
Dynamic activity patterns in the anterior temporal lobe represents object
semantics
Alex Clarke

Department of Psychology, University of Cambridge, Cambridge, UK

ABSTRACT
The anterior temporal lobe (ATL) is considered a crucial area for the representation of transmodal
concepts. Recent evidence suggests that specific regions within the ATL support the representa-
tion of individual object concepts, as shown by studies combining multivariate analysis methods
and explicit measures of semantic knowledge. This research looks to further our understanding by
probing conceptual representations at a spatially and temporally resolved neural scale.
Representational similarity analysis was applied to human intracranial recordings from anatomi-
cally defined lateral to medial ATL sub-regions. Neural similarity patterns were tested against
semantic similarity measures, where semantic similarity was defined by a hybrid corpus-based and
feature-based approach. Analyses show that the perirhinal cortex, in the medial ATL, significantly
related to semantic effects around 200 to 400 ms, and were greater than more lateral ATL regions.
Further, semantic effects were present in low frequency (theta and alpha) oscillatory phase signals.
These results provide converging support that more medial regions of the ATL support the
representation of basic-level visual object concepts within the first 400 ms, and provide a bridge
between prior fMRI and MEG work by offering detailed evidence for the presence of conceptual
representations within the ATL.
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Introduction

The Anterior temporal lobes (ATL) are considered a critical
region in many theories of semantic memory, and func-
tion in a transmodal fashion (Bruffaerts et al., 2019; L. Chen
et al., 2017; Clarke & Tyler, 2015; Damasio et al., 2004;
Miyashita, 2019; Patterson et al., 2007; Lambon Ralph et
al., 2017; Simmons & Barsalou, 2003; Taylor et al., 2011).
This has been realized through important converging
evidence across neuropsychology, functional brain ima-
ging, computational modeling, brain stimulation and
invasive neural recordings, each providing an overlapping
perspective on the neural representation of semantic
knowledge. The ATL has long been considered a multi-
modal convergence zone (Damasio, 1989), processing
conjunctive representations of increasing complexity
compared to regions it receives input from (Cowell et al.,
2019; Meyer & Damasio, 2009; Miyashita, 2019; Simmons
& Barsalou, 2003). Whilst the ATL is known to be anato-
mically connected to differentmodality-specific pathways
(Bajada et al., 2019; Guo et al., 2013; Papinutto et al., 2016;
Simmons et al., 2010), allowing different routes between
sensation and meaning representations, perhaps the
most well-studied route is the access of semantic repre-
sentations from visual objects. In this study, the aim is to

test for converging evidence of the representational role
of the ATL for visual object semantics, the timing when
semantic representations are evoked, and the variation of
semantic effects across lateral to medial ATL sub-regions.

Numerous studies have now demonstrated that
semantically related items have similar patterns of acti-
vation within the ATL (Bruffaerts et al., 2013; Y. Chen et
al., 2016; Clarke et al., 2018; Clarke & Tyler, 2014;
Coutanche & Thompson-Schill, 2015; Kivisaari et al.,
2019; Malone et al., 2016; Martin et al., 2018; Meyer &
Damasio, 2009; Murphy et al., 2017; Peelen & Caramazza,
2012). Whilst these studies have used a variety of meth-
ods for determining semantic relatedness – ranging
from superordinate category clustering to similarity
between basic-level concepts – a powerful approach is
to characterize the semantic similarity between indivi-
dual concepts and compare this to the similarity of brain
activations. For example, using the representational
similarity analysis (RSA) framework, Clarke and Tyler
(2014) showed that fMRI-activation pattern similarity in
the perirhinal cortex and surrounding tissue was statis-
tically related to the semantic similarity between objects.
In this case, and in others, semantic similarity was
defined based on the amount of overlapping semantic
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features associated with the concepts (e.g., flies, is fast,
has wings, made of metal are features for the concept
Airplane). The observed statistical correspondence
between the semantic-feature similarity space and
brain activation patterns was seen as evidence the peri-
rhinal cortex represents semantic information about
objects, with the dimensions of this cognitive space
being well-modeled by feature dimensions. Such a rela-
tionship between a semantic-feature space and medial
regions of the ATL are also seen for written words
(Bruffaerts et al., 2013; Martin et al., 2018) and imagined
concepts (Kivisaari et al., 2019), highlighting that such
semantic representations are not explained by the phy-
sical visual stimulus similarity alone.

Research based on time-sensitive techniques has
further pointed toward the access of basic-level concep-
tual knowledge for visual objects after around 200 to
400 ms (Bankson et al., 2018; Chan et al., 2011; Y. Chen et
al., 2016; Clarke et al., 2015, 2018; Kreiman et al., 2000;
Leonardelli et al., 2019; Mollo et al., 2017; Rogers et al.,
2019; Rupp et al., 2017; Schendan & Ganis, 2012;
Schendan & Maher, 2009; Sudre et al., 2012). The utiliza-
tion of RSA with EEG, MEG and human intracranial
recordings is becoming increasingly popular, highlight-
ing the relationship between dynamic neural activity
with low to high-level visual properties (Carlson et al.,
2013; Cichy et al., 2016, 2014; Contini et al., 2017;
Kaneshiro et al., 2015; Seeliger et al., 2018) and basic-
level conceptual representations (Bankson et al., 2018; Y.
Chen et al., 2016; Clarke et al., 2018). In particular, recent
evidence suggests theta activity in the ATL might be
particularly important for coding semantic representa-
tions of basic-level objects (Clarke et al., 2018), which is
consistent with evidence that theta activity in the MTL
dissociates between different object categories (Kraskov
et al., 2007) and tracks the access of semantic knowledge
(Ackeren et al., 2014; Bastiaansen et al., 2005;
Fuentemilla et al., 2014; Halgren et al., 2015; Solomon
et al., 2019; Watrous & Ekstrom, 2014).

Previous research points to a role for the ATL in
supporting the dynamic construction of semantic repre-
sentations over time, possibly through theta activity.
However, in many of these cases, either (A) the spatial
specificity afforded by fMRI has been lacking, resulting in
inferences at the level of the ATL, or (B) the evidence is
not situated at the level of individual concepts, but
rather super-ordinate categories. The current study
looks to overcome this, by probing the semantic nature
of neural representations in the ATL at a spatially and
temporally resolved scale, using a methodological and
cognitive framework consistent with previous studies
examining semantic-feature based representations of
individual concepts through fMRI (Clarke & Tyler, 2014)

and MEG (Clarke et al., 2018). Utilizing human intracra-
nial recordings allows for the testing of semantic repre-
sentations during object recognition in high resolution
neural activation patterns from anatomically distinct
sub-regions within the ATL, providing important conver-
ging evidence.

Methods

The data used in this research was originally published
by Morton et al. (2013) and is freely available from the
Computational Memory Lab (http://memory.psych.
upenn.edu/Electrophysiological_Data). Only the essen-
tial details for the participants, experimental paradigm
and data collection are reproduced here, along with the
specific methodological details relating to this study.

Participants

Eleven patients with medication-resistant epilepsy
underwent invasive ECoG and depth electrode monitor-
ing for the clinical determination of the location of epi-
leptogenic foci for subsequent resection. The research
protocol was approved by the relevant institutional
review boards, and informed consent was obtained
from all participants.

For this study, eight of the eleven patients were ana-
lyzed as they had electrode contacts in all ATL sub-
regions, with the exception of one patient who did not
have contacts in the temporal pole (Table 1). One patient
underwent invasive monitoring on two occasions with
overlapping sets of electrodes and different trials, and
consistent with Morton et al. (2013), the two sessions are
treated as two separate data sets (ID 3 & 4).

