-
lencing, and results in increased cell proliferation alongside RAS pathway upregulation [30].
Therefore, chromosome 1 abnormalities result in cell cycle dysregulation, proliferation,
anti-apoptotic signaling activation, and cell growth [37].

5. First-Line Treatments for Transplant-Eligible Patients
In Europe, MM treatment strategy is tailored according to the patient’s fitness and

eligibility for ASCT, as outlined in the 2021 EHA-ESMO guidelines (Table 3) [50]. The
primary goal of frontline treatment is to achieve an early, profound, and sustained response,
ideally defined as high sensitivity (at least 10−5) MRD negativity. Consequently, treatment
strategies involving intensified induction regimens, ASCT, consolidation, and maintenance
are designed to maximize the depth and duration of response. Sustained MRD negativity
is critical, as transient MRD negativity does not correlate with improved long-term out-
comes [51]. Before the advent of anti-CD38-based induction, 4-6 cycles of VRD represented
the most effective frontline option for HRMM patients [3,52,53]. Afterwards, the addition
of daratumumab, an anti-CD38 monoclonal antibody, to dara-VTD demonstrated excellent
responses, resulting in FDA and EMA approval in 2019 and 2020, respectively [54]. HRMM
patients treated with dara-VTD showed favorable CR and negative MRD rates compared
to VTD only [55], as well as daratumumab plus VRD (dara-VRD), which further increased
negative MRD rates [56]. This consistent benefit of dara-VRD in HRMM has been further
confirmed in the phase III Perseus trial [57,58] and in the IFM phase II 2018-04 trial. In
the latter, four cycles of quadruplet induction and consolidation therapy with dara-KRd,
followed by tandem ASCT, and two years of maintenance with daratumumab plus lenalido-
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mide, resulted in promising outcomes for HRMM [59]. Isatuximab, another anti-CD38
monoclonal antibody, in combination with KRD (isa-KRd), has also demonstrated high
rates of MRD negativity post-consolidation in both high- and ultra–high-risk (≥ 2 high-risk
cytogenetic abnormalities) MM patients in the randomized phase III ISKIA trial [60], and in
the GMMG-CONCEPT study both in transplant-eligible and ineligible HRMM patients [61].

Table 3. First-line treatments in ASCT-eligible MM patients.

Study Phase Regimens N. HRMM
Patients Outcomes in HRMM General Outcomes p-Value

CASSIOPEIA
(Completed) III Dara-VTD vs.

dara-VTD 168
CR rate: 36.6%

MRD− rate: 59.8%
No benefits compared to VTD

CR or better: 38.9%
MRD− rate: 63.7% NS

GRIFFIN
(Completed) II Dara-VRD vs.

dara-VRD 30
sCR rate: 18.8%

MRD− rate: 37.5%
No benefits compared to VRD

sCR rate: 42.4%
MRD− rate: 51% NS

PERSEUS
(Active, not
recruiting)

III Dara-VRD vs.
dara-VRD 154 MRD− rate: 68.4%

Sustained MRD− rate: 48.7%

MRD− rate: 75.2%
Sustained MRD−

rate: 69.3% 0.04

ISKIA
(Active, not
recruiting)

III Isa-KRD 111
Ultra-HR: 51 MRD− rate: 76-77% MRD− rate: 79% in

standard risk NS

GMMG-
CONCEPT
(Active, not
recruiting)

II Isa-KRD 125

MRD− rate in ASCT-eligible
patients: 67.7%

MRD− rate in ASCT-ineligible
patients: 54.2%

− −

IFM 2018-04
(Active, not
recruiting)

II Dara-KRD 50

30-month PFS: 80%
30-month OS: 91%

ORR: 100% in patients
completing 2nd ASCT

− −

Efficacy of tandem ASCT in HRMM has been demonstrated in several studies
(Table 4) [62–66], and current international guidelines recommend double ASCT in this
setting [50,67]. However, these studies have been conducted in the pre-daratumumab
era, when MRD monitoring was not routinely employed to guide treatment strategies.
Therefore, it remains uncertain whether tandem ASCT continues to provide a significant
advantage in the context of modern induction regimens incorporating anti-CD38 mono-
clonal antibodies. To address this question, the ongoing phase 3 Minimal Residual Disease
Adapted Strategy (MIDAS) trial (NCT04934475) is evaluating the role of single versus tan-
dem ASCT in the era of anti-CD38–based therapies. After a uniform induction consisting
of six cycles of Isa-KRd, patients are stratified into four cohorts based on MRD status to
determine the optimal transplantation strategy.

