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Abstract: The continuous emergence of multidrug-resistant pathogens evoked the development of innovative approaches targeting 
virulence factors unique to their pathogenic cascade. These approaches aimed to explore anti-virulence or anti-infective therapies. 
There are evident concerns regarding the bacterial ability to create a superstructure, the biofilm. Biofilm formation is a crucial 
virulence factor causing difficult-to-treat, localized, and systemic infections. The microenvironments of bacterial biofilm reduce the 
efficacy of antibiotics and evade the host’s immunity. Producing a biofilm is not limited to a specific group of bacteria; however, 
Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus biofilms are exemplary models. This review discusses 
biofilm formation as a virulence factor and the link to antimicrobial resistance. In addition, it explores insights into innovative multi- 
targeted approaches and their physiological mechanisms to combat biofilms, including natural compounds, phages, antimicrobial 
photodynamic therapy (aPDT), CRISPR-Cas gene editing, and nano-mediated techniques. 
Keywords: bacterial biofilms, natural compounds, phages, aPDT, CRISPR, nanotechnology

Introduction
Considering the physiological role of bacterial virulence factors when targeting bacteria using conventional antibiotics is 
promising. Bacterial pathogenesis depends on protein-protein intercommunication, which is surface-bound or secreted to 
interact with the host-specific molecules or defense system.1 The virulence of microbes is key to enabling them to invade 
a host, surpass its immune system, and cause an infection. The microbial elements accomplishing this invasion are called 
“virulence factors”.2 The function of virulence factors is not to instigate the infection; however, it aids the bacteria in 
surviving hostile environments (ie, the host’s body), resulting in cellular damage.3 This virulence intensifies the ability of 
the bacterial cell to establish an organized community called biofilm, 10–1000 times more potent than the sessile 
bacterial cell when treated with conventional antibiotics.4

Bacterial cells in the biofilm are contained in a self-produced polymeric extracellular matrix (ECM),2 and its 
characteristics are summarized in Figure 1.7,8,10,11 The altered phenotypic features in biofilm-forming bacteria include 
decreasing the transcriptional gene expression and translating proteins essential for bacterial cell metabolism, resulting in 
reduced metabolic activity.4,5 Biofilm formation increases the genes’ expressing qualities, including adherence, quorum- 
sensing systems, and competence.6 The secretion of the ECM layer follows successful adherence, which causes colony 
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formation and maturation. The biofilm is dispersed to spread and localize to other sites.7–9 These interactions are 
controlled through a system known as quorum-sensing (QS), QS signaling molecules accumulate according to cell 
density.10 These molecules promote biofilm maturation and dispersion and regulate the expression of specific biofilm- 
related genes and proteins, such as algC, fap, ica operon, gtfBCD, and CsgD.7,11 Consequently, understanding the genetic 
and phenotypic interactions is essential to comprehend the development of biofilms during infection and to understand 
the crosstalk linking bacteria within the biofilm and their influence on antibiotic resistance.12

Targeting bacterial virulence includes targeting the bacterial attachment and invasion, biofilm formation, type 2 
secretion system (toxin secretions), type 3 secretion system (protein transformation), response systems (two-component 
response systems; TCRs), and quorum-sensing systems.13 This approach is a specific method that differs according to the 
bacteria. It is a valuable tactic that can:

(i) Promote the creation of new antibacterial agents with new targets.
(ii) Decrease future resistance by avoiding pressuring the bacteria to evolve, due to selective pressure.14

This review summarizes and clarifies why biofilms are medically critical. First, we discuss numerous cited studies that 
exemplify how these clusters of bacteria grow in microbial communities due to forming a complex three-dimensional 
structure (biofilms). Secondly, we discussed the functions associated with the pathophysiology of biofilm-associated 
virulence factors in bacteria causing biofilm-associated infections. Lastly, we discuss innovative biofilm-eradication 
strategies using novel antibiofilm agents and approaches.

Biofilm-Forming Bacteria
The biofilm-forming bacteria can be 10 to 1000-fold more tolerant to antibiotics than sessile cells.15 The morphological 
changes in biofilm-forming bacteria promote surface adherence, hydrophobicity, low-level motility, and auto- 

Figure 1 Bacterial biofilm characteristics. 
Abbreviations: 3D, three-dimensional; DNA, deoxyribonucleic acid; RNA, ribonucleic acid; luxS genes, quorum-sensing genes; gtf(b,c,d), glycosyltransferases genes; CsgD, 
curli subunit gene; fab, fatty acid biosynthetic genes; algC, alginic acid encoding genes; icaAB, intracellular adhesion genes; AI-2, Auto-inducer 2; EPS, extracellular polymeric 
substances.
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aggregation. Variations between sessile cells and biofilm-associated cells aid the survival of biofilms in hostile 
environments.5,16 Biofilm-associated infections are clinically challenging at many levels. They require multiple anti-
biotics to treat the disease, raising the likelihood of drug toxicity.17 However, combined antibiotic therapy causes 
antibiotic tolerance or resistance, resulting in persistent and difficult-to-treat infections.18 In addition, the lack of 
universal diagnostic protocols in Medical settings leads to delayed or improper diagnoses.19

Antibiotics tolerance is acquired due to two features in biofilm-forming bacteria:

(i) The matrix formation alters the structural phenotype of the bacteria.
(ii) The enlarged populations of bacterial persister cells (cells with decreased metabolism rate).6

As shown in Figure 2, the resistance mechanisms of antibiotics include efflux pumps (extruding the antibiotics to the 
bacterial periplasmic space), changing the expression of the membrane proteins (porins), decreasing the cellular 
membrane’s permeability, and reducing small inhibitory molecules diffusion.20,21 These mechanisms might be similar 
in Gram-negative and Gram-positive bacteria, including overexpressing efflux pumps, inactivating/degrading antibiotics 
using enzymes (eg, β-lactamase), and mutating the targeted sites (yellow stars in Figure 2 highlight mutation sites). Other 
mechanisms differ according to the bacteria, such as blocking the permeability of antibiotics, covalently alternating 
antibiotics, overproducing PBPs, reducing antibiotic binding affinity, and protecting the targets of antibiotics using 
proteins.22–24

Figure 2 Bacterial biofilm resistance with different cellular mechanisms in Gram-positive and Gram-negative bacteria. 
Notes: Data from these studies.22,25 

Abbreviations: AB/Abs, antibiotic; AC, acetylation; OM, outer membrane; PP, periplasm; PBPs, penicillin-binding proteins; RNA Pol, RNA polymerase.
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Diagnosing biofilm-caused infections are dependent on laborious and expensive procedures. In addition, the antibiotic 
sensitivity assays measure the bacterial susceptibility in its planktonic form, not in the biofilm form, which may result in 
prescribing the wrong antibiotics or dosage.19 Researching antibiofilm drugs with specific, rapid, and cost-efficient 
diagnostic tools will advance the management of biofilm-caused infections.26 Scientists are exploring simple and fast 
procedures to evaluate the susceptibility of bacterial biofilm and not solely depend on the susceptibility of planktonic 
cells.27,28

Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus are known pathogens in the medical 
setting. Their ability to exert variable virulence factors, eg, biofilm formation, is essential during the disease they 
cause.29,30 We will discuss the current knowledge related to the role of biofilm formation in terms of their prevalence and 
medical significance.

Pseudomonas aeruginosa
Pseudomonas aeruginosa is ubiquitous in diverse environments and notoriously resist antibiotics.31 Human infections 
caused by P. aeruginosa are prevalent; it is a primary opportunistic pathogen causing nosocomial infections using its 
hierarchical QS signaling pathways, regulates multiple virulence factors, and produces biofilm.32 Carbapenem-resistant 
Enterobacteriaceae P. aeruginosa (CRPA) is the leading cause of various healthcare-associated infections (HAI) in the 
United States, with more than 50,000 cases annually. This results from the presence of resistance plasmids with diverse 
virulence factors and metabolic pathways.33

Pseudomonas aeruginosa is of the most prevailing Gram-negative biofilm-forming bacteria in medical settings.34 It 
is responsible for 10%-20% of all HAI, which is challenging to treat if it colonizes the host tissue, specifically in cystic 
fibrosis (CF) patients. The biofilm matrix, known as the ECM layer, comprises of DNA, exopolysaccharides, and 
proteins. In addition, mucoid strains isolated from CF patients produce a plethora of exopolysaccharide alginic acid.34 

The proteinaceous constituents essential in biofilm formation are lectins- and carbohydrates-binding proteins. 
P. aeruginosa makes two lectins, LecA and LecB; both are important in biofilm formation and instigating 
infections.35 Observing clinical Pseudomonas aeruginosa biofilm, versatile factors are expressed in response to 
environmental stressors and are activated to adapt to these stressors.35 The essential elements in P. aeruginosa biofilm 