Materials and experimental paradigm

Stimuli were color and grayscale photographs of famous
landmarks, celebrity faces, and common objects, with
the name of the stimulus presented in text above the
picture. In this study, only the objects are analyzed with
the landmarks and faces treated as filler trials. All objects
reflected common non-living objects/artifacts.

Participants were presented with lists of 9 items, with
3 items of each type (objects, faces, landmarks) pre-
sented in a pseudorandom order. Before each item, a
text cue indicating the type (e.g., face) of the upcoming
item was shown for 1000 ms, and a 200–500 ms ISI
before presentation of the item for 3500 ms. During
stimulus presentation, participants made a 4-point
semantic judgment (for objects: ‘How often do you
come across this object in your daily life?’). Each stimulus
was followed by a blank ISI of 1000 ± 200 ms.
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After presentation of the last stimulus, the screen was
blank for 1300 ± 100 ms, followed by presentation of a
row of asterisks and a 300-ms tone signaling the start of
a 60 s immediate free recall period. Participants were
presented with 20 lists in each session (session totals: 60
object images, 12 unique concepts), and each partici-
pant completed 1–10 sessions (see Table 1 for the num-
ber of sessions completed by each participant). Five
different images of the same item were shown within a
session.

The object images were of 72 different concepts, with
5 images used for each concept. Of these, 51 were also
found in a published set of concept property norms
(Devereux et al., 2014) allowing for the extraction of
semantic feature information for these items. As differ-
ent participants completed a different number of ses-
sions, the number of concepts/items analyzed varied
across participants (Table 1). All data analyses are
restricted to these items.

ECoG recording and data processing

ECoG was recorded using a Grass Telefactor or Nicolet
digital video-EEG system, and sampled at 400 Hz (in one
case at 512 Hz). Data preprocessing used Fieldtrip and
EEGlab functions. The data were notch filtered to
remove line noise at 60 Hz and the harmonics (120 and
180 Hz), before epoching between −1.5 and 3 seconds
and baseline corrected using the mean pre-stimulus
response between −500 and 0 ms. Bad channels were
identified by visual inspection, and removed from the
data (mean 3.5% of channels), and a common average
reference was applied.

Independent components analysis was used for the
removal of components associated with saccades
(Kovach et al., 2011), implemented with runica, extract-
ing N components, where N was 75% of the total num-
ber of good electrodes. To focus the IC activations on the
frequency range associated with saccades in ECoG chan-
nels, the activations were filtered for gamma-band

activity between 20 and 190 Hz, before convolving the
filtered activations with a saccade-related potential tem-
plate and calculating the number of saccade events per
second (Craddock et al., 2016). The two components
with the highest number of saccade events were dis-
carded, and the data reconstructed based on the
remaining non-filtered component activations. The
resulting data were averaged over the five repetitions
of each object, combined across sessions and restricted
to those items that were in the property norms.

Electrode localization and selection

Electrode grids and depth electrodes were positioned
based on the decisions of the clinical team and not for
research specific purposes (Figure 1(a)). To localize the
positions of the electrodes, an indirect stereotactic tech-
nique was used based on co-registered post-operative
computed tomography and pre- or post-operative mag-
netic resonance imaging, and converted locations into
MNI coordinates (Morton et al., 2013).

Here, five ATL ROIs were used from the anterior tem-
poral lobe atlas created by Wright et al. (2015) – the
middle temporal gyrus (MTG), the inferior temporal
gyrus (ITG), the temporal pole (TP), the anterior fusiform
(Fus) and the perirhinal cortex (PRC; Figure 1(b)). Briefly,
ROIs were manually traced on 15 normalized high reso-
lution structural images and combined to create a prob-
ability atlas. Each voxel was assigned to the region with
the highest probability. Using these ROIs, electrodes
were selected within the anterior temporal lobes
bilaterally.

Representational similarity analysis

Calculating semantic similarity
RSA was used to compare the semantic similarity
between items with the similarity based on the ECoG
signals. Semantic-feature similarity was based on com-
bining data from a published set of property norms

Table 1. Patient and session details.
Electrodes in ROIs

ID Age Gender Sessions Items in property norms Temporal pole Middle temporal Inferior temporal Fusiform Perirhinal

1 40 F 10 47 2 9 8 1 1
2 39 M 4 36 3 8 9 2 3
3 34 F 2 18 2 11 8 3 3
4 34 F 8 49 2 7 8 6 6
5 44 M 4 34 5 18 4 4 1
6 43 M 5 43 7 10 9 2 4
7 18 M 6 41 0 17 12 11 7
8 39 M 2 15 2 4 7 1 2

Details of each patient and the recording sessions, along with number of stimuli in the property norms and electrodes in each ROI
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(Devereux et al., 2014) and word2vec – a distributional
corpus-based model of word meanings. Although
semantic feature spaces can be defined based solely on
either property norms or corpus-based statistics, recent
fMRI evidence suggests combining the approaches can
be an effective way of modeling multidimensional con-
ceptual spaces (Kivisaari et al., 2019) (see Supplementary
Figure S1 for a comparison between approaches).

The property norms were a version of the Center for
Speech, Language and the Brain norms (available from
https://cslb.psychol.cam.ac.uk/propnorms) which specify
how 826 different concepts relate to 3026 different fea-
tures (e.g., is comfortable, has cushions, is sat on are features
of an armchair). Using these property norms, each concept
can be represented by a list of features that collectively
define the concept. For each feature (e.g., comfortable,
cushions, sat from the above example), a vector of length
300 was obtained using the pre-trained word2vec model
GloVe (Pennington et al., 2014) (Figure 2(a)). Each vector is
derived from word-word co-occurrences from large text

corpora, with the result that words which co-occur fre-
quently in the same language context will have similar
vector representations. A semantic vector for a concept
was then calculated as the average of the feature vectors,
resulting in a 300 dimension vector reflecting the com-
bined semantic-feature information for that concept.
Finally, the semantic similarity space for all concepts was
calculated as the cosine distance between all possible pairs
of concepts (Figure 2(b)).

Evaluating semantic similarity in the brain
The similarity of the ECoG signals was calculated for elec-
trodes within each ROI separately. Within each ROI, single
item activity was selected for each electrode within the
ROI. RDMs between items were calculated using cosine
distance for every time-point between −100 and 1000 ms
based on a spatiotemporal pattern defined by the num-
ber of electrodes in the ROI and data from ±50 ms either
side of the current time point (Y. Chen et al., 2016; Tyler et

Figure 1. Anterior temporal lobe regions. A) Electrode contacts across the brain for the 8 patients. B) ROIs in the ATL (MNI y = 9 and
y = 1). C) Evoked activity in each ROI. Plots show the group mean response from the z-scored single trial activity. Shaded areas show
±1 standard error of the mean.

Figure 2. Semantic similarity space. A) Concept vectors were created from the average of GloVe vectors for the semantic-features of
the concept. B) MDS of the resulting semantic similarity space.
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al., 2013a). A further analysis was conducted which tar-
geted a time window between 200 and 400 ms, which is
highly associated with accessing conceptual knowledge
for object concepts (Bankson et al., 2018; Chan et al., 2011;
Y. Chen et al., 2016; Clarke et al., 2015, 2018; Kreiman et al.,
2000; Leonardelli et al., 2019; Mollo et al., 2017; Rogers et
al., 2019; Rupp et al., 2017; Schendan & Ganis, 2012;
Schendan & Maher, 2009; Sudre et al., 2012).