Consolidation therapy is defined as 2-4 additional cycles of treatment using the same
agents employed during induction followed by ASCT, and its role in MM management
remains debated. For example, VRD-based regimens have been proposed as consolidation
because some studies, like EMN02/HO95, display improved outcomes, while others, such
as the StaMINA trial, have not confirmed this benefit [64,66,68]. However, current clinical
guidelines recommend the use of consolidation therapy in selected cases, such as patients
with persistent MRD positivity after ASCT or those with HRMM. Given the limited and
heterogeneous evidence regarding consolidation, maintenance therapy has emerged as a
critical component in post-transplant management, particularly in HRMM, where sustained
disease control is essential for improving long-term outcomes. Maintenance treatment
is less intensive than induction, typically administered orally until MM progression or
intolerance, with the primary aim of delaying relapse [69,70]. Lenalidomide alone has
shown clear benefits in PFS and OS in the general MM population [71], although its efficacy
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in HRMM appears limited in prolonging PFS. Therefore, lenalidomide in combination with
bortezomib, with or without dexamethasone, could offer added benefit in this subgroup of
patients [7,72,73]. In the CASSIOPEIA trial, single-agent daratumumab has been shown
to prolong PFS; however, no specific subgroup analysis was reported for HRMM [74].
Conversely, the randomized phase III TOURMALINE-MM3 study demonstrated that ixa-
zomib as maintenance after ASCT could improve outcomes in the HRMM group [75]. In
the ongoing PERSEUS study (NCT03710603), maintenance with lenalidomide and daratu-
mumab is being tested in both standard and high-genetic risk patients [57,76]. Despite these
promising results, clinical trials lack patients’ stratification by high-risk genetic features or
only include limited analyses on HRMM disease, partly due to the underrepresentation of
high-risk patients in trial populations. Additionally, the absence of MRD-guided treatment
adaptation in several older pivotal studies limits their relevance in the current precision
medicine landscape.

Table 4. Outcomes after ASCT in MM patients.

Study Phase Regimens N. HRMM
Patients

Outcomes in
HRMM

General
Outcomes p-Value

STAMINA
(Completed) III

ASCT plus lenalidomide
maintenance (auto/len) vs.

ASCT plus VRd consolidation
plus lenalidomide

maintenance (auto/VRd) vs.
tandem ASCT plus

lenalidomide maintenance
(auto/auto)

223

6-year PFS: 43.6%
and 26% for

auto/auto and
auto/len

6-year PFS
auto/auto: 43.9%
auto/VRd: 39.7%
auto/len 40.9%

6-year OS
auto/auto: 73.1%
auto/VRd: 74.9%
auto/len 76.4%

0.03

EMN02/HO95
(Completed) III VCD followed by

VMP or single/double ASCT 225

75-month OS
54% with ASCT
30% with VMP

Median PFS double
vs. single ASCT: 46

vs. 27.6 months

− −

MIDAS
(Active, not
recruiting)

III

Isa-KRD × 6 plus in standard risk
(A) Isa-KRD for 6 plus lenalidomide maintenance for 3 years

(B) ASCT plus isa-KRD for 2 plus lenalidomide maintenance for
3 years

(C) In high-risk, ASCT plus isa-KRD for 2 plus isa-Iber for
3 years

(D) In high-risk, tandem ASCT plus isa-iber for 3 years

Ongoing −

6. First-Line Treatment for Transplant-Ineligible Patients
In ASCT-ineligible patients, the therapeutic goal shifts away from achieving a deep and

sustained response by balancing treatment efficacy with tolerability and preserving quality
of life. However, evidence-guided treatment decisions in this setting are limited, particu-
larly for frail patients with high-risk genetic abnormalities, who are often underrepresented
in clinical trials (Table 5).