Table 1 Summary of Required Components for Biofilm Formation and Maturation in P. aeruginosa

Factor Identity or Chemistry Responsible Gene/Operon Function Refs

Alginate Exopolysaccharide/ O-acetylated 1–4 linked 

D-mannuronic acid and variable proportions of 

its five epimer L-guluronic acid

The alginate operon (algD, alg8, alg44, algk, 
alagE, alaG, algX, algL, algl, algJ, algf, and 
alqA and alqC)

Biofilm matrix 

formation in mucoid 

strains, 
Antibiotics tolerance 

and protection from 

host immunity, 
Aminoglycosides 

resistance

[32,38–40]

eDNA Nucleic acid (extracellular DNA) Cell Lysis Virulence and 
biofilm matrix 

dynamics 

Antibiotic tolerance 
Nutrient source

[32,38,40,41]

Flagella Multiprotein complex At least 41 genes clustered in three 

regions of the genome encode flagellin 
structural and regulatory components

Irreversible adhesion 

and biofilm 
development

[32,42]

(Continued)
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formation and their genetics are listed in Table 1. These elements include extracellular DNA, exopolysaccharide (ie, 
alginate, Pel, Psl), and motility apparatus such as flagella and pili. Lipopolysaccharides (LPS) are potent constituents of 
Pseudomonas biofilm, comprising mainly O antigen (O-polysaccharide), oligosaccharides, and Lipid.36 The LPS layer 
affects the host’s immunity by suppressing the host’s defenses and inducing hyperinflammatory reactions. This 
contributes to the chronic nature of the biofilm-associated infections in P. aeruginosa by producing key virulence 
factors, ie, biofilm formation and toxin (Lipid A) secretion.36,37 Comprehending the dynamics underpinning biofilm 
formation in P. aeruginosa is vital to develop appropriate antibiofilm agents, as these factors can be used as targets for 
new approaches.

Quorum-sensing expresses more than 300 genes, including genes fundamental in biofilm formation and the virulence 
in P. aeruginosa.44,45 The QS-dependent virulence factors produced for the pathophysiology of P. aeruginosa are listed in 
Table 2. In Pseudomonas, virulence factors and QS-molecules are synthesized differently during biofilm formation, 

Table 1 (Continued). 

Factor Identity or Chemistry Responsible Gene/Operon Function Refs

Pel Exopolysaccharide/ partially acetylated (1–4) 
glycosidic linkage of N-acetylgactosamine and 

N-acetylglucosamine

The pelA-G operon 
GDP-mannuronic acid

Biofilm formation on 
solid surfaces 

Biofilm matrix 

development and 
maintenance 

Virulence 

Aminoglycosides 
resistance

[32,38,40,43]

Psl Exopolysaccharide/Repeating pentasaccharides 

containing D-mannose, D-glucose, and 
L-rhamnose

The psIA-O operon Biofilm matrix 

formation, Antibiotic 
protection

[32,38]

Type 4 
pili

Multiprotein complex/ Type 4a 

Pill

The piliM/N/P/Q and the 

fimU-pilVWXY1Y2E operons

Early attachment, 

adhesion, and biofilm 
development

[32,42]

Table 2 Representation of QS-Dependent Virulence Factors in P. aeruginosa

Virulence 
Factor

Class or Chemistry Encoding Gene Secretion Function Refs

Alkaline 
Protease 
(aeruginolysin)

Extracellular enzymes-aided 
invasion/ M10 peptidase 

family/ zinc- 

metalloendopeptidase

aprA Type 1 secretion 
system (T1SS)

Wide protease activity, tissue damage, 
immune system evasion, iron 

accessibility

[32,47]

Exotoxin A Toxin/ PE belongs to the two- 

component AB toxin family/ 

NAD+- diphthamide-ADP- 
ribosyltransferase

toxA Type 2 secretion 

system (T2SS)

Toxicity, immunosuppression, modifying 

the elongation factor 2 in eukaryotic 

cells, tissue damage, and death

[32,47]

Hydrogen 
cyanide 
(HCN)

Toxic secondary metabolite hcnABC operon Diffusible Highly toxic/potent inhibitor of 

cytochrome c oxidase and other 
metalloenzymes, cytotoxicity, 

colonization

[32,47]

LasB Elastase Extracellular enzymes-aided 
invasion/ M4 thermolysin 

peptidase family/ zinc 

metalloprotease

lasA The Sec 
pathway and 

Type 2 secretion 

system (T2SS)

Protease and elastolytic activity, cleaving 
a wide range of glycine-containing 

proteins, tissue damage, immune 

system evasion, and invasion

[32,47]

(Continued)
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adhesion, formation, maturation, and dispersion. This contributes to surface attachment, stability, nutrition, cellular 
arrangement, and protection against antibiotics and host immunity.46

Earlier studies noted the effect of biofilm formation by P. aeruginosa on infection and antibiotic resistance.40,48–50 

A prospective study that monitored the HAI incidence in Rome for 24 months, reported a prevalence of Pseudomonas 
infections of 25%.51 A meta-analysis of studies between 2000 and 2010 reported P. aeruginosa as the most frequently 
found wound pathogen.52 This prevalence urged Researchers to study the effectiveness of new approaches to combat this 
pathogen. For instance, anti-virulence drugs proved effective by disarming the bacteria rather than targeting their 
replication and growth. As a result, the infection rate will eventually slow down, allowing the immune system to attack 
the invading pathogen.53 A recent study by Rezzoagli and researchers demonstrated a novel procedure by combining 
antibiotics and anti-virulence drugs, Gallium (siderophore-binding molecule) and furanone C-30 (QS-inhibitor), to treat 
P. aeruginosa in vitro.54 Their approach proved effective against the bacteria in a concentration-dependent manner. They 
observed a promising synergy at intermediate drug concentrations for specific drug pairs.54

Acinetobacter baumannii
Acinetobacter baumannii represents a unique species. It is possible to isolate A. baumannii from Healthcare facilities, 
food, water, and soil. Literature highlighted their clinical significance due to the increase in carbapenem-resistant strains 
in hospitals and communities.55 Infections caused by A. baumannii are increasingly challenging for healthcare profes-
sionals globally, particularly in intensive care units. The multi-drug resistance (MDR) rate has increased significantly in 
recent years, with a tolerance to last-line antibiotics, such as colistin.56

The World Health Organization (WHO) labelled A. baumannii a “critical” pathogen, constituting a significant global 
human health risk.57 This opportunistic pathogen mediates pathophysiology mechanisms, including bacterial virulence 
factors (eg, biofilm formation), genes (eg, resistance), and host immune responses (eg, invasion)55 (Table 3). Biofilm 

Table 2 (Continued). 

Virulence 
Factor

Class or Chemistry Encoding Gene Secretion Function Refs

LasB Elastase Extracellular enzymes-aided 

invasion/ Β-lytic zinc 

metalloendopeptidase 
(staphylolytic)/ serine 

protease

lasB The Sec 

pathway and 

Type 2 secretion 
system (T2SS)

Protease and elastolytic activity, 

invasion, infection, tissue damage, iron 

accessibility

[32,47]

Lectin A Toxic secondary metabolite/ 
Tetrameric protein

lecA (or pa1 L) Intracellular; 
only a small 

fraction present 

on the cell 
surface

Galactophilic, adhesive, colonization, 
infection

[32,47]

PlcB Extracellular enzymes-aided 

invasion/ Phospholipases C

plc B The Sec 

pathway and 
Type 2 secretion 

system (T2SS)

Hydrolyzing phosphatidylcholine and 

phosphatidylethanolamine, invasion, 
programmed tissue death, iron 

accessibility

[32,47]

Pyocyanin Toxic secondary metabolite/ 
tricyclic phenazine

phzA1-G1 and 
phzA2-G2

Type 2 secretion 
system (T2SS)

Redox-active, immunity evasion, 
colonization, toxicity

[32,47]

Pyoverdine Iron acquisition/ Pyoverdines/ 

dihydroquinoline-type 
chromophore linked to 

a peptide

Large multi-modular 

enzymes/ non- 
ribosomal peptide 

synthetases (NRPSs)

PvdRT-opmQ 

Efflux pump and 
MexAB-OprM 

efflux pumps

High affinity to Fe (III) /iron acquisition/ 

fluorescent, tissue invasion, biofilm 
development

[32,47]

Rhamnolipids Toxic secondary metabolite/ 
Rhamnose-containing 

glycolipid compounds

rhlAB operon and rhiC - Biosurfactant, detergent, structure, 
hemolytic activity, biofilm dispersal, 

toxicity

[32,47]
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Table 3 Summary of Virulence Factors, Genes, and Pathogenesis of A. baumannii

Virulence Factors or 
Genes

Role in Pathogenesis Model Refs

Porin (OmpA, Omp33-36, 
Omp22, CarO, OprD-like)

Adherence and invasion, Induction 

of apoptosis, serum resistance, 

Biofilm formation, persistence

In vitro studies and induced tracheal aspiration 

pneumonia by AB 5075 strain in C57BL\6 mice; 

Growth rate and cell cytotoxicity of clinical isolate 
compared to ATCC 19606; intraperitoneally 

challenged C57BL/6 mice with Omp33-36 knockout 

in AB 17978 compared to wild type

[59–71]

Capsular polysaccharide Growth in serum, survival in tissue 

infection, biofilm formation

C57BL/6 mice intraperitoneally challenged with 

stimulated AB ATCC 17978 to form capsule 

compared to capsule-mutated strains

[59,60,72–75]

Lipopolysaccharide 
(LPS) genes

Serum resistance, survival in tissue 

infection, evasion of the host 

immune response

BALB/c mice intraperitoneally challenged with 

knockouts in AB ATCC 19606 compared to wild 

types.