For the similarity based on time-frequency
representations (TFRs), oscillatory phase was calculated
for each item and for every electrode within the ROI
using Morlet Wavelets (timefreq.m function in EEGLAB).
Oscillatory phase signals were extracted between 200
and 400 ms in 20 ms time steps, and between 4 and
190 Hz in 60 logarhythmically spaced frequency steps. A
5-cycle wavelet was used at the lowest frequency,
increasing to a 15 cycle wavelet at the highest. This
produced a TFR for every item at every electrode in the
ROI. RDMs between item TFRs were calculated as the
circular distance between items (Berens, 2009) at each
time/frequency point.

For each participant, the RDMs based on ECoG signals
were tested against the semantic RDM using Kendall’s
Tau-A. Random effects analysis testing for positive RSA
effects was conducted for each time point using a
Wilcoxon test against zero (alpha 0.05). Cluster-mass
permutation testing was used to assign p-values to clus-
ters of significant tests (Maris & Oostenveld, 2007). For
each permutation, the sign of the RSA correlations was
randomly flipped for each participant before Wilcoxon
tests of the permuted data at each data point. The
cluster p-value for clusters in the original data were

defined as the proportion of the 10,000 permutations
(plus the observed cluster-mass) that was greater than or
equal to the observed cluster-mass. When testing for
effects within the 200–400 ms time window, RSA effects
were first averaged over time before using a Wilcoxon
test against zero. When comparing between RSA effects
across regions, a two-sample Wilcoxon test was used
(alpha 0.025). For the analysis of oscillatory phase, RSA
effects were averaged within the time window of inter-
est (200 to 400 ms) and for each frequency band (theta:
4–8 Hz, alpha: 9–14 Hz, beta: 15–30 Hz, low gamma: 30–
70 Hz, and high gamma: 70–150 Hz).

Results

The primary question in this study was to test for the
presence of semantic object representations across the
lateral to medial aspect of the anterior temporal lobes.
Semantic relations between objects were calculated using
a feature-based approach to defining semantic information
associated with each object, that was combined with a
distributional word model of semantics (Figure 2). The
semantic similarity across object concepts was then com-
pared with activity pattern similarity from each anatomi-
cally defined ROI.

The first analysis tested for the presence of semantic
similarity effects in each ATL region across time. Using
RSA, significant semantic-feature similarity effects were
observed in the perirhinal cortex peaking near 250 and
450 ms (significant time window: 141–448 ms; cluster
p = 0.007; Figure 3(a)). No significant semantic-feature
similarity effects were observed in any other anterior

Figure 3. Semantic similarity effects across the anterior temporal lobe. A) Shaded areas show ±1 standard error of the mean,
horizontal bar shows statistically significant cluster. B) RSA effect across the lateral to medial axis of the ATL. C) RSA effects within the
200–400 ms time window displayed as boxplots. Horizontal lines show the median, with box edges showing the 25th and 75th

percentiles. Outliers shown as separate points. D) Individual patient RSA effects across the ROIs on the lateral to medial ATL axis. Also
see Supplementary Figure 1.
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temporal lobe region, and peaks were prominent for the
medial perirhinal in contrast to more lateral regions of
the anterior temporal lobe (Figure 3(b)).

To address the question of whether PRC semantic
effects were larger than in other ATL regions, RSA
effects were extracted from each region between
200 and 400 ms. This particular time window was
chosen due to prior research implicating this time
frame (Bankson et al., 2018; Chan et al., 2011; Y.
Chen et al., 2016; Clarke et al., 2015, 2018; Kreiman
et al., 2000; Leonardelli et al., 2019; Mollo et al., 2017;
Rogers et al., 2019; Rupp et al., 2017; Schendan &
Ganis, 2012; Schendan & Maher, 2009; Sudre et al.,
2012) and to avoid circular inference. PRC semantic
effects were significantly greater than all ATL sub-
regions except the temporal pole (Figure 3C); fusi-
form (p = 0.0078, PRC greater in 8/8 participants),
inferior temporal (p = 0.016, PRC greater in 7/8 parti-
cipants), middle temporal (p = 0.0391, PRC greater in
6/8 participants) but not the temporal pole
(p = 0.078, 6/7 participants). As this shows, the
increased PRC effects were consistently seen across
participants (Figure 3D).

Finally, to probe the nature of perirhinal semantic
effects further, RSA effects were calculated from
oscillatory phase signals in different frequency
bands within our pre-defined time window (200–
400 ms). Significant semantic effects were present
in both theta (4–8 Hz; p = 0.0391, positive effects
in 7/8 participants) and alpha activity (8–14 Hz;
p = 0.0391, positive effects in 7/8 participants), but
not in beta (15–30 Hz; p = 0.68), low gamma (30–
70 Hz; p = 0.23) or high gamma signals (70–150 Hz;
p = 0.53) (Figure 4). This suggests that low

frequency phase activity patterns might underlie
semantic similarity effects in the perirhinal cortex,
and is consistent with previous MEG evidence
using a highly similar approach that indicated ATL
theta phase patterns were associated with semantic
similarity effects (Clarke et al., 2018).

Discussion

The anterior temporal lobes play a prominent role in
many theories of semantic cognition, with different
accounts placing a different emphasis on the contribu-
tion of individual cortical regions, or graded contribu-
tions across the lobe (Barense et al., 2011; Clarke & Tyler,
2015; Damasio et al., 2004; Grabowski et al., 2001; Mehta
et al., 2016; Patterson et al., 2007; Lambon Ralph et al.,
2017). Despite this, the contribution of exact sub-regions
has not always been clear (Bonner & Price, 2013). This
research examined the representation of object seman-
tics within sub-regions of the anterior temporal lobes.
Using representational similarity analysis and quantify-
ing semantic similarity, it was shown that the perirhinal
cortex represented object-specific semantics beyond
around 150 ms, which was not observed in any other
ATL subregion. This suggest that the perirhinal region is
the most important sub-region of the ATL in represent-
ing the semantics of individual visual objects.

This research looked to build-upon previous studies
relating semantic-feature similarity effects to neural simi-
larity, that suggested the perirhinal cortex uniquely
represented semantic item information (Bruffaerts et
al., 2013; Clarke & Tyler, 2014; Kivisaari et al., 2019;
Martin et al., 2018), but perhaps in cohort with the
temporal pole (Martin et al., 2018). Further, EEG and
MEG studies point to semantic-feature effects for indivi-
dual items beyond around 200 ms (Bankson et al., 2018;
Clarke et al., 2015, 2018; Leonardelli et al., 2019; Mollo et
al., 2017; Schendan &Maher, 2009; Sudre et al., 2012) but
lacked detailed spatial specificity. It should be stressed
that these studies, along with the current study, probe
the semantics of objects at a basic-level (e.g., basketball,
lawnmower) rather than a superordinate category level
(e.g., tool), which may be associated with more posterior
regions of the VVP (Bi et al., 2016; Connolly et al., 2012;
Devereux et al., 2018; Konkle & Caramazza, 2013; Peelen
& Downing, 2017; Tyler et al., 2013b) at earlier points in
time (Clarke et al., 2015; Mace et al., 2009).

This research studymovedbeyondpreviouswork by testing
for temporally and spatially specific semantic information using
intracranial recordings fromhuman anterior temporal lobe sub-
regions. This study suggests that the perirhinal cortex in the
medial aspect of the anterior temporal lobe is likely to be the

Figure 4. Semantic similarity effects across frequency bands
in the perirhinal cortex. RSA effects within the 200–400 ms
time window displayed as boxplots. Horizontal lines show the
median, with box edges showing the 25th and 75th percentiles.
Outliers shown as separate points.