Bortezomib in combination with IMiDs has been associated with hematological re-
sponses in HRMM patients [77]. In the phase III VISTA trial, the VMP regimen demon-
strated comparable survival rates to those observed in standard-risk patients [78]. In
contrast, continuous or fixed-duration RD therapy is ineffective in these patients [79]. How-
ever, adding bortezomib to RD as a VRD triplet can improve PFS [80], whereas the addition
of elotuzumab did not show the same benefit [81]. Moreover, integration of anti-CD38
monoclonal antibodies into frontline regimens has yielded mixed results in HRMM. Indeed,
dara-RD has documented superiority over RD in HRMM, although the adverse prognostic
impact of high-risk genetics is not fully mitigated, as PFS remains shorter than that ob-
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served in the overall study population [82–84]. Similarly, the addition of daratumumab to
the VMP regimen did not improve outcomes compared to VMP in HRMM patients [85].
Interpretation of these results is limited by the small proportion of high-risk patients in
the intention-to-treat populations, reducing the statistical power of subgroup analyses. To
address this limitation, a meta-analysis of phase III studies has been conducted, showing
that the addition of daratumumab could prolong PFS in HRMM patients [86].

Table 5. First-line treatments in ASCT-ineligible MM patients.

Study Phase Regimens N. HRMM
Patients Outcomes in HRMM General Outcomes p-Value

SWOG S0777
(Active,not
recruiting)

III VRD vs RD 104 Median PFS:
38 months vs. 16 months

Median PFS:
43 months vs. 29 months 0.19

SWOG-1211
(Active,not
recruiting)

II Elo-VRD vs.
VRD 100

Median PFS:
31.5 months vs. 33.6

months
- -

MAIA
(Completed) III Dara-RD vs.

RD 92 Median PFS:
45 months vs. 29 months

Median PFS:
61.9 months vs. 34.9 months NS

ALCYONE
(Completed) III Dara-VMP vs.

VMP 98 Median PFS:
18 months vs. 18 months

3-year PFS: 50.7% vs. 18.5%
3-year OS: 78.0% vs. 67.9% NS

GMMG-
CONCEPT
(Active,not
recruiting)

II Isa-KRD 125 MRD− rate in transplant eligible: 67.7%
MRD− rate in transplant ineligible: 54.2% -

IMROZ
(Active,not
recruiting)

III Isa-VRD vs.
VRD 74 Hazard ratio: 0.97 NS

CEPHEUS
(Active,not
recruiting)

III Dara-VRD vs.
VRD 52 Hazard ratio: 0.88 NS

Alternative proteasome inhibitor–based combinations have also been explored in
this setting. Carfilzomib plus cyclophosphamide-dexamethasone (KCD) may mitigate
genetically related poor prognosis [87], and the quadruplet isa-KRD has been associated
with encouraging MRD negativity rates at the end of consolidation [61]. However, in the
phase III IMROZ trial, isatuximab plus VRD (isa-VRD) has not shown improved outcomes
in patients with high-risk cytogenetic features and older age [88], as well as daratumumab
plus VRD in the CEPHEUS study [89].

7. High-Risk Genetic Relapsed/Refractory MM
The prevalence of high-risk genetic features increases at MM progression due to

clonal evolution after prior therapies [90]. While triplet combinations generally outperform
doublets in both standard- and high-risk patients, their efficacy in HRMM remains subopti-
mal. Most regimens do not fully mitigate the adverse prognostic impact of these genetic
abnormalities, and PFS consistently remains shorter compared to standard-risk patients
(Table 6) [50].

According to ESMO guidelines, treatment selection is primarily based on lenalidomide
sensitivity or refractoriness [50]. In lenalidomide-sensitive patients, triplet regimens, such
as dara-RD, KRD, elotuzumab-RD, or ixazomib-RD, have shown clinical efficacy [91–95], al-
though HRMM patients display inferior PFS and response durability compared to standard-
risk cohorts. In lenalidomide-refractory HRMM patients, preferred regimens are combi-
nations of anti-CD38 monoclonal antibodies with PD (dara-PD) or KD (isa-KD) [96–99].
In both phase III CASTOR and ICARIA trials, dara-VD and isa-PD have been associated
with longer PFS in HRMM patients compared to control arms, although the strength of
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this benefit is lower than that observed in standard-risk populations [24]. Emerging agents
may provide incremental benefits in HRMM. The anti-BCMA antibody-drug conjugate
belantamab-mafodotin in combination with VD could be even superior to dara-VD in
this subgroup of patients [100]. Similarly, the nuclear export inhibitor, selinexor, when
combined with VD (SVD), has also demonstrated superiority over VD in HRMM, as shown
in the phase III BOSTON trial [101].