[59,60,76–81]

Phospholipase (PLC and 
PLD) LipA (lipase)

Serum resistance, invasion, in vivo 

survival

Neutropenic tail vein infection of DBA mice infected 

with LipA knockout in A. baumannii ATCC 17978 and 

compared to wild type

[59,60,82–86]

Outer membrane vesicle 
(OMV)

Delivery of virulence factors, 

horizontal transfer of antibiotic 
resistance gene

A. nosocomialis ATCC 17903 purified from OMVs and 

administered in vitro to cells and BALB/c mice model

[59,60,87–93]

Iron acquisition system – 
siderophore 
(Acinetobactin and 
NfuA)

In vivo survival, persistence, the 

killing of host cells

Galleria and C57BL/6 mice models with 

intraperitoneally infected with acinetobactin 
knockouts AB ATCC 19606 and compared to the 

wild type

[59,60,85,94–99]

Zinc acquisition system 
(ZnuABC and ZigA)

In vivo survival C57BL/6 mice challenged with intranasal infection by 
A. baumannii ATCC 17978 or a ZigA knockout strain

[59,60,94,95]

Manganese acquisition 
system (MumC and 
MumT)

In vivo survival — [59,100]

Type 2 protein secretion 
system (T2SS); gspD

In vivo survival and an 

intermediate effect on bacterial 
population density

C57BL/6 mice received nasal inoculation of a gspD- 

knockout strain of A. nosocomialis M2 and compared 
to the wild type

[59,60,86,101,102]

Type 6 protein secretion 
system (T6SS)

The killing of competing bacteria, 

host colonization

T6SS was analyzed in AB ATCC 17978, AB 

DSM30011 non-clinical isolates, and three clinical 
isolates

[59,60,103–106]

Type 5 protein secretion 
system (T5SS)

Biofilm Formation, adherence — [59,107]

Penicillin-binding protein 
7/8/ and β-Lactamase 
PER-1

Serum resistance, in vivo survival, 

adherence

— [59,108,109]

CipA Serum resistance, invasion — [59,110]

Tuf Serum resistance — [59,111]

RecA In vivo survival and repairing 
damaged DNA

CD1 mice with intraperitoneal infection using 
A. baumannii ATCC 17978 after RecA knockout 

compared to wild type

[59,60,112]

SurA1 Serum resistance, in vivo survival, 
growth rate

Chicks infected with Knockout of SurA1 A. baumannii 
CCGGD201101

[59,60,113,114]

GigABCD In vivo survival, the killing of host 

cells

— [59]

Universal stress protein 
A (UspA)

In vivo survival, the killing of host 

cells, pathogenesis of sepsis and 

pneumonia infections

C57BL/6 mice were challenged intranasally and 

intraperitoneally using the UspA knockout strain of 

AB ATCC 17978 and compared to the wild type

[59,60,113,115]

(Continued)
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formation is a characteristic that results in the survival of A. baumannii in the presence of antibiotics and stressors. 
A. baumannii causing wound infections produces virulence factors that lengthen the treatment course, especially in burn 
patients, elevating the mortality and morbidity rates.58

In a systematic review and meta-analysis, scientists investigated the association between the ability to form biofilm in 
A. baumannii in patients suffering from burns, and the antibiotic resistance trend. Results indicate that more than 90% of 
A. baumannii strains produced biofilms, contributing to antibiotic resistance in the burn units.58

Altınok and others compared virulence genes and A. baumannii’s ability to form a biofilm and revealed that the 
biofilm formation was mostly related to genes encoding curli fiber (csgA), the chaperone-usher fimbria (csuE), and the 
outer membrane (ompA).124 Different virulence genes such as csgA, csuE, fimH, ompA, and blaPER-1 were investigated, 
and it was determined that 60.3% of the isolates formed biofilm. The frequency of csgA, csuE, ompA, fimH and blaPER-1 
genes of all isolates were 71.2%, 32.1%, 21.8%, 7.1%, and 3.2% respectively. The frequency of csgA, ompA, bap, csuE, 
and fimH virulence genes of the biofilm-producing isolates was 41.5%, 24.5%, 20.2%, and 5.3%, respectively. All the 
genes studied were abundant in the isolates with a strong and medium-positive biofilm production. This demonstrates 
that, except for the fimH gene, the csgA, csuE, and ompA genes contributed to the biofilm formation in invasive 
A. baumannii isolates.124

Another review by Colquhoun and Rather investigated the genetic regulation mechanism of biofilm formation in 
A. baumannii.125 The research divided the known 132 up-regulated biofilm genes in the outer membrane proteins, 
attachment/motility, metabolism, transcription, translation, and hypothetical proteins. The top categories were metabo-
lism (49 genes), translation (30 genes), and outer membrane proteins (29 genes). This indicates that the transition and 
maintenance of the biofilm environment require alterations in the metabolic pathways and configuration of the outer 
membrane, assisted mainly through the translation machinery required for the production of nascent proteins.125 The 
seriousness of A. baumannii infections is due to its resistance to the latest line of antibiotics, colistin, which mandates 
researching new treatment approaches. Srisakul and others reported novel synergistic activity between colistin and 
sulbactam against clinical isolates of colistin-resistant A. baumannii. This combination was tested in mouse models and 
in vitro; combinatorial therapy may provide a new option to treat this critically alarming pathogen.126

Staphylococcus aureus
Staphylococcus aureus is of the most ubiquitous and dangerous facultative intracellular human pathogens due to its 
virulence and ability to develop antibiotic resistance.127 Methicillin-resistant Staphylococcus aureus (MRSA) transmis-
sion occurs from infected patients, healthcare personnel, or items colonized with MRSA due to contact, known as 

Table 3 (Continued). 

Virulence Factors or 
Genes

Role in Pathogenesis Model Refs

Sensor kinas (GacS) and 
catabolic pathway of 
phenylacetic acid (PaaE)

Neutrophil influx DBA mice challenged with intraperitoneal infection of 

knockout in AB ATCC 17978 and compared to wild 

type

[59,60,113,116,117]

Pili Adherence, biofilm formation — [59,118,119]

OmpR/EnvZ The killing of host cells — [59,120]

FepA (enterobactin 
receptor)

Competitive growth rates CBA/J mice challenged with intravenous infection by 
A. baumannii ATCC 17978 with a mutant transposon 

library

[59,60,121]

AbeD The killing of host cells — [59,122]
gacA and gacS (regulator 
genes)

— Zebrafish embryos challenged with AB ATCC 17978 

and knockouts

[60,117]

Biofilm gene 
(LH92_11085)

Biofilm formation Identification of gene expression level and biofilm 
formation in A. baumannii MAR002

[60,123]
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hospital and community transmission of MRSA, respectively.128 S. aureus produces extracellular enzymes important for 
the pathophysiological mechanisms and regulates novel virulence factors. Multiple environmental factors, including 
nutrients, antibacterial agents, pH, shearing force, and temperature influence the stages of biofilm formation. These stages 
are attachment, maturation, detachment, and development.129 They significantly influence several virulence determinants 
that evoke the host’s immune response to the bacteria. Biofilm-associated infections are correlated with intravascular 
catheters or attachment to medical implants and host tissue.129 Some Staphylococcal diseases are toxin-mediated because 
many strains produce exotoxins, such as toxic shock syndrome (TSS toxin 1), scalded skin syndrome (exfoliative toxin), 
and food poisoning (enterotoxin).130 Surface and secreted proteins are essential for the mechanisms of pathophysiology 
and regulation of novel virulence factors for S. aureus (Figure 3).