116 A. CLARKE



most important in generating semantic representations for
visual objects between around 200 and 400 ms. Further, such
semantic effects were significantly stronger than more lateral
ATL regions. Overall, the converging nature of the evidence
presented is significant, providinga level of spatial and temporal
specificity that our previous fMRI (Clarke& Tyler, 2014) andMEG
(Clarke et al., 2018) results could not provide alone (Figure 5).

The results of this study show both similarities and
divergence from a previously reported study of semantic
similarity effects in anterior temporal lobe activations.
Chen et al. (2016) used RSA with intracranial recordings
to show that activity in the ventral anterior temporal
lobe reflected the semantic similarity of objects, where
semantic similarity was quantified based on semantic-
feature similarity. Here, semantic similarity is also
reflected in anterior temporal lobe activity, but with a
focus on separating the contributions of specific cortical
sub-regions, based on the anatomy. This suggests that
while ventral aspects of the anterior temporal lobe are
crucial for object semantics, the focus of the effects here
is situated in more medial perirhinal cortex. The current

study is also consistent with a graded profile of semantic
effects across the ATL, which could support a semantic
gradient along the ventral-medial axis in the anterior
temporal lobe, consistent with previous suggestions
(Rice et al., 2015; Visser et al., 2012). This may also extend
posteriorly, where semantic similarity effects appear to
transition to be focussed on the fusiform gyrus as we
shift away from the anterior temporal lobe.

The finding that semantic-feature similarity is reflected
in low frequency phase patterns echoes recent MEG evi-
dence of semantic similarity in ATL theta phase patterns
(Clarke et al., 2018). The converging evidence for the
relevance of theta phase coding in medial ATL, using the
same analytical approach, supports the conclusion that
low frequency (in particular, theta) activity patterns in
perirhinal cortex represents object semantics. The rela-
tionship between theta activity in ventral and perirhinal
regions and semantics has further been reported by
Halgren et al., (2015) who suggested that theta activity
in the ventral ATL and peri/entorhinal cortex largely
reflects an alternation of feedforward inputs and top-

Figure 5. Converging evidence points to semantic-feature similarity effects in the perirhinal cortex around 150 to 450 ms.
MEG evidence shows semantic-feature RSA effects peaking in theta frequencies (yellow/red curves) compared to visual effects peaking
near alpha (blue curves). Time-frequency plot shows RSA effects of semantic-features in the left ATL region. fMRI evidence shows
semantic-feature effects in bilateral medial anterior temporal regions overlapping with the perirhinal cortex. Inflated brain map shows
semantic-feature effects (red) in relation to superordinate category effects (yellow/green) and a model of V1/V2 (purple). fMRI data
reproduced from (Clarke & Tyler, 2014), MEG data reproduced with permission, Alex Clarke, 'Oscillatory dynamics of perceptual to
conceptual transformations in the ventral visual pathway', Journal of Cognitive Neuroscience, 30:11 (2018), pp. 1590-1605. © 2018 by
the Massachusetts Institute of Technology.
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down effects in aid of memory formation. In this manner,
theta allows the widespread integration across cortical
networks (Halgren et al., 2015).

The timing of the perirhinal semantic effects is similar
to reported single unit activity in the medial temporal
lobe that is highly sensitive to individual concepts, regard-
less of the nature of the input (Quian Quiroga et al., 2009;
Quiroga et al., 2005). Such concept cells are considered to
be part of a sparse and distributed code where many cells
respond to a specific concept, and related concepts will
active a partially overlapping population of cells (Quian
Quiroga, 2016, 2012), giving rise to a distributed spatial
pattern where the degree of overlapping cells could relate
to conceptual overlap. However, these MTL concept
responses are not likely to be driven by an initial feedfor-
ward input from the visual pathway (as the latency is
closer to 300 ms), and are claimed to be important for
the formation of memories concerning concepts, rather
than a semantic representation of an item required for
recognition (Quian Quiroga, 2012). Consistent with this,
perirhinal semantic effects, as seen here, could relate to
accessing the object semantics from perceptual inputs
through recurrent activity, and further act to support the
episodic encoding of the item in coordination with the
hippocampus and other MTL regions (Backus et al., 2016;
Fell et al., 2001; Halgren et al., 2015; Miller et al., 2018;
Quian Quiroga, 2012; Staresina et al., 2012; Staresina &
Wimber, 2019; Watrous & Ekstrom, 2014), allowing for the
binding of the item’s semantic properties with the
ongoing spatio-temporal context (Ekstrom & Ranganath,
2018; Ranganath & Ritchey, 2012; Staresina & Wimber,
2019; Watrous & Ekstrom, 2014).

The observed effects reported here are despite the
small number of subjects involved (n = 8 in all but one
sub-region), the variable number of electrodes in the
regions (1–11 per sub-region), and the small number of
concepts available (see Table 1). In addition, all the con-
cepts here are non-living artifacts, while it is often con-
sidered that the perirhinal is most critical for the
recognition of living things (Taylor et al., 2011). Each of
these issues could lead to a weakening of the semantic
similarity effects observed, and the effects could be even
stronger if these aspects improved. In addition, the
visual properties of the concepts were not examined in
this study as the neural patterns were based on an
average over 5 different images of each concept.
However, future works could further establish the oscil-
latory relationship between visual and semantic proper-
ties across ATL sub-regions.

In conclusion, this study provides important conver-
ging evidence for the role of the perirhinal cortex in
representing the semantics of basic-level visual object
concepts. Together with previous studies using the same

statistical framework and approach, it is suggested that
the perirhinal cortex is the most important region in the
ATL for representing the semantics of visual objects,
with these representations being activated beyond
around 150 ms.

Disclosure Statement

No potential conflict of interest was reported by the author.

Funding

This work was supported by a Wellcome Trust Sir Henry Dale
Fellowship [211200/Z/18/Z].

ORCID

Alex Clarke http://orcid.org/0000-0001-7768-5229

References

Ackeren, M. J., Van, Schneider, T. R., Müsch, K., & Rueschemeyer,
S.-A. (2014). Oscillatory neuronal activity reflects lexical-
semantic feature integration within and across sensory
modalities in distributed cortical networks. Journal of
Neuroscience, 34(43), 14318–14323. https://doi.org/10.1523/
JNEUROSCI.0958-14.2014

Backus, A. R., Schoffelen, J.-M., Szebényi, S., Hanslmayr, S., &
Doeller, C. F. (2016). Hippocampal-prefrontal theta oscilla-
tions support memory integration. Current Biology, 26(4),
450–457. https://doi.org/10.1016/j.cub.2015.12.048

Bajada, C. J., Trujillo-Barreto, N. J., Parker, G. J. M., Cloutman, L. L., &
Lambon Ralph, M. A. (2019). A structural connectivity conver-
gence zone in the ventral and anterior temporal lobes: Data-
driven evidence from structural imaging. Cortex, 120, Nov, 298–
307. https://doi.org/10.1016/j.cortex.2019.06.014

Bankson, B. B., Hebart, M. N., Groen, I. I. A., & Baker, C. I. (2018).
The temporal evolution of conceptual object representa-
tions revealed through models of behavior, semantics and
deep neural networks. NeuroImage, 178, Sept, 172–182.
https://doi.org/10.1016/j.neuroimage.2018.05.037

