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Abstract: Maize is the third most common cereal crop worldwide, after rice and wheat, and plays
a vital role in preventing global hunger crises. Approximately 50% of global crop yields are reduced by
drought stress. Bacteria as biostimulants for biopriming can improve yield and enhance sustainable
food production. Further, seed biopriming stimulates plant defense mechanisms. In this study, we
isolated bacteria from the rhizosphere of Artemisia plants from Pohang beach, Daegu, South Korea.
Twenty-three isolates were isolated and screened for growth promoting potential. Among them,
bacterial isolate SH-6 was selected based on maximum induced tolerance to polyethylene glycol-
simulated drought. SH-6 showed ABA concentration = 1.06 ± 0.04 ng/mL, phosphate solubilizing
index = 3.7, and sucrose concentration = 0.51 ± 0.13 mg/mL. The novel isolate SH-6 markedly
enhanced maize seedling tolerance to oxidative stress owing to the presence of superoxide dismutase,
catalase, and ascorbate peroxidase activities in the culture media. Additionally, we quantified and
standardized the biopriming effect of SH-6 on maize seeds. SH-6 significantly increased maize
seedling drought tolerance by up to 20%, resulting in 80% germination potential. We concluded
that the novel bacterium isolate SH-6 (gene accession number (OM757882) is a biostimulant that can
improve germination performance under drought stress.

Keywords: SH-6; seed biopriming; germination; novel isolate

1. Introduction

Sustainable agronomy is a new approach to agricultural production that is based
on natural resources to preserve the productive capacity of the soil [1,2]. It can also
minimize the side-effects of agricultural production on the environment [3–5]. Sustainable
agricultural practices are becoming increasingly important, as according to estimates, world
food production must increase approximately 50% by the year 2050 to ensure food security
for the global human population expected by that time [6,7]. The rapid change in the
environment owing to climate change and the ever-increasing global demand for food is
a catalyst urging us to design and develop new, sustainable farming approaches, such as
sustainable agronomy, that rely on the use of biostimulants for seed biopriming [8,9].

Seeds with the potential genetic variations that determine high crop productivity are
biologically important for sustainable crop production. Indeed, from this perspective, seeds
are the basic prerequisite for food and energy security [10,11]. Specifically, resilient seeds
can realize maximum productivity, thereby contributing to sustainable crop production as
well [12,13].
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The use of a variety of agrochemicals that were previously employed in conventional
cropping is now being discouraged because of the resulting environmental hazards and
their effects on human health [14,15]. Seed biopriming is an innovative technique that in-
creases germination potential (GP), germination energy (GE), germination rate index (GRI),
and seed vigor index (SVI), without harming the ecosystem [16,17], thereby promoting
food and energy security [18,19].

Numerous experiments have been conducted to develop and optimize seed bio-
priming in agricultural production. Improving GP, GE, GRI, and early seedling growth
characteristics improves plant stress resistance and overall crop performance [20–22].
Arable land is affected by a range of abiotic stress factors, such as drought, and they
lead to reduced plant growth and ultimately low crop productivity. Seed biopriming
is a promising approach to preventing the negative effects of water deficit on plant
growth [8,23,24]. Indeed, plant resistance to abiotic stress can be improved significantly
by seed biopriming, as it enhances gene expression related to the plant antioxidant
system and plant metabolism to prevent oxidative and growth damage to achieve better
yields [25].

Maize (Zea mays) is an important staple food produced and consumed globally.
Indeed, it is the queen of the cereal foods used by humans and livestock animals [26,27].
This cereal grain is rich in carbohydrates, minerals, vitamins, and fiber. Additionally,
it contains folic acid and vitamin A; and traces of magnesium, calcium, phosphorus,
manganese, and zinc [28,29]. However, compared to other cereal plants, such as wheat
and sorghum, maize requires more water, nitrogen, and phosphorus fertilizers at all
stages of growth and development to achieve a high yield [30,31]. Water is crucial to
crop production for a range of important reasons, among which, the role it plays as
an electron donor in the process of photosynthesis is paramount. Therefore, water
scarcity soon becomes a severe abiotic-stress condition [32,33]. Indeed, drought is
a major limiting factor reducing maize yields around the world, as it negatively affects
plant growth and development at all stages of the crop cycle. Particularly, it reduces seed
GP, GE, SVI, and GRI [34–36]. Under such conditions, integrated water management
and the use of bio fertilizers reportedly increase maize productivity [37,38]. Further,
evidence shows that any process that promotes the symbiotic relationship between
maize plants and rhizosphere bacteria improves maize productivity [39,40].

The present study was planned to screen bacterial isolates for their bio-efficacy
against osmotic stress in agricultural crops. It was hypothesized that rhizosphere
around Artemisia plants located near Pohang beach may possess variable numbers
of bacteria which endure osmotic regulation, and those could be useful in enhancing
abiotic stress tolerance. Therefore, as a preliminary study we investigated their effect
in mitigating drought stress in maize through seed biopriming. In this study, we also
estimated the effect of seed biopriming on the germination metrics of maize under PEG
induced osmotic stress conditions.

2. Material and Methods
2.1. Isolation and Characterization

Microbes were isolated from the rhizosphere soil of Artemisia plants collected
from Pohang-si beach Daegu, Republic of Korea (36.0190178 N; 129.343480 E; eleva-
tion, 23 m a.s.l.). Two-gram soil samples were mixed in 18 mL of sterilized 0.8%
sodium chloride solution, and serial dilutions were prepared by a previously described
method with a slight modification [41]. All microbes were isolated and screened for
plant-growth-promoting potential. The entire procedure followed was as described by
Fischer et al. (2007) [42].
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2.2. Orange Media Test and Congo Red Assay

Initially, isolates were screened by the orange media test, and the Congo red assay was
used to analyze the catalase (CAT) and exo-polysaccharide (EPS) production capabilities
of the isolates. The orange media was composed of the reactive orange16 100 ppm and
lysogeny agar broth media. Congo red-media assay plates were prepared with LB broth
(25 g/L), Congo red (0.8 g/L), agar (1.8%), and sucrose (5%). The prepared media were
autoclaved, and assay plates were prepared and incubated for 5–7 days at 30–37 ◦C. The
protocol was as described by Kim et al. (2020) [43], with slight modifications.

2.3. Polyethylene Glycol Tolerance Test