One of the features of S. aureus biofilm infections is its ability to survive on biotic and abiotic surfaces and its tendency to resist 
drugs.132 If we compare MRSA infections with all other infections caused by MDR Gram-negative bacteria, it is 10 times more 
prevalent. The WHO included MRSA as one of the 12 urgent pathogens jeopardizing human health.132 Notably, the genotypic 
variation of S. aureus strains may play a role in biofilm production, but evidence is still insufficient to support these 
associations.133

S. aureus formulate four types of biofilms: polysaccharide biofilm, protein-mediated biofilm, fibrin biofilm, and amyloid 
biofilm.134 The polysaccharide intercellular adhesin (Pia) protein, involved in intercellular adhesion and biofilm formation, is 
a documented virulence factor in the S. aureus cell wall.135 This element is also the first identified mediator of biofilm formation 
in Staphylococcus epidermidis, which has formed the foundation of other biofilm mechanisms in S. epidermidis and S. aureus.134 

Studies indicate that S. aureus produces biofilm using proteins instead of polysaccharides (protein-mediated biofilms) in an ica- 

Figure 3 Staphylococcus aureus pathophysiology mechanisms and regulation of virulence determinants. 
Notes: Data from these studies.129,131 

Abbreviations: TSST-1, toxic shock syndrome toxin 1; P1 and P2, promoters; agrABCD, accessory gene regulator genes operon and the precursors for AgrABC proteins; 
RNAIII, RNAIII transcript yields RNA as the primary effector; AIP, autoinducing peptide.
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independent manner136 (Figure 4). Numerous surface adhesins are involved in protein-mediated biofilm production, including 
Bap, Spa, FnBPA, FnBPB, and SasG. These proteins are referred to as “cell wall-anchored proteins.” They enable S. aureus to 
resist polysaccharide-degrading enzymes, such as dispersin B, and survive harsh environments.137–139 Fibrin biofilm forms 
mostly during blood infection when staphylococcal coagulase attaches to the host’s prothrombin forming a complex, which 
causes the conversion of fibrinogen in the blood to fibrin, shielding the biofilm from its surroundings.134 Phenol-soluble modulins 
produce amyloid biofilm after accumulating in the amyloid fibers that improve biofilm formation (Figure 4).134

Biofilm formation impacts the patient experience by affecting their chances of being readmitted within 90 days of 
discharge or decreasing their 90-day mortality rate.133 Luther et al, 2018, studied the connection between strong and 
weak biofilm formation in S. aureus and its ramification on hospitalized patients. Results showed links between the 
strong biofilm production in MRSA and agr genes deficiency, pigmentation, and administration of immunosuppressants 
or chemotherapy within the last 90 days.133 Research related to the effect of the genotypic variations in S. aureus strains, 
including MRSA, and its magnitude on biofilm formation is urgently required.

To summarize, many bacteria can produce a structured ecosystem called the “biofilm.” Gram-positive and -negative 
bacteria possess varying morphology, genetics, and physiologies, but several biofilm-formation dynamics are comparable 
between the two types of bacteria.141 However, researchers suggest exploring how these dynamics might change in 
polymicrobial biofilms, comprising the two types of bacteria or other species, and their contribution during infection. 
Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus are associated with most human infections 
and known for their inherent tolerance to antimicrobials and the host’s immune responses.142–144 These medically prevailing 
pathogens pose a global burden, primarily in hospitals and communal areas, that adversely influence the patient experience and 
are costly to treat.Biofilm-associated infections challenge the current therapeutics and diagnostics. More surveys of the 

Figure 4 Stages of S. aureus biofilm production and its different formation mechanisms. 
Notes: Data from these studies.134,140 

Abbreviations: eDNA, extracellular DNA; Fg, fibrinogen, PSM fibers, phenol-soluble modulins fibers.
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incidence of infection must be done to provide evidence for the public and scientific community to encourage a hygienic 
lifestyle and urge researchers to investigate novel control approaches. Table 4 summarizes medically important Gram-positive 
and negative biofilm-forming bacteria, associated infections, and numerous innovative research and treatment approaches.

Table 4 Biofilm-Associated Infections and Innovative Treatment Approach

Bacteria Biofilm Infection Approach Refs

Gram-negative, obligate Aerobic

Escherichia coli Urinary tract infections (UTI) 
Neonatal sepsis 

Meningitis 

Catheter-associated urinary tract 
infections (CAUTI) 

Crohn’s disease and enteric syndromes 

associated infections 
Enteric hemorrhage 

Veterinary infectious diseases, including 

mastitis

Anti-adhesion agents 
Phage therapy 

Antimicrobial peptides 

Natural compounds 
Nanocarriers 

Combinatory therapy, ie, CRI-dots nanocomplex 

(CRISPR-Cas and Carbon quantum dots)

[145,146]

Pseudomonas 
aeruginosa

Nosocomial infection 

Chronic infections in 

immunocompromised patients 
Chronic lung infection 

Chronic wound infection 

Chronic rhinosinusitis

Anti-biofilm strategies 

(eg, Fimbriae or pili assembly blockers, OmpA 

inhibitors) 
Antiquorum-sensing (QS) molecules (eg, AHL, abaR 

receptors) 

Extracellular polymeric substances (EPS) inhibitors 
Antibacterial agents (iron-chelators) 

Antimicrobial peptides 

Advanced nanocarriers

[46,147]

Acinetobacter 
baumannii

Nosocomial infections 

Ventilator-associated pneumonia 

Urinary tract infections 
Wound infections 

Bacteremia 

Endocarditis 
Meningitis 

Severe community-associated infections

Antibiofilm peptides, inhibitors of natural and synthetic 

sources, 

anti-QS molecules, degrading enzymes, 
combinatorial therapy of essential oils and nanocarriers 

(eg, polymer, metal, and silica-based nanoparticles) 

Phage therapy 
Photodynamic therapy

[148–151]

Salmonella sp, S. 
Enterica serovar 
Typhi, 
S. typhimurium

Typhoid fever 
bowel perforation septicemia; 

meningitis; 

Catheters-associated infections 
Non-typhoidal salmonellae diseases, ie, 

chronic gallbladder infection 

Recalcitrant typhoid fever leading to 
hepatobiliary cancers

EPS production inhibitors 
Antimicrobial Peptides 

Curli amyloid fibers inhibitor by a human monoclonal 

antibody 
Combinatory therapy, ie, ultrasound and disinfectants, 

halogenated furanones and antibiotics or disinfectants, 

and nano- and micro-emulsion

[152–157]

Klebsiella pneumonia Community-acquired and nosocomial 

infections 
Medical devices-associated infections 

Urinary and biliary tract infections 

Osteomyelitis 
Bacteremia 

Chronic endometritis-associated 

infections 
Mastitis 

Prostatitis

Natural compounds (eg, 3-methyl-2(5H)-furanone and 

2´-hydroxycinnamic acid) 
Phage therapy 

Biofilm matrix-degrading enzymes 

Histidine Functionalized Silver Nanoparticles 
Combinatory therapy, ie, non-ionic surfactants and 

phages; carboxypterin, methylene blue, and 

antimicrobial photodynamic therapy (aPDT); 
nanotechnology aPDT, and antimicrobial photothermal 

therapy (aPTT).

[152,158–164]

(Continued)
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Innovative Approaches to Curb Biofilm Formation
Biofilm is present in more than 90% of bacteria and impacts bacterial infection significantly.172 The increasing incidence 
of multi-drug-resistant bacteria warrant the development of novel interventions. Bacterial virulence management is an 
interesting viewpoint compared to antibiotic therapy, which provides methods to prevent pathogenesis without adding 
stress on the targeted bacteria.13,173 This review explores innovative techniques that might affect the control and defense 
against biofilm formation by targeting bacterial virulence factors. These approaches include phytochemicals, antimicro-
bial photodynamic therapy (aPDT), bacteriophages, gene editing by CRISPR-CAS, and nano-mediated techniques.

Natural Products (Phytochemicals)
New methods widely explored phytochemicals extracted from natural sources to prevent biofilm formation and quorum- 
sensing.174,175 Phytochemicals, alone or in combination, have been used to repurpose old antibiotics or reduce the dose of 
antibiotics.176,177 Human cultures have been using herbal remedies for centuries, and some of these natural products are 
useful in treatment and prevention.172 Traditional Chinese medicinal herbs, for instance, were widely used in treating 
bacterial infections and prevention, and their antibacterial capacity was demonstrated in some herbs, such as Scutellaria, 
Taraxacum, and Tussilago. Plant extracts have also recently been described to control biofilm development and inhibit 
quorum-sensing (QS) in bacteria.172

Many natural anti-biofilm compounds, such as phytochemicals, biosurfactants, and antimicrobial peptides, are 
effective against a broad range of microbial biofilms with different modes of action.178 Novel natural antibiofilm agents 
such as phytochemicals broadly comprise numerous natural compounds with anti-biofilm properties: phenolics, 

Table 4 (Continued). 