Barense, M. D., Henson, R. N. A., & Graham, K. S. (2011).
Perception and conception: Temporal lobe activity during
complex discriminations of familiar and novel faces and
objects. Journal of Cognitive Neuroscience, 23(10), 3052–
3067. https://doi.org/10.1162/jocn_a_00010

Bastiaansen, M. C. M., van der Linden, M., Ter Keurs, M., Dijkstra,
T., & Hagoort, P. (2005). Theta responses are involved in
lexical-semantic retrieval during language processing.
Journal of Cognitive Neuroscience, 17(3), 530–541. https://
doi.org/10.1162/0898929053279469

Berens, P. (2009). CircStat: A MATLAB toolbox for circular sta-
tistics | Berens|. Journal of Statistical Software, 31(10), 1–21.
https://doi.org/10.18637/jss.v031.i10

Bi, Y., Wang, X., & Caramazza, A. (2016). Object domain and mod-
ality in the ventral visual pathway. Trends in Cognitive Sciences,
20(4), 282–290. https://doi.org/10.1016/j.tics.2016.02.002

118 A. CLARKE

https://doi.org/10.1523/JNEUROSCI.0958-14.2014
https://doi.org/10.1523/JNEUROSCI.0958-14.2014
https://doi.org/10.1016/j.cub.2015.12.048
https://doi.org/10.1016/j.cortex.2019.06.014
https://doi.org/10.1016/j.neuroimage.2018.05.037
https://doi.org/10.1162/jocn_a_00010
https://doi.org/10.1162/0898929053279469
https://doi.org/10.1162/0898929053279469
https://doi.org/10.18637/jss.v031.i10
https://doi.org/10.1016/j.tics.2016.02.002


Bonner, M. F., & Price, A. R. (2013). Where is the anterior
temporal lobe and what does it do? Journal of
Neuroscience, 33(10), 4213–4215. https://doi.org/10.1523/
JNEUROSCI.0041-13.2013

Bruffaerts, R., De Deyne, S., Meersmans, K., Liuzzi, A. G., Storms,
G., & Vandenberghe, R. (2019). Redefining the resolution of
semantic knowledge in the brain: Advances made by the
introduction of models of semantics in neuroimaging.
Neuroscience & Biobehavioral Reviews, 103, Aug, 3–13.
https://doi.org/10.1016/j.neubiorev.2019.05.015

Bruffaerts, R., Dupont, P., Peeters, R., De Deyne, S., Storms, G., &
Vandenbergh, R. (2013). Similarity of fMRI activity patterns in
left perirhinal cortex reflects semantic similarity between
words. Journal of Neuroscience, 33(47), 18587–18607.
https://doi.org/10.1523/JNEUROSCI.1548-13.2013

Carlson, T., Tovar, D. A., Alink, A., & Kriegeskorte, N. (2013).
Representational dynamics of object vision: The first 1000 ms.
Journal of Vision, 13(10), 1. https://doi.org/10.1167/13.10.1

Chan, A. M., Baker, J. M., Eskandar, E., Schomer, D., Ulbert, I.,
Marinkovic, K., Cash, S. S., & Halgren, E. (2011). First-pass
selectivity for semantic categories in human anteroventral
temporal. Lobe. Journal of Neuroscience, 31(49), 18119–
18129. https://doi.org/10.1523/JNEUROSCI.3122-11.2011

Chen, L., LambonRalph,M.A., &Rogers, T. T. (2017). Aunifiedmodel
of human semantic knowledge and its disorders. Nature Human
Behaviour, 1, 0039. https://doi.org/10.1038/s41562-016-0039

Chen, Y., Shimotake, A., Matsumoto, R., Kunieda, T., Kikuchi, T.,
Miyamoto, S., Fukuyama, H., Takahashi, R., Ikeda, A., &
Lambon Ralph, M. A. (2016). The “when” and “where” of
semantic coding in the anterior temporal lobe: Temporal
representational similarity analysis of electrocorticogram
data. Cortex, 79, June, 1–13. https://doi.org/10.1016/j.cor
tex.2016.02.015

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., & Oliva, A.
(2016). Comparison of deep neural networks to spatio-tem-
poral cortical dynamics of human visual object recognition
reveals hierarchical correspondence. Scientific Reports, 6(1),
27755. https://doi.org/10.1038/srep27755

Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving human
object recognition in space and time. Nature Neuroscience,
17(3), 455–462. https://doi.org/10.1038/nn.3635

Clarke, A., Devereux, B. J., Randall, B., & Tyler, L. K. (2015).
Predicting the time course of individual objects with MEG.
Cerebral Cortex, 25(10), 3602–3612. https://doi.org/10.1093/
cercor/bhu203

Clarke, A., Devereux, B. J., & Tyler, L. K. (2018). Oscillatory
dynamics of perceptual to conceptual transformations in
the ventral visual pathway. Journal of Cognitive
Neuroscience, 30(11), 1590–1605. https://doi.org/10.1162/
jocn_a_01325

Clarke, A., & Tyler, L. K. (2014). Object-specific semantic coding in
human perirhinal cortex. Journal of Neuroscience, 34(14), 4766–
4775. https://doi.org/10.1523/JNEUROSCI.2828-13.2014

Clarke, A., & Tyler, L. K. (2015). Understandingwhatwe see: Howwe
derive meaning from vision. Trends in Cognitive Sciences, 19(11),
677–687. https://doi.org/10.1016/j.tics.2015.08.008

Connolly, A. C., Guntupalli, J. S., Gors, J., Hanke, M., Halchenko, Y.,
Wu, Y., Abdi, H., & Haxby, J. V. (2012). The representation of
biological classes in the brain. Journal of Neuroscience, 32(8),
2608–2618. https://doi.org/10.1523/JNEUROSCI.5547-11.2012

Contini, E. W., Wardle, S. G., & Carlson, T. A. (2017). Decoding
the time-course of object recognition in the human brain:

From visual features to categorical decisions.
Neuropsychologia, 105, Oct, 165–176. https://doi.org/10.
1016/j.neuropsychologia.2017.02.013

Coutanche, M. N., & Thompson-Schill, S. L. (2015). Creating
concepts from converging features in human cortex.
Cerebral Cortex, 1991(25), 2584–2593. https://doi.org/10.
1093/cercor/bhu057

Cowell, R. A., Barense, M. D., & Sadil, P. S. (2019). A roadmap for
understanding memory: decomposing cognitive processes
into operations and Representations. eNeuro, 6(4), 1–19.
https://doi.org/10.1523/ENEURO.0122-19.2019

Craddock, M., Martinovic, J., & Müller, M. M. (2016). Accounting
for microsaccadic artifacts in the EEG using independent
component analysis and beamforming. Psychophysiology,
53(4), 553–565. https://doi.org/10.1111/psyp.12593

Damasio, A. R. (1989). The brain binds entities and events by
multiregional activation from convergence zones. Neural
Computation, 1(1), 123–132. https://doi.org/10.1162/neco.
1989.1.1.123

Damasio, H., Tranel, D., Grabowski, T., Adolphs, R., & Damasio,
A. (2004). Neural systems behind word and concept retrie-
val. Cognition, 92(1–2), 179–229. https://doi.org/10.1016/j.
cognition.2002.07.001

Devereux, B. J., Clarke, A., & Tyler, L. K. (2018). Integrated deep
visual and semantic attractor neural networks predict fMRI
pattern-information along the ventral object processing
pathway. Scientific Reports, 8(1), 1–12. https://doi.org/10.
1038/s41598-018-28865-1

Devereux, B. J., Tyler, L. K., Geertzen, J., & Randall, B. (2014). The
centre for speech, language and the brain (CSLB) concept
property norms. Behavior Research Methods, 46(4), 1119–
1127. https://doi.org/10.3758/s13428-013-0420-4