Table 6. Outcomes in high genetic risk relapsed/refractory MM patients.

Study Phase Regimens N. HRMM
Patients Outcomes in HRMM General Outcomes p-Value

ASPIRE
(Completed) III KRD vs. RD 100 Median PFS:

23 months vs. 13.9 months
Median PFS:

29.6 months vs. 19.5 months NS

APOLLO
(Unknown

status)
III Dara-PD vs.

PD 74 Median PFS:
5.8 months vs. 4 months

Median PFS:
12.4 months vs. 6.9 months NS

POLLUX
(Completed) III Dara-RD vs.

RD 70 Median PFS:
26.8 months vs. 8.3 months

Median PFS:
44.5 months vs. 17.5 months -

TOURMALINE-
MM1

(Completed)
III Ixa-RD vs.

RD 137 Median PFS:
21.4 months vs. 9.7 months

Median PFS:
20.6 months vs. 14.7 months <0.05

CANDOR
(Completed) III Dara-KD vs.

KD 74 Median PFS:
11.2 months vs. 7.4 months

Median PFS:
28.6 months vs. 15.2 months NS

IKEMA
(Completed) III Isa-KD vs.

KD 73 Median PFS:
not reached vs. 18.2 months

Median PFS:
35.7 months vs. 19.2 months NS

DREAMM-7
(Active, not
recruiting)

III
Belantamab
mafodotin-
VD vs. VD

136 Median PFS:
33.2 months vs. 10.5 months

Median PFS:
36.6 months vs. 13.4 months −

BOSTON
(Completed) III SVD vs. VD 256

ORR: 78% vs. 57%
Median PFS: 12.9 months

vs. 8.6 months

Median PFS:
13.9 months vs. 9.4 months <0.05

ICARIA
(Completed) III Isa-PD vs.

PD 60 ORR: 50% vs. 16.7%
Median PFS: 7.5 months vs. 3.7 months NS

Despite some clinical efficacy, these regimens are not curative, as current treatment op-
tions fail to achieve deep and durable responses comparable to those observed in standard-
risk MM. Therefore, unmet needs persist across the treatment continuum for HRMM
patients, and a rational treatment sequencing strategy would ideally prioritize the use of
the most effective agents as earlier therapy lines, before clonal evolution would reduce
drug responsiveness. Tailored approaches based on molecular profiles, coupled with
MRD-adapted therapy escalation or de-escalation, could further enhance outcomes in this
high-risk population.

8. T-Cell Redirecting Therapy for Relapsed/Refractory MM
Innovative T-cell redirecting therapies targeting surface antigens on malignant plasma

cells include the family of (BiTEs), and CAR-T cells [102]. Currently, two anti-BCMA BiTEs,
teclistamab and elranatamab, and one anti-GPRC5D BiTE, talquetamab, are approved for
treatment of relapsed/refractory MM. Data on their efficacy in HRMM patients remains
limited, as only a small proportion of them are included in clinical trials (Table 7) [102].

For example, HRMM patients treated with teclistamab or elranatamab show slightly
worse outcomes compared to the overall population, as described in the phase I-II
MajesTEC-1 trial and in the phase II MagnetisMM-3 study, respectively [103,104], while
talquetamab induces similar ORR between high- and standard-risk genetic populations,
as documented in the MonumenTAL-1 study [105]. A combination of teclistamab or el-
ranatamab with daratumumab could be more effective; however, updated data on HRMM
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subgroups are not available yet [106–108]. Of particular interest is the combination of
teclistamab and talquetamab in the RedirecTT-1 study, enrolling 63 patients with triple-
refractory MM. Although results for the HRMM subgroup are not yet available, they are
highly expected due to the innovative nature of this dual BiTE approach targeting distinct
antigens [109]. Moreover, several trials are currently ongoing to assess the efficacy of BiTEs
combined with other anti-MM agents, such as NCT05243797, NCT05083169, NCT05090566,
NCT04649359, NCT05317416, NCT04798586, and NCT05228470.

Table 7. Outcomes with T-cell redirecting therapies in MM patients.