Bacteria Biofilm Infection Approach Refs

Gram-positive, facultative Anaerobic

Staphylococcus 
aureus

Mastitis 

Chronic Endometritis-associated 
infections Laryngitis 

Pharyngitis 

Catheters-associated infections (eg, 
intravenous catheters, urinary catheters, 

dialysis catheters) 

Infections associated with implanted 
medical devices (eg, pacemakers, joint 

prostheses, and fluid shunts)

Antibiofilm surfaces: 

Anti-adhesion agents (eg, polyethylene glycol (PEG) 
coating 

Antifoulants (coatings using paints containing metal 

nanoparticles) 
aPDT 

Laser Shock waves (LSW) 

Antimicrobial peptides 
Enzymes 

Phage therapy 

Combinatory therapy, ie, ultrasound and disinfectants, 
using multiple antibiotics.

[152,154,165,166]

S. epidermidis Medically implanted devices infections 

Skin and soft tissue infections 
Bone and muscle infections 

Lung infections 

Bloodstream infections

QS-inhibitors (eg, thiophenones and furanones) 

EPS dispersion agents (eg, ß-glucosidase, 
N-acetylcysteine; NAC) 

Antibiofilm surfaces: 

Anti-adhesion agents (PEG coating) 
Antifoulants (metal nanoparticles-containing paints) 

Combinatory therapy, eg, nanotechnology and aPDT, 

antimicrobial photothermal therapy (aPTT)

[157,159,161– 

163,165,167,168]

Streptococcus 
pneumoniae

Colonization of the nasopharynx leads 

to otitis media 

Chronic Endometritis associated 
infections 

Rhinosinusitis 

Laryngitis 
Pharyngitis

Nanotechnology (eg, Zinc oxide nanoparticles) 

Inhibition by small molecules (eg, Quercetin, DNA 

adenine methyltransferase Inhibitor, and 
Pyrimidinedione)

[152,169–171]

https://doi.org/10.2147/IDR.S380883                                                                                                                                                                                                                                   

DovePress                                                                                                                                                      

Infection and Drug Resistance 2023:16 30

Mohamad et al                                                                                                                                                       Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


terpenoids, lectins, alkaloids, polypeptides, and polyacetylenes. These natural phytocompounds, with their mechanisms 
of action (Figure 5), can regulate QS and quorum-quenching (QQ) systems, crucial players in bacterial biofilm formation, 
virulence factors and antibiotic production in Gram-negative and positive bacterial infections.178

The bacterial QS systems received increasing research focus. Targeting the bacterial QS system is an efficient strategy 
to prevent biofilm formation. Evidence shows that QS inhibitors obtained from natural compounds, such as 1,2-benzene- 
dicarboxylic acid, diisooctyl ester play a significant role in inhibiting bacterial adhesion and suppressing biofilm-related 
genes.179 Singh and others suggested that phytochemicals down-regulate biofilm formation genes by competing with the 
QS-molecules, such as N-Acyl homoserine lactones (AHL) and autoinducers (AIs) and preventing their binding to these 
genes.179 Scientists are exploring the therapeutic value of traditional medical practices by using natural products and their 
effect on QS systems. Research focuses on studying natural QS-controlling substances and their mechanisms, to treat 
microbial-related diseases and impede antibiotic resistance.180–182 Literature suggests using green methods to manage 
biofilm, including enzymes, phages, and bioregulation in the food industry.183,184 Using detergents from enzymes as bio- 
cleaners, also called green chemicals, will support solving the issue of biofilm in the dietary industry.185

Reen et al reviewed the potentiality of using coumarins to inhabit biofilm and QS. Coumarins are a vast family of 
naturally derived fused benzene and a-pyrone rings. They are predominantly present in plants with many pharmacolo-
gical properties. Examples of coumarin compounds with antibiofilm activity include ellagic acid, warfarin, nodakenetin, 
and fraxin.180 Girennavar and others explored the anti-biofilm and anti-QS ability of a constituent containing joined 
coumarins and furan molecules known as furocoumarins.186 This constituent (extracted from grapefruit) showed similar 
activity to coumarins and inhibited 95% of the autoinducer-1 (AI-1) and autoinducer-2 (AI-2) signaling systems in the 
biosensor strain Vibrio harveyi. It inhibited biofilm formation in Gram-negative bacteria, ie, Escherichia coli, Salmonella 
typhimurium, and P. aeruginosa.186,187

Other researchers tested seven structurally related coumarin compounds against P. aeruginosa and Chromobacterium 
violaceum (biosensor strain).188 The results indicated that these compounds, largely the compounds retaining a hydroxyl 
group, affect QS and biofilm formation in bacteria. This phytochemical impacted biofilm formation in P. aeruginosa but 
not bacterial growth, suggesting that this inhibitory action targeted the QS-signaling system in the bacteria.188

Many natural compounds, medicinal plants and phytochemicals, contributed to the research and discovery of 
antibiofilm agents. For example, Allium subhirsutum L. (hairy garlic) proved to have antibiofilm, anti-quorum-sensing, 
and antibacterial activity against different bacterial and fungal isolates.189 Eruca sativa Miller was tested against 
numerous food-borne pathogens for their antibacterial and antibiofilm activity and demonstrated reduced bacterial 

Figure 5 Presents the numerous modes of action of phytochemicals on various biofilms. 
Notes: Data from Mishra et al.178 

Abbreviations: QQ, quorum-quenching; QS, quorum-sensing.
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density within the biofilm community and a disturbed integrity of the biofilms by interfering with exopolysaccharides 
synthesis.190 Also, the molecular analysis found that E. sativa phytochemicals fused with multiple adhesion proteins 
associated with biofilm formation, causing compromised biofilm formation.190 Advanced spectroscopic analysis showed 
that different bioactive compounds (eg, flavonoids, phenols, terpenes, and tannins) contribute to the versatile biological 
action of natural constituents, including the antibiofilm effect.189–192

In conclusion, bacteria alter their gene expression by sensing the levels of molecules depending on the external 
environment, thus affecting biofilm production and other virulence factors.193 Phytochemicals can regulate QS and, as 
a result, control biofilm-caused infections by controlling bacterial gene expression. The primary challenge of applying 
phytochemicals in antibiofilm therapy is the insufficiency of animal studies and clinical trials. Advancing research to 
these studies will accelerate their applicability in medicine.

Bacteriophages
Phages were introduced as a potential treatment for multi-drug resistant (MDR) pathogens, and several laboratories and 
research centers globally perform intensive bacteriophage research. Bacteriophages, in short phages, are bacterial viruses 
that can infect and kill or incapacitate specific kinds of bacteria but leave other bacteria and human cells unharmed.194–196 

Phages are the most abundant biological entities in the biosphere, and they have been used therapeutically in some parts 
of the world since the 1920s.197 Phages are under renewed consideration globally as tools for fighting the growing crisis 
of antibiotic-resistant bacteria.198 The phage biology makes them potential candidates for phage therapy applications and 
other activities against multidrug-resistant (MDR) pathogens in general. Phage biology includes target selection where 
the phages, which have specificity in their cell infection, can infect the bacterial cell, propagate in the cell, and then lyse 
vast numbers of the cell.199 Towards the end of the infection cycle, phage lytic enzymes destroy their bacterial host cell 
wall.200 As a phage-based therapeutic option, phage enzymes are exploited to eradicate bacterial virulence symptoms, 
such as biofilms.201 Using these enzymes to treat bacterial infections associated with biofilms was suggested by 
destroying the biofilm matrix.202 Phages can penetrate the biofilm layers through pores and channels and subsequently 
destruct the biofilm matrix. Phages encode various lysis enzymes, such as depolymerase, holins, and endolysins, which 
can degrade bacterial polysaccharides and rapidly destroy the integrity of biofilms to facilitate phage penetration of the 
cells within the inner biofilm layers.203,204 Depolymerases have been identified in 143 phages and classified in two 
classes: hydrolases and lyases, which recognize, bind, and digest EPSs to disturb biofilm structure.205 Endolysins are 
peptidoglycan hydrolases produced at the end of the infection cycle and cleave the peptidoglycans in the cell wall. Using 
phages and their derivatives against biofilms and MDR infections associated with biofilms align with developing safe and 
effective therapeutic strategies against biofilm-associated diseases.206–208

Pei and Lamas-Samanamud engineered a T7 phage that overcame the limitation of affecting a host’s biofilm and 
disrupt polymicrobial biofilms.209 This phage cleaves the biofilm signaling molecules in an approach known as quorum- 
quenching. Consequently, it aids in treating multiple hosts in a mixed biofilm infection.209 Silpe and Bassler reported that 
the V. cholera phage altered its response, lysis or lysogenic, based on the quorum-sensing molecules produced by the host 
(bacteria) and symbolized it as the phage having the power to “listen in” to the bacteria.210 These QS signals are 
necessary for virulence and biofilm production. They suggested we could engineer phages to induce bacterial killing in 
the future, which can be advantageous in medicine, agriculture, and industry.210