Ekstrom, A. D., & Ranganath, C. (2018). Space, time, and episodic
memory: The hippocampus is all over the cognitive map.
Hippocampus, 28(9), 680–687. https://doi.org/10.1002/hipo.
22750

Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., Schaller, C., Elger, C.
E., & Fernández, G. (2001). Human memory formation is
accompanied by rhinal–hippocampal coupling and decou-
pling. Nature Neuroscience, 4(12), 1259. https://doi.org/10.
1038/nn759

Fuentemilla, L., Barnes, G. R., Düzel, E., & Levine, B. (2014). Theta
oscillations orchestrate medial temporal lobe and neocortex
in remembering autobiographical memories. NeuroImage,,
85(2), Jan, 730–737. https://doi.org/10.1016/j.neuroimage.
2013.08.029

Grabowski, T. J., Damasio, H., Tranel, D., Ponto, L. L., Hichwa, R.
D., & Damasio, A. R. (2001). A role for left temporal pole in the
retrieval of words for unique entities. Human Brain Mapping,
13(4), 199–212. https://doi.org/10.1002/()1097-0193

Guo, C. C., Gorno-Tempini, M. L., Gesierich, B., Henry, M.,
Trujillo, A., Shany-Ur, T., Jovicich, J., Robinson, S. D., Kramer,
J. H., Rankin, K. P., Miller, B. L., & Seeley, W. W. (2013). Anterior
temporal lobe degeneration produces widespread network-
driven dysfunction. Brain, 136(10), 2979–2991. https://doi.
org/10.1093/brain/awt222

Halgren, E., Kaestner, E., Marinkovic, K., Cash, S. S., Wang, C.,
Schomer, D. L., Madsen, J. R., & Ulbert, I. (2015). Laminar
profile of spontaneous and evoked theta: Rhythmic modula-
tion of cortical processing during word integration.
Neuropsychologia, 76, Sept, 108–124. https://doi.org/10.
1016/j.neuropsychologia.2015.03.021

COGNITIVE NEUROSCIENCE 119

https://doi.org/10.1523/JNEUROSCI.0041-13.2013
https://doi.org/10.1523/JNEUROSCI.0041-13.2013
https://doi.org/10.1016/j.neubiorev.2019.05.015
https://doi.org/10.1523/JNEUROSCI.1548-13.2013
https://doi.org/10.1167/13.10.1
https://doi.org/10.1523/JNEUROSCI.3122-11.2011
https://doi.org/10.1038/s41562-016-0039
https://doi.org/10.1016/j.cortex.2016.02.015
https://doi.org/10.1016/j.cortex.2016.02.015
https://doi.org/10.1038/srep27755
https://doi.org/10.1038/nn.3635
https://doi.org/10.1093/cercor/bhu203
https://doi.org/10.1093/cercor/bhu203
https://doi.org/10.1162/jocn_a_01325
https://doi.org/10.1162/jocn_a_01325
https://doi.org/10.1523/JNEUROSCI.2828-13.2014
https://doi.org/10.1016/j.tics.2015.08.008
https://doi.org/10.1523/JNEUROSCI.5547-11.2012
https://doi.org/10.1016/j.neuropsychologia.2017.02.013
https://doi.org/10.1016/j.neuropsychologia.2017.02.013
https://doi.org/10.1093/cercor/bhu057
https://doi.org/10.1093/cercor/bhu057
https://doi.org/10.1523/ENEURO.0122-19.2019
https://doi.org/10.1111/psyp.12593
https://doi.org/10.1162/neco.1989.1.1.123
https://doi.org/10.1162/neco.1989.1.1.123
https://doi.org/10.1016/j.cognition.2002.07.001
https://doi.org/10.1016/j.cognition.2002.07.001
https://doi.org/10.1038/s41598-018-28865-1
https://doi.org/10.1038/s41598-018-28865-1
https://doi.org/10.3758/s13428-013-0420-4
https://doi.org/10.1002/hipo.22750
https://doi.org/10.1002/hipo.22750
https://doi.org/10.1038/nn759
https://doi.org/10.1038/nn759
https://doi.org/10.1016/j.neuroimage.2013.08.029
https://doi.org/10.1016/j.neuroimage.2013.08.029
https://doi.org/10.1002/()1097-0193
https://doi.org/10.1093/brain/awt222
https://doi.org/10.1093/brain/awt222
https://doi.org/10.1016/j.neuropsychologia.2015.03.021
https://doi.org/10.1016/j.neuropsychologia.2015.03.021


Kaneshiro, B., Guimaraes, M. P., Kim, H.-S., Norcia, A. M., Suppes,
P., & Najbauer, J. (2015). A representational similarity analy-
sis of the dynamics of object processing using single-trial
EEG classification. PloS One, 10(8), e0135697. https://doi.org/
10.1371/journal.pone.0135697

Kivisaari, S. L., Vliet, M., Hultén, A., Lindh-Knuutila, T., Faisal, A., &
Salmelin, R. (2019). Reconstructing meaning from bits of
information. Nature Communications, 10(1), 1–11. https://
doi.org/10.1038/s41467-019-08848-0

Konkle, T., & Caramazza, A. (2013). Tripartite organization of the
ventral stream by animacy and object size. Journal of
Neuroscience, 33(25), 10235–10242. https://doi.org/10.1523/
JNEUROSCI.0983-13.2013

Kovach, C. K., Tsuchiya, N., Kawasaki, H., Oya, H., Howard, M. A.,
& Adolphs, R. (2011). Manifestation of ocular-muscle EMG
contamination in human intracranial recordings.
NeuroImage, 54(1), 213–233. https://doi.org/10.1016/j.neuro
image.2010.08.002

Kraskov, A., Quiroga, R. Q., Reddy, L., Fried, I., & Koch, C. (2007).
Local field potentials and spikes in the human medial tem-
poral lobe are selective to image category. Journal of
Cognitive Neuroscience, 19(3), 479–492. https://doi.org/10.
1162/jocn.2007.19.3.479

Kreiman, G., Koch, C., & Fried, I. (2000). Category-specific visual
responses of single neurons in the human medial temporal
lobe. Nature Neuroscience, 3(9), 946–953. https://doi.org/10.
1038/78868

Lambon Ralph, M. A. L., Jefferies, E., Patterson, K., & Rogers, T. T.
(2017). The neural and computational bases of semantic
cognition. Nature Reviews Neuroscience, 18(1), 42–55.
https://doi.org/10.1038/nrn.2016.150

Leonardelli, E., Fait, E., & Fairhall, S. L. (2019). Temporal
dynamics of access to amodal representations of category-
level conceptual information. Scientific Reports, 9(1), 239.
https://doi.org/10.1038/s41598-018-37429-2

Mace, M. J. M., Joubert, O. R., Nespoulous, J.-L., Fabre-Thorpe, M., &
Herzog, M. H. (2009). The time-course of visual categorizations:
You spot the animal faster than the bird. PloS One, 4(6), e5927.
https://doi.org/10.1371/journal.pone.0005927

Malone, P. S., Glezer, L. S., Kim, J., Jiang, X., & Riesenhuber, M.
(2016). Multivariate pattern analysis reveals category-related
organization of semantic representations in anterior tem-
poral cortex. Journal of Neuroscience, 36(39), 10089–10096.
https://doi.org/10.1523/JNEUROSCI.1599-16.2016

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical
testing of EEG- and MEG data. Journal of Neuroscience
Methods, 164(1), 177–190. https://doi.org/10.1016/j.jneu
meth.2007.03.024