Study Phase Regimens N. HRMM
Patients Outcomes in HRMM General Outcomes p-Value

MajesTEC-1
(Active, not
recruiting)

I-II Teclistamab 43 No benefits ORR: 63%
Median PFS: 11.3 months −

MagnetisMM-3
(Active, not
recruiting)

II Elranatamab 31 ORR: 54.8%
12-month DOR: 57%

ORR: 61%
Median PFS: 13.4 months −

MonumenTAL-1
(Active, not
recruiting)

I-II Talquetamab 18 ORR: 55.6-66.7% ORR: 64-70% −

RedirecTT-1
(Active, not
recruiting)

Ib Teclistamab +
talquetamab 15 - ORR: 84%

Median PFS: 20.9 months −

KarMMa-1
(Active, not
recruiting)

II Ide-cel 45 Median PFS: 10.4 months Median PFS: 8.2 months −

CARTITUDE-1
(Completed) Ib-II Cilta-cel 13 ORR: 100%

Median PFS: 21.1 months
ORR: 97.9%

Median PFS: 34.9 months −

CARTITUDE-4
(Active, not
recruiting)

III
Cilta-cel vs.

dara-
PD/PVD

255 ORR: 88.5%
Benefit in favor of cilta-cel

ORR: 84.6% vs. 67.3%
1-year PFS: 75.9% vs. 48.6% <0.05

CAR-T cells, autologous genetically engineered T lymphocytes, are modified to express
a chimeric antigen receptor that recognizes the BCMA antigen, mainly on neoplastic plasma
cells. In MM, two anti-BCMA CAR-T cell products are currently approved: idecabtagene
vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel) [102]. Ide-cel, the first FDA-
approved anti-MM CAR-T product, has shown efficacy also in HRMM, although with
lower ORR and shorter PFS compared to standard-risk patients, as shown in the phase
2 KarMMa study [74,110]. In HRMM patients with cilta-cel after 3 or more prior lines
of therapy, ORR is also impressive; however, duration of response and PFS are shorter
compared to standard risk, as described in the CARTITUDE-1 trial [111,112]. Moreover,
cilta-cel with PVd or DPd has comparable efficacy in high and standard genetic risk MM
patients, as observed in the phase 3 CARTITUDE-4 study [113]. Several clinical trials
are currently ongoing to evaluate the efficacy of CAR-T cell products in earlier lines of
therapy, including in HRMM, such as in NCT04923893, NCT05257083, NCT05393804, and
NCT06045806 trials.

Despite these advancements and the undeniable efficacy of T-cell redirecting therapies,
several real-world barriers reduce their wide use in HRMM patients, also as earlier treat-
ment lines. Indeed, toxicity management remains complex, as cytokine release syndrome
and neurotoxicity require specialized and experienced centers for quick identification and
treatment. Additionally, access to CAR-T cells and BiTEs is limited by manufacturing
logistics, center capacity, and costs, which currently negatively impact their early use in
routine clinical practice [114]. Moreover, the lack of long-term follow-up data in HRMM
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does not yet permit assessment of the cost-efficacy of these therapies, thus adding evidence
to support their early use in this high-risk population [102].

9. Conclusions
In recent years, significant advancements have been made in MM treatment, with the

introduction of several novel therapeutic agents for newly diagnosed patients, regardless
of ASCT eligibility, as well as for those with relapsed/refractory disease. At the same
time, increasing emphasis has been placed on a more precise risk stratification system
by incorporating not only clinical and laboratory biomarkers but also molecular and
cytogenetic alterations [20]. Indeed, HRMM has emerged as a distinct biological and
clinical entity, characterized by aggressive behavior and poor prognosis, often driven
by complex genomic and transcriptomic signatures. Despite important therapeutic and
diagnostic innovations, prognosis for these subjects remains poor, likely due to different
pathogenetic mechanisms underlying this type of disease. For this reason, a paradigm shift
is essential for improving clinical management of HRMM, as future strategies should focus
on refining risk stratification models and tailoring therapies based on specific patients’
molecular features. For example, the risk-adapted model proposed by Avet-Loiseau offers
a more accurate classification of HRMM and should be prospectively validated for clinical
implementation. Indeed, this model could enable early identification of ultra–high-risk
patients and help tailor treatment intensity accordingly. In addition, the prognostic impact
of specific lesions, such as biallelic TP53 inactivation or 1p32 deletions, must be clearly
delineated in clinical trials to guide treatment escalation. Therefore, it is essential to improve
current risk stratification systems to not only include cytogenetic abnormalities and TP53
mutational status but also to consider clonal hematopoiesis and other pathogenetic variants,
as described in myeloid and lymphoid malignancies. Moreover, routine integration of
MRD detection into treatment algorithms represents a critical future direction, as MRD
negativity is a strong predictor of long-term outcomes, particularly in HRMM. In this subset
of MM patients, durable responses are less common, and MRD could serve as a surrogate
to modulate therapy, allowing intensification for non-responders or de-escalation to reduce
toxicity in deep responders. However, prospective trials are urgently needed to validate
MRD-guided treatment decisions, especially in high-risk settings.