Several phage-based therapeutic options are available to prevent pathogenic bacterial biofilm formation. Figure 6 
summarizes a few examples of potential applications of phages, eg, combining phages and antibiotics (eg, the sublethal 
concentration of ciprofloxacin and phage), engineering phages genetically (eg, knocKing-out virulence-encoding genes), 
using phage-derived enzymes (eg, endolysins), and utilizing phage cocktail therapy (mixture of phages).211,212

Promoting phages in maintaining human health is imperative to developing novel, safe, and efficient treatments for 
antibiotic-resistant biofilm-mediated infections.211 The current limitations facing phage therapy include the shortage of 
local phage therapy Centers that specialize in isolating, identifying, and applying them to treat patients with acute MDR 
infections. In addition, resistance to phages is a rising issue that requires further exploration to provide better treatment.
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Bacteriophages and Nanotechnology
Combining phages and nanotechnology enhances phage infectivity, stability, and delivery. Esteban and others introduced 
Bacteriophage-K in an oil-in-water nano-emulsion formula to improve its stability and infectivity, which increased the 
bactericidal effect against S. aureus.213 Interestingly, the phage-nano emulsion formula lowered the electrostatic repul-
sion between the phage and bacteria, both negatively charged, thus boosting the phage-bacterial interaction and 
improving antibacterial activity.214 Magnetic phage-nanocomposite conjugates (PNCs) were used to disturb the biofilm’s 
inner layers and to eradicate the bacterial biofilms. Small-sized PNCs removed both dual and multi-species bacterial 
biofilm with 98% and 92% elimination efficiency rates.215 Yu et al estimated that this activity followed the equal 
dispersal of phages into the bottom layer of the biofilm.215 In another study by Liu et al, phages were locally isolated, 
purified, and conjugated with chitosan film as a biocompatible agent to control bacterial infections and subsequent 
biofilm formation in medical implants.216 The conjugated phage-chitosan film reduced bacterial growth and stimulated 
neural tissue regeneration in vitro.216 Compared to the free phage, the antibacterial activity was less effective in the 
phage-chitosan conjugate, which is likely due to the controlled motion of the phage when conjugated. Still, it was 
estimated that the biofilm prevention resulted from lowering the bacterial density by the phage, 79.5% reduction 
compared to the control, based on SEM imaging.216 To conclude, phages and nanotechnology can be applied as 
complementary strategic approaches to target bacterial biofilm formation.

Antimicrobial Photodynamic Therapy (aPDT)
Antimicrobial photodynamic therapy (aPDT) involves a combination of three key components. It requires a visible 
source of light to activate the photosensitizer appropriately with a specific wavelength of visible light, a non-toxic 
photosensitizer (PS), and the presence of ambient oxygen that is activated to produce the cytotoxic reactive oxygen 
species (ROS) and inactivation of the targeted cells (Figure 7). Recently, photodynamic therapy (PDT) studies emerged 
as a novel non-invasive therapeutic option, which is effective and most efficient for treating localized and superficial 
infections caused by bacteria present as biofilms, fungi, and viruses.217–219 Also, it is a unique procedure with interesting 
therapeutic approaches and applications in dentistry to treat biofilm-caused oral infections.217,220

Figure 6 Future of phage therapy and the prospects of applying it to treat and prevent bacteria and their biofilm. Data from Liu et al.211
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Microorganism-Photosensitizer (PS) Interactions
The effectiveness of aPDT against different microorganisms depends on the photosensitizer (PS) type, concentration, and 
class of microorganism. The antibacterial property of aPDT is based on the idea that visible light induces the photo-
sensitizer (PS), which produce ROS. The produced ROS destroys the bacteria unselectively via an oxidative burst, and 
the confirmed antibiofilm action impacts the integrity of the extracellular matrix (see Figure 7).220–222 The microorgan-
ism-photosensitizer interactions depend on the microorganism’s physiochemical features, including relative solubility in 
water and lipids, constant ionization of factors for light absorption, and efficiently producing oxygen.220 aPDT is more 
effective against Gram-positive bacteria than Gram-negative bacteria, because of their porous cell wall composed of 
peptidoglycan and lipoteichoic acid. The PS can reach the cytoplasmic membrane and hinders the structural organization 
(forming its physical and functional barrier) in Gram-negative bacteria differently. Gram-negative bacteria possess 
a more complex morphology due to their negatively charged outer cell membrane, which comprises lipopolysaccharide, 
lipoproteins, proteins (with a porin function), and peptidoglycan. Notably, biofilm reduces the photodynamic activity of 
PS because of the structural difference in the cell membranes of the microorganisms within the biofilm. Another factor is 
the presence of other components, such as extracellular polysaccharide matrix and QS factors.218,220 Although numerous 
planktonic pathogens are killed by aPDT, the sensitivity of biofilm-derived anaerobic bacteria to aPDT is underexplored. 
The efficiency of aPDT requires microbial cell adsorption to the PS and penetrating the cell wall via subsequent 
activation through light irradiation.223 aPDT effectively reduces the viability of microbial cells and biofilms in cells 
and may be an important alternative therapy to traditional dental care techniques to treat many diseases. Photodynamic 

Figure 7 aPDT mechanism and application as an antibacterial and antibiofilm. The bacteria are absorbed into the photosensitizer and activated to an excited state post- 
exposure to light at a specific wavelength. Then, from light to molecular oxygen, the photosensitizer (PS) energy can be transferred. When bacteria are formed in a biofilm, 
aPDT could target the biofilm matrix comprising extracellular polysaccharides or other targets directed towards the bacterial cells within the biofilm. 
Notes: Data from these studies.220,221
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antimicrobial therapy demonstrates relatively lower toxicity, can enable immediate dental care, has a low cost, multiple 
PSs are available for each form of the light source, and the treatment is risk-free for the patients.220

The key advantages and benefits of aPDT are their effects on bacteria with substantial differences in the mode of non- 
selective action, including multiple molecular targets such as proteins, lipids, and nucleic acids. There is a limited 
adverse effect profile and damage to host tissue. The aPDT exhibits tissue specificity; it allows for curbing many human 
infectious diseases with no drug resistance and few side effects following multiple therapy sessions.218,224

Recent techniques tested the efficacy of combining antimicrobials and aPDT (Figure 8). There is no authenticated 
protocol for this synergy. However, Vanesa and others suggest that the preferred method is to incorporate aPDT with 
antimicrobial compounds (synergistically) or perform aPDT periodically associated with long-term antimicrobial drug 
treatment sessions.225 This synergism aims to enhance antibiotic activity by reducing the dose, toxicity, and treatment 
time. Also, the likelihood of bacterial resistance to aPDT-antibiotic treatment is low, and studies provided evidence of its 
ability to revert resistant strains to their susceptible state to specific antibiotics after exposure to sublethal doses of 
aPDT.225,226

Gene Editing by CRISPR-Cas
Role of CRISPR-Cas in Controlling Bacteria
The Clustered Regulatory Interspaced Short Palindromic Repeats (CRISPR) system is emerging as a safe, targeted, and 
practical approach to treating microbial infections and genetic diseases.227 It requires combining Nanomedicine with 
CRISPR and specific cleavage of the regulator of bacterial virulence (Cas 9) complex component sensing system, which 
evolved as bacterial defense mechanisms.227,228 The CRISPR-associated (Cas) genes/proteins expression in human- 
associated bacteria occurs in diverse Gram-positive and negative bacteria with variable distribution in the human body.228 

The CRISPR-Cas System is present in bacteria and archaea, offering sequence-based adaptive immunity against phages, 
plasmids, and mobile genetic elements.229 CRISPR technique uses portions of the bacterial DNA. This method for gene 
editing was first introduced in 2012 in US and Swedish laboratories. As shown in Figure 9, this technique generates 
directed cuts in a genome when paired with a particular guide protein [ie, Cas9] by using fragments of bacterial DNA.230

The CRISPR-Cas structure comprises CRISPR RNAs (crRNAs) and the binding of crRNA, which is unique to the 
invasive pathogen sequence, resulting in the shredding of the target DNA/RNA sequence by Cas enzymes.231 CRISPR- 
Cas systems function at a molecular level with adaptive mechanisms known as sequence-specific protection methods that 
detect invaders and dissect their genetic material.232 This protection mechanism was systematized in three stages, starting 
with adaptation, as the long precursor of CRISPR locus (Pre-crRNA) is transcribed into crRNA, which is obtained from 
the invader’s genetic material. The crRNA matures after being incorporated into a CRISPR array. Lastly, an “interference 
cascade complex” is activated to spot the invader sequence and cleave it by a specific RNA-guided endonuclease.233,234 

Recent advances in experimental CRISPR-Cas system research focus on creating animal models and applying functional 
genomics to screen and develop innovative drugs targeting infectious, immune, and genetic diseases (Figure 10).227