Martin, C. B., Douglas, D., Newsome, R. N., Man, L. L., & Barense,
M. D. (2018). Integrative and distinctive coding of visual and
conceptual object features in the ventral visual stream. eLife,
7, e31873. https://doi.org/10.7554/eLife.31873

Mehta, S., Inoue, K., Rudrauf, D., Damasio,H., Tranel, D., &Grabowski,
T. (2016). Segregation of anterior temporal regions critical for
retrieving names of unique and non-unique entities reflects
underlying long-range connectivity. Cortex, 75, Feb, 1–19.
https://doi.org/10.1016/j.cortex.2015.10.020

Meyer, K., & Damasio, A. (2009). Convergence and divergence
in a neural architecture for recognition and memory. Trends
in Neurosciences, 32(7), 376–382. https://doi.org/10.1016/j.
tins.2009.04.002

Miller, J., Watrous, A. J., Tsitsiklis, M., Lee, S. A., Sheth, S. A.,
Schevon, C. A., Smith, E. H., Sperling, M. R., Sharan, A., Asadi-
Pooya, A. A., Worrell, G. A., Meisenhelter, S., Inman, C. S.,
Davis, K. A., Lega, B., Wanda, P. A., Das, S. R., Stein, J. M.,
Gorniak, R., & Jacobs, J. (2018). Lateralized hippocampal
oscillations underlie distinct aspects of human spatial mem-
ory and navigation. Nature Communications, 9, 2423. https://
doi.org/10.1038/s41467-018-04847-9

Miyashita, Y. (2019). Perirhinal circuits for memory processing.
Nature Reviews Neuroscience, 20(10), 577–592. https://doi.
org/10.1038/s41583-019-0213-6

Mollo, G., Cornelissen, P. L., Millman, R. E., Ellis, A. W., Jefferies,
E., & Urgesi, C. (2017). Oscillatory dynamics supporting
semantic cognition: MEG evidence for the contribution of
the anterior temporal lobe hub and modality-specific
spokes. PloS One, 12(1), e0169269. https://doi.org/10.1371/
journal.pone.0169269

Morton, N. W., Kahana, M. J., Rosenberg, E. A., Baltuch, G. H.,
Litt, B., Sharan, A. D., Sperling, M. R., & Polyn, S. M. (2013).
Category-specific neural oscillations predict recall organiza-
tion during memory search. Cerebral Cortex, 23(10), 2407–
2422. https://doi.org/10.1093/cercor/bhs229

Murphy, C., Rueschemeyer, S.-A., Watson, D., Karapanagiotidis,
T., Smallwood, J., & Jefferies, E. (2017). Fractionating the
anterior temporal lobe: MVPA reveals differential responses
to input and conceptual modality. NeuroImage, 147, Feb, 19–
31. https://doi.org/10.1016/j.neuroimage.2016.11.067

Papinutto, N., Galantucci, S., Mandelli, M. L., Gesierich, B.,
Jovicich, J., Caverzasi, E., Henry, R. G., Seeley, W. W., Miller,
B. L., Shapiro, K. A., & Gorno-Tempini, M. L. (2016). Structural
connectivity of the human anterior temporal lobe: A diffu-
sion magnetic resonance imaging study. Human Brain
Mapping, 37(6), 2210–2222. https://doi.org/10.1002/hbm.
23167

Patterson, K., Nestor, P. J., & Rogers, T. T. (2007).Where do you know
what you know? The representation of semantic knowledge in
the human brain. Nature Reviews Neuroscience, 8(12), 976–988.
https://doi.org/10.1038/nrn2277

Peelen, M. V., & Caramazza, A. (2012). Conceptual object repre-
sentations in human anterior temporal cortex. Journal of
Neuroscience, 32(45), 15728–15736. https://doi.org/10.1523/
JNEUROSCI.1953-12.2012

Peelen, M. V., & Downing, P. E. (2017). Category selectivity in
human visual cortex: Beyond visual object recognition.
Neuropsychologia, 105, Oct, 177–183. https://doi.org/10.
1016/j.neuropsychologia.2017.03.033

Pennington, J., Socher, R., & Manning, C. D., 2014. GloVe: Global
vectors for word representation. https://nlp.stanford.edu/pro
jects/glove/.

Quian Quiroga, R. (2012). Concept cells: The building blocks of
declarative memory functions. Nature Reviews Neuroscience,
13(8), 587–597. https://doi.org/10.1038/nrn3251

Quian Quiroga, R. (2016). Neuronal codes for visual perception
and memory. Neuropsychologia, 83, March, 227–241. https://
doi.org/10.1016/j.neuropsychologia.2015.12.016

Quian Quiroga, R., Kraskov, A., Koch, C., & Fried, I. (2009).
Explicit encoding of multimodal percepts by single neurons
in the human brain. Current Biology, 19(15), 1308–1313.
https://doi.org/10.1016/j.cub.2009.06.060

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005).
Invariant visual representation by single neurons in the

120 A. CLARKE

https://doi.org/10.1371/journal.pone.0135697
https://doi.org/10.1371/journal.pone.0135697
https://doi.org/10.1038/s41467-019-08848-0
https://doi.org/10.1038/s41467-019-08848-0
https://doi.org/10.1523/JNEUROSCI.0983-13.2013
https://doi.org/10.1523/JNEUROSCI.0983-13.2013
https://doi.org/10.1016/j.neuroimage.2010.08.002
https://doi.org/10.1016/j.neuroimage.2010.08.002
https://doi.org/10.1162/jocn.2007.19.3.479
https://doi.org/10.1162/jocn.2007.19.3.479
https://doi.org/10.1038/78868
https://doi.org/10.1038/78868
https://doi.org/10.1038/nrn.2016.150
https://doi.org/10.1038/s41598-018-37429-2
https://doi.org/10.1371/journal.pone.0005927
https://doi.org/10.1523/JNEUROSCI.1599-16.2016
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.7554/eLife.31873
https://doi.org/10.1016/j.cortex.2015.10.020
https://doi.org/10.1016/j.tins.2009.04.002
https://doi.org/10.1016/j.tins.2009.04.002
https://doi.org/10.1038/s41467-018-04847-9
https://doi.org/10.1038/s41467-018-04847-9
https://doi.org/10.1038/s41583-019-0213-6
https://doi.org/10.1038/s41583-019-0213-6
https://doi.org/10.1371/journal.pone.0169269
https://doi.org/10.1371/journal.pone.0169269
https://doi.org/10.1093/cercor/bhs229
https://doi.org/10.1016/j.neuroimage.2016.11.067
https://doi.org/10.1002/hbm.23167
https://doi.org/10.1002/hbm.23167
https://doi.org/10.1038/nrn2277
https://doi.org/10.1523/JNEUROSCI.1953-12.2012
https://doi.org/10.1523/JNEUROSCI.1953-12.2012
https://doi.org/10.1016/j.neuropsychologia.2017.03.033
https://doi.org/10.1016/j.neuropsychologia.2017.03.033
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://doi.org/10.1038/nrn3251
https://doi.org/10.1016/j.neuropsychologia.2015.12.016
https://doi.org/10.1016/j.neuropsychologia.2015.12.016
https://doi.org/10.1016/j.cub.2009.06.060


human brain. Nature, 435(7045), 1102–1107. https://doi.org/
10.1038/nature03687

Ranganath, C., & Ritchey, M. (2012). Two cortical systems for
memory-guided behaviour. Nature Reviews. Neuroscience, 13
(10), 713–726. https://doi.org/10.1038/nrn3338