While intensified therapeutic approaches are now accepted standards, they alone are
not sufficient. The integration of immunotherapy, particularly T-cell redirecting agents, such
as BiTEs and CAR-T cells, earlier into frontline treatment, in a genetically risk-adapted and
guided approach, would be a desirable strategy to overcome traditional resistance mecha-
nisms. These agents, ideally combined with checkpoint inhibitors or targeted molecules,
could provide synergistic effects. However, barriers related to toxicity, accessibility, cost,
and logistical complexity remain substantial, particularly when considering frontline or
early relapse application. Ultimately, addressing the needs of HRMM will require a multi-
omics-driven approach coupled with prospective clinical trials specifically designed for
this subgroup, rather than relying on post hoc analyses from broader studies. Only through
this tailored strategy can we significantly modify the natural history of HRMM and offer a
real opportunity for long-term disease control in this group of patients.
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Abbreviations
The following abbreviations are used in this manuscript:

MM Multiple myeloma
MGUS Monoclonal gammopathy of undetermined significance
HRMM High-risk genetic multiple myeloma
FHRMM Functional high-risk multiple myeloma
OS Overall survival
FISH Fluorescence in situ hybridization
CA Chromosomal abnormalities
abn Abnormalities
Sβ2M Serum β2-microglobulin
IGH Immunoglobulin heavy chain
FGFR3 Fibroblast growth factor receptor 3
MMSET Multiple myeloma SET domain containing protein
CKS1B Cyclin-dependent kinases regulatory subunit 1
MCL1 Myeloid cell leukemia-1
ADAR1 Adenosine deaminase acting on RNA
FAF1 Fas associated factor 1
CDKN Cyclin dependent kinase inhibitor
ISS International Staging System
R-ISS Revised- International Staging System
IMWG International Myeloma Working Group
EMMA European Multiple Myeloma Academy
FAM46C Family with sequence similarity 46 member C
EGR1 Early growth response 1
CYLD Lysine 63 deubiquitinase
CCN Cyclin
DIS3 Exosome complex exonuclease RRP44
IRF4 Interferon regulatory factor 4
PRKD2 Serine/threonine-protein kinase D2
PRDM1 PR domain zinc finger protein 1
CDK Cyclin-dependent kinase
RB Retinoblastoma protein
H3K36me2 Histone H3 lysine 36 dimethylation
HDAC6 Histone deacetylase 6
HSF1 Heat shock factor 1
HSP90 Heat shock protein 90
EZH2 Enhancer of zeste homologue 2
IDH1 Isocitrate dehydrogenase 1
ANP32E Acidic nuclear phosphoprotein 32 family member E
ILF2 Interleukin enhancer binding factor 2
KDM4A Histone lysine demethylase 4A
HIF1α Hypoxia-inducible factor 1α
RLP5 Ribosomal protein L5
NF-κB Nuclear factor κB
MAPK Mitogen-activated protein kinase
ASCT Autologous stem cell transplantation
EHA European Hematology Association
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ESMO European Society for Medical Oncology
MRD Minimal residual disease
VRD Bortezomib, lenalidomide and dexamethasone
Dara-VTD Daratumumab-bortezomib-thalidomide-dexamethasone
FDA Food and Drug Administration
EMA European Medicine Agency
CR Complete remission
IFM Intergroupe Francophone du Myélome
Dara-KRd Daratumumab, carfilzomib, lenalidomide, and dexamethasone
sCR Stringent CR
ORR Overall response rate
PFS Progression-free survival
IMiDs Immunomodulatory drugs
VMP Bortezomib-melphalan-dexamethasone
RD Bortezomib-dexamethasone
PD Pomalidomide-dexamethasone
BCMA B-cell maturation antigen
BiTEs Bispecific antibodies
CAR Chimeric antigen receptor
GPRC5D G protein-coupled receptor class C group 5 member D
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