Figure 8 The synergism between aPDT and other antibiotics/antimicrobials. 
Notes: Data from these studies.220,225
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Insights into CRISPR-Based Gene Editing to Control Biofilm Formation
The CRISPR-Cas system protects bacterial cells by identifying and cleaving any invading nucleic acids. It also interferes 
with bacterial species-specific competitions and the ability to produce several virulence factors during infection, such as 
regulating gene expression, developing biofilms, repairing the DNA, reacting to stress, and acquiring resistance genes. 
Scientists can alter the system to provide new insights to understand the role and application of gene editing and 
modulate CRISPR-Cas using anti-CRISPR agents or antimicrobials against various microorganisms.229

Zuberi et al introduced a novel concept of “CRISPR interference (CRISPRi)” and its role in inhibiting bacterial 
biofilm formation by targeting a gene essential for QS.235 CRISPRi inhibition produces distinct levels of targeted 
knockdown, which supports the study of behavioral changes in the bacteria when a gene is expressed at different levels. 
This study proposed that CRISPRi is a promising technique for inhibiting bacterial biofilm and controlling nosocomial 
and environmental infections by targeting the luxS gene and intervening with bacterial QS.235 In detail, the luxS gene is 
an essential gene that encodes for a vital QS molecule, the autoinducer-2 (AI-2) molecule, which has a role in biofilm 
formation and maturation.236

Research by Zuberi et al used CRISPRi to control urinary tract infections (UTI) and pathogens such as E. coli, 
specifically in regulating the adhesion property of the bacteria.237 Their idea was to target and knock down the fimH gene 
expression, which causes the suppression of transcriptional machinery through lodging inactive or “dead” Cas9 at 
a particular location. These results were assessed using a mannose-sensitive hemagglutination assay and TEM. The 
authors proposed that this approach be authenticated and applied in treating in vivo infection models to confirm its 
potential in UTI therapy.237

Figure 9 The CRISPR-Cas9 as a concept in gene editing. 
Notes: Data from Ho C.230 

Abbreviations: DNA, deoxyribonucleic acid.
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Noirot-Gros and others used CRISPRi to evaluate its influence on biofilm-associated genes in Pseudomonas 
fluorescens.238 Cyclic diguanylate (c-di-GMP), a signaling messenger responsible for many bacterial cellular functions, 
eg, virulence, was monitored with other regulators controlling biofilm formation. They found that CRISPRi inhibition of 
biofilm formation resulted from the deletion and silencing of genes expressing the biofilm’s thickness and mass.238 

CRISPRi also influenced gene expression at the operon level, such as the motility (swarming) and biofilm formation 
genes (eg, EPS-producing genes).238 A study applied CRISPR/Cas9 gene-editing system to Cedecea neteri (Gram- 
negative bacteria) isolated from the Aedes mosquitoes.239 The study aimed to mutate the outer membrane protein 
A (ompA) gene, resulting in an impaired ability to form biofilms and reduced infection prevalence compared to wild-type 
strains. Using this technique in the site-specific integration of genes will simplify the improvement of para-transgenic 
control methods to manage arthropod-transmitted infections.239

In short, the CRISPR system used in gene editing alters the gene expression level qualitatively or quantitatively.240 

Controlling the gene expression of specific virulence factors, such as forming biofilm and secreting QS molecules, creates 
a new opportunity to treat different biofilm-associated diseases. Applying this approach to treat and diagnose bacterial infections 
requires more investigations regarding its pros and cons and how and when it can be applied to achieve its full potential.

Nano-Mediated Newly Advancing Approaches
Biofilms contain cells with phenotypic heterogeneity within a self-produced 3D matrix of EPS. The power of nanopar-
ticles (NPs) to infiltrate the entire matrix enables them to engage with the cells within the EPS matrix, susceptible and 
resistant strains. Also, NPs interfere with the physicochemical interactions in the matrix, which are essential for keeping 
the stable 3D structure of biofilms.241

Why are Nanoparticles Unique in Treating Bacterial Biofilm?
Primarily, the antibiofilm activity of nanoparticles results from their small size allowing their penetration into the biofilm 
microenvironment and effectively disrupting its integrity.242 A study used silver-silica dioxide nanoparticles (AgSio2 NPs) as 

Figure 10 The recent experimental research on CRISPR/Cas system summarized the therapeutic of new approaches targeting bacterial virulence factors by applying 
nanomedicine to treat specific infectious and metabolic disorders. 
Notes: Data from Dubey et al.227 

Abbreviations: HIV, human immunodeficiency virus; HPV, human papillomavirus; SARS-CoV2, severe acute respiratory syndrome coronavirus 2; CAR, chimeric antigen 
receptor T cells; CRC, colorectal cells.
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an implant coating to inhibit S. aureus biofilm infections. Results showed size-dependent antibiofilm action; this effect was 
documented in the smaller NPs (6 nm) due to the amplified release of silver ions compared to the larger particles (11 nm).243 

Research also investigated the antibiofilm activity of chitosan-capped gold and silver nanoparticles, biologically fabricated 
using the tiger milk mushroom (Lignosus rhinocerotis).244 The results showed more antibiofilm activity, 53.21% and 46.24% 
inhibition against P. aeruginosa and S. aureus biofilms, of smaller-sized metal nanoparticles (< 50 nm).244 Secondly, the larger 
surface area of nanoparticles enhances surface reactivity and increases the antimicrobial and antibiofilm action.245 Enhanced 
antibiofilm activity and a larger surface area have been verified in silica nanoparticles,246 metal and metal oxide nanoparticles, 
such as copper oxide nanoparticles,247 ferrite nanoparticles,248 silver nanoparticles,249 and titanium dioxide nanoparticles.250

Other factors related to the NPs also contribute to the antibiofilm action of NPs, such as hydrophobicity, shape, and 
surface charge.251 Carefully considering these factors when designing antibiofilm NPs can aid the synthesis of NPs 
targeting bacterial biofilms. To destroy the bacteria inside the biofilm, NPs may inflict an antimicrobial action directly or 
deliver therapeutic agents, such as antibiotics or antimicrobials (eg, essential oils, enzymes, or phytochemicals).17

Metal nanoparticles can uniquely control the bacterial signaling system, which has been tested in vitro and in vivo.252 Metal 
NPs block the synthesis of signaling molecules by interfering with the QS regulatory genes. They also can impede the access of 
signaling molecules into the neighboring cells by preventing them from binding to other cell’s receptors or degrading these 
secreted molecules5 (Figure 11).252 Another antibiofilm mechanism of silver NPs is integrating within the bacterial DNA and 
causing damage.253 In addition, gold NPs trigger ROS-mediated damage,254 while titanium oxide NPs (TiO-NPs) induce EPS 

Figure 11 Schematic illustration of anti-QS mechanisms of nanoparticles. 
Notes: Data from Qais et al.252 

Abbreviations: QS, quorum-sensing systems; NPs, nanoparticles; ECM, extracellular matrix.
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lipid-peroxidation.5 Antibiotic-loaded liposomes obstruct the bacterial electron transport system. Some NPs are synthesized to 
suppress QS, and chitosan NPs can invade the EPS matrix and destroy the biofilm due to their positively charged exterior.5

Recently, a new approach combined the CRISPR-Cas9 gene-editing technique and nanotechnology. Wan and others 
created a dissolvable patch to treat inflammatory skin disorders.255 They used nanoparticles to deliver the cas9 (gene editing 
agents) and glucocorticoids into cell nuclei to exploit their corresponding action. The in vivo results and mouse models 
showed reduced skin inflammation and enhanced glucocorticoid therapy.255 This study motivates research targeting patho-
genic bacteria using gene-editing techniques to deliver NPs loaded with appropriate anti-virulence or repurposed antibiotics.

Nanoparticles: Classifications, Synthesis, and Applications
Antimicrobial NPs and nanomaterial coatings with good mechanical and tribological properties (ie, adhesion, friction, 
and wear resistance) are novel approaches to treating biofilm infections.5,243 NPs are divided in four groups according to 
their chemical composition: carbon, inorganic, organic, or hybrid NPs.256 This review will focus on the inorganic NPs, 
metal and metal oxide NPs, and organic NPs (liposomes).