Rice, G. E., Hoffman, P., & Lambon Ralph, M. A. (2015). Graded
specialization within and between the anterior temporal
lobes. Annals of the New York Academy of Sciences, 1359(1),
84–97. https://doi.org/10.1111/nyas.12951

Rogers, T. T., Cox, C., Lu, Q., Shimotake, A., Kikuch, T., Kunieda,
T., Miyamoto, S., Takahashi, R., Ikeda, A., Matsumoto, R., &
Ralph, M. A. L. (2019). Evidence for a deep, distributed and
dynamic semantic code in human ventral anterior temporal
cortex. bioRxiv, 695049. https://doi.org/10.1101/695049

Rupp, K., Roos, M., Milsap, G., Caceres, C., Ratto, C., Chevillet, M.,
Crone, N. E., & Wolmetz, M. (2017). Semantic attributes are
encoded in human electrocorticographic signals during
visual object recognition. NeuroImage, 148, March, 318–
329. https://doi.org/10.1016/j.neuroimage.2016.12.074

Schendan, H. E., & Ganis, G. (2012). Electrophysiological potentials
reveal cortical mechanisms for mental imagery, mental simula-
tion, and grounded (embodied) cognition. Frontiers in
Psychology, 3, 329. https://doi.org/10.3389/fpsyg.2012.00329

Schendan, H. E., & Maher, S. M. (2009). Object knowledge
during entry-level categorization is activated and modified
by implicit memory after 200 ms. NeuroImage, 44(4), 1423–
1438. https://doi.org/10.1016/j.neuroimage.2008.09.061

Seeliger, K., Fritsche, M., Güçlü, U., Schoenmakers, S.,
Schoffelen, J.-M., Bosch, S. E., & van Gerven, M. (2018).
Convolutional neural network-based encoding and decod-
ing of visual object recognition in space and time.
NeuroImage, 180, Oct, 253–266. https://doi.org/10.1016/j.
neuroimage.2017.07.018

Simmons, W. K., & Barsalou, L. W. (2003). The similarity-in-
topography principle: Reconciling theories of conceptual
deficits. Cognitive Neuropsychology, 20(3–6), 451–486.
https://doi.org/10.1080/02643290342000032

Simmons, W. K., Reddish, M., Bellgowan, P. S. F., & Martin, A.
(2010). The selectivity and functional connectivity of the
anterior temporal lobes. Cerebral Cortex, 20(4), 813–825.
https://doi.org/10.1093/cercor/bhp149

Solomon, E. A., Lega, B. C., Sperling, M. R., & Kahana, M. J.
(2019). Hippocampal theta codes for distances in semantic
and temporal spaces. PNAS, 116(48), 4343–24352. https://

doi.org/10.1073/pnas.1906729116 https://doi.org/10.1101/
611681

Staresina, B. P., Fell, J., Do Lam, A. T. A., Axmacher, N., &Henson, R. N.
(2012). Memory signals are temporally dissociated in and across
humanhippocampus andperirhinal cortex.NatureNeuroscience,
15(8), 1167–1173. https://doi.org/10.1038/nn.3154

Staresina, B. P., & Wimber, M. (2019). A neural chronometry of
memory recall. Trends in Cognitive Sciences, 23(12), 1071–
1085. https://doi.org/10.1016/j.tics.2019.09.011

Sudre, G., Pomerleau, D., Palatucci, M., Wehbe, L., Fyshe, A.,
Salmelin, R., & Mitchell, T. (2012). Tracking neural coding of
perceptual and semantic features of concrete nouns.
Neuroimage, 62(1), 451–463. https://doi.org/10.1016/j.neuro
image.2012.04.048

Taylor, K. I., Devereux, B. J., & Tyler, L. K. (2011). Conceptual
structure: Towards an integrated neurocognitive account.
Language and Cognitive Processes, 26(9), 1368–1401.
https://doi.org/10.1080/01690965.2011.568227

Tyler, L. K., Cheung, T. P. L., Devereux, B. J., & Clarke, A. (2013a).
Syntactic computations in the language network:
Characterizing dynamic network properties using represen-
tational similarity analysis. Frontiers in Psychology, 4:271.
https://doi.ord/10.3389/fpsyg.2013.00271

Tyler, L. K., Chiu, S., Zhuang, J., Randall, B., Devereux, B. J.,
Wright, P., Clarke, A., & Taylor, K. I. (2013b). Objects and
categories: Feature statistics and object processing in the
ventral stream. Journal of Cognitive Neuroscience, 25(10),
1723–1735. https://doi.org/10.1162/jocn_a_00419

Visser, M., Jefferies, E., Embleton, K. V., & Lambon Ralph, M. A.
(2012). Both the middle temporal gyrus and the ventral
anterior temporal area are crucial for multimodal semantic
processing: Distortion-corrected fMRI evidence for a double
gradient of information convergence in the temporal lobes.
Journal of Cognitive Neuroscience, 24(8), 1766–1778. https://
doi.org/10.1162/jocn_a_00244

Watrous, A. J., & Ekstrom, A. D. (2014). The spectro-contextual
encoding and retrieval theory of episodic memory. Frontiers
in Human Neuroscience, 8, 75. https://doi.org/10.3389/
fnhum.2014.00075

Wright, P., Randall, B., Clarke, A., & Tyler, L. K. (2015). The
perirhinal cortex and conceptual processing: Effects of fea-
ture-based statistics following damage to the anterior tem-
poral lobes. Neuropsychologia, 76, Sept, 192–207. https://doi.
org/10.1016/j.neuropsychologia.2015.01.041

COGNITIVE NEUROSCIENCE 121

https://doi.org/10.1038/nature03687
https://doi.org/10.1038/nature03687
https://doi.org/10.1038/nrn3338
https://doi.org/10.1111/nyas.12951
https://doi.org/10.1101/695049
https://doi.org/10.1016/j.neuroimage.2016.12.074
https://doi.org/10.3389/fpsyg.2012.00329
https://doi.org/10.1016/j.neuroimage.2008.09.061
https://doi.org/10.1016/j.neuroimage.2017.07.018
https://doi.org/10.1016/j.neuroimage.2017.07.018
https://doi.org/10.1080/02643290342000032
https://doi.org/10.1093/cercor/bhp149
https://doi.org/10.1073/pnas.1906729116
https://doi.org/10.1073/pnas.1906729116
https://doi.org/10.1101/611681
https://doi.org/10.1101/611681
https://doi.org/10.1038/nn.3154
https://doi.org/10.1016/j.tics.2019.09.011
https://doi.org/10.1016/j.neuroimage.2012.04.048
https://doi.org/10.1016/j.neuroimage.2012.04.048
https://doi.org/10.1080/01690965.2011.568227
https://doi.ord/10.3389/fpsyg.2013.00271
https://doi.org/10.1162/jocn_a_00419
https://doi.org/10.1162/jocn_a_00244
https://doi.org/10.1162/jocn_a_00244
https://doi.org/10.3389/fnhum.2014.00075
https://doi.org/10.3389/fnhum.2014.00075
https://doi.org/10.1016/j.neuropsychologia.2015.01.041
https://doi.org/10.1016/j.neuropsychologia.2015.01.041

	Abstract
	Introduction
	Methods
	Participants
	Materials and experimental paradigm
	ECoG recording and data processing
	Electrode localization and selection
	Representational similarity analysis
	Calculating semantic similarity
	Evaluating semantic similarity in the brain


	Results
	Discussion
	Disclosure Statement
	Funding
	ORCID
	References