Inorganic nanoparticles (metal and metal oxide NPs) have an inherent antimicrobial activity with a multimode action. 
They also have an increased antimicrobial effect compared to their bulk form, which allows them to be used either as 
inhibitors or as carriers for antimicrobials with synergistic effects.257,258

Jang and others synthesized bimetallic (silver and copper) NPs integrated on graphene oxide nanosheets to study their 
antibiofilm activity.259 They tested the safety and efficacy of this nanocomplex in vitro and in vivo. Biofilm formation 
was reduced in P. aeruginosa and in vivo assays proved their safety on human dermal fibroblasts. Lastly, an animal 
model with induced wound infection recovered within seven days when the nanocomposites were applied topically.259

Recently, scientists used inorganic nanoparticles using various capping agents. Khalid and others used functionalized 
silver and iron oxide NPs (35 and 48 nm) to treat biofilm development and formation of S. aureus and P. aeruginosa.260 

Rhamnolipids were used as ligands to increase NPs-bacterial interactions and enhance antimicrobial activity. The results 
showed high efficiency in inhibiting bacterial adhesion and biofilm formation (>80%). Khalid et al hypothesized that this 
activity ensued from the synergetic action of ROS production by the metal NPs and the reduced bacterial-adhesion affinity 
caused by rhamnolipids.260 El-Batal and others chemically synthesized magnesium ferrite nanocomposites loaded with 
amoxicillin and stabilized them with citric acid to test their antimicrobial and antibiofilm ability.261 The nanocomposites 
inhibited > 90% of S. aureus and E. coli biofilm. A membrane leakage assay and scanning-electron microscope displayed 
a perforated bacterial membrane post-treatment. The researchers suggest using this nanosystem as a surface disinfectant as 
they excelled in the UV-light excitation tests.261 However, Padmavathi et al found that capping copper oxide nanoparticles 
decreased their antibiofilm activity; the non-coated particles completely eradicated the biofilm of copper-tolerant 
Staphylococcus lentus, unlike the cetyl trimethyl ammonium bromide-capped NPs.262 They proposed that the capping of 
the particles restricted the release of the copper ions, thus reducing its efficiency.262

Researchers assessed using biosynthesized or green metal nanoparticles in several applications as biosensors, 
antimicrobial, antioxidant, and anticancer therapy.263 When metal particles reduce to the nanoscale, it results in intrinsic 
and unique physiochemical (eg, size, shape), biological, and optical properties.263 The diverse targeting system of NPs 
lowers the likelihood of bacteria gaining resistance in the future.264,265 Though the green synthesis of NPs is an eco- 
friendly, non-toxic, and cost-effective alternative to conventional methods, its application has limitations, including 
stability, toxicity, purity, and the absence of universal synthesis/waste regulations.256,266

In conclusion, inorganic NPs represent a novel approach to treating infections caused by biofilm-forming bacteria. 
Exploring the aspects of functionalizing the surfaces of these particles or utilizing green practices will boost NP stability, 
purity, and activity. Risk management of NPs toxicity and setting environmental regulations to handle and dispose of 
nanomaterials correctly are required to avoid the negative consequences of a thriving technology.

Organic NPs are nanosystems harboring carbon macromolecules (eg, liposomes) used in drug design and delivery, image- 
channeled treatments, and imaging.267,268 Liposomes are vesicles with a membrane comprising a bilayer of lipids with an 
aqueous core, which present an innovative technology to carry effective molecules to the targeted sites. The “active” loaded 
aqueous substance can be hydrophobic or hydrophilic.269,270 Though these particles excel due to their low toxicity and high 
drug entrapment ability, their use is challenged by their low target specificity, instability, and short half-life in serum.267,271 To 
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overcome these disadvantages, scientists functionalized these particles using ligands (eg, aptamers (Aptamosomes)272,273 or 
polyethylene glycols (PEGylation)271,274). In detail, aptamosomes are liposomes conjugated with aptamers—a short portion of 
RNA or DNA designed to improve specificity and affinity.273 These conjugates have been studied recently for cancer therapy 
or imaging.275,276 More research is vital to explore the ability to formulate unique antimicrobial aptamosomes.

Utilizing polyethylene glycols (PEGylation) in the liposomal formulation was done to improve the efficacy and 
delivery and decrease the toxicity of the beta-lactam antibiotic nafcillin.271 PEGylated nafcillin liposomes (PEG-Lipo- 
NF) were compared to non-functionalized nafcillin liposomes (Lipo-NF), and the free nafcillin against Methicillin- 
susceptible S. aureus (MSSA). The PEG-Lipo-NF had higher antimicrobial activity than the Lipo-NF or the free 
antibiotic. The PEG-Lipo-NF had the lowest MIC (0.25 ± 0.01 μg/mL) and improved biofilm inhibition activity 
(MBIC50 0.5 ± 0.02 μg/mL). Also, in vivo and animal studies showed that PEGylated nafcillin liposomes reduced NF- 
toxicity and improved cellular viability and liposomal availability.271 In another study, Das and scientists evaluated the 
dual activity of a PEGylated formula loaded with doxorubicin, epigallocatechin gallate (EGCG), and quercetin against 
E. coli and a human lymphoblastoid cell line (K-562) as an approach to control chemotherapy-associated secondary 
microbial infections.274 The PEGylated formula had a loading efficacy of 70.8% ± 5.25 and released the drugs gradually 
for ten days. The combination of the antioxidant (EGCG) and doxorubicin increased liposomal stability and led to cancer 
cell death by apoptosis, necrosis, and ROS formation. The antibacterial effect might have resulted from the encapsulated 
EGCG and quercetin, as the latter have a cell wall damaging ability.274

Liposomes have been studied as vehicles for QS inhibitors, the communication signals between bacteria in biofilms. 
Liposomes loaded with QS inhibitors showed a dose-dependent activity, higher than unloaded liposomes. This activity 
persisted and lasted up to 48 hours, unlike the free biofilm inhibitors that lost their effect.277 Studies showed that 
polyethylene glycol-modified and cationic liposomes could be highly effective antibiofilm agents against P. aeruginosa. 
The findings demonstrate that the efficacy is linked to the modification level and the liposome’s surface charge.278

Nanotechnology is a promising method. Recent studies suggest combining it with other anti-virulence and anti-QS drugs to 
achieve ultimate activity while decreasing the probability of future resistance.279–281 Organic and inorganic NPs exhibit superior 
physical, chemical, mechanical, thermal, and biological properties applied in medicine for their antimicrobial, anti-inflammatory, 

Figure 12 Types of nanoparticles and their application. 
Abbreviations: NPs, nanoparticles; Ag NPs, silver nanoparticles; Au NPs, gold nanoparticles; EPS, extracellular polymeric substance.
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and antioxidant mechanisms. These NPs are extensively used due to their high stability, multi-functionality, biocompatibility, 
adhesive and therapeutic properties, and broad applications, as shown in Figure 12.2,5,241,257,264,282,283

Conclusion
This review discussed biofilm formation in pathogenic bacteria, its association with virulence factors (such as QS 
systems), antibiotic resistance, and future therapeutics. Pseudomonas aeruginosa, Acinetobacter baumannii, and 
Staphylococcus aureus are prevalent biofilm-forming bacteria causing a variety of community and hospital-acquired 
infections. Targeting bacterial virulence factors, eg, biofilm formation, is a promising approach that aims to destroy the 
bacterial cell without inducing selective pressure, which is the source of the global resistance issue. The only limitation 
of such an approach is its dependency on host immunity to fully eradicate the infection. This limitation is especially an 
issue for immunocompromised individuals. Another possible solution suggests co-administering anti-virulence drugs (eg, 
antibiofilm) with low doses of antibiotics to attenuate the bacteria by disrupting their biofilm and amplifying the 
antibiotic’s activity. Therefore, reducing the excessive use of antibiotics, resetting bacterial resistance, and restoring its 
susceptibility. Although this approach is promising, the results take time. We explored other approaches in this review: 
inventing novel drugs by repurposing old drugs. Natural compounds, phages, and the CRISPR/Cas technique have 
proven their role in regulating QS systems and interfering with biofilm formation by regulating gene expression. aPDT is 
a novel method that damages the integrity of bacterial cell walls and the biofilm matrix. Recent advances in nanomater-
ials use NPs with multimode activity or combined with other therapeutics, such as phages, phytochemicals, and 
antibiotics, to manage biofilm-caused infections. Researching innovative methods should achieve maximal efficacy 
and specificity with minimal toxicity, ensure long-term therapeutic effects, and lower the production cost of valuable 
drug formulations to control infectious diseases. In addition, advancing these studies to in vivo experimentation and to 
clinical trials is recommended to prove the capability of these approaches in treating biofilm-associated infections.

Abbreviation
agr, accessory gene regulator genes; AHL, N-acyl homoserine lactones; AI, autoinducers; aPDT, antimicrobial photo-
dynamic therapy; Cas, complex sensing systems; CRISPR, Clustered Regulatory Interspaced Short Palindromic Repeats; 
ECM, extracellular matrix; eDNA, extracellular DNA; EPS, extracellular polymeric substances; HAI, hospital-acquired 
infection; MBIC, minimum biofilm inhibitory concentration; MDR, multi-drug resistance; NP/NPs, nanoparticle; PS, 
photosensitizer; QQ systems, quorum quenching systems; QS systems, quorum sensing systems.
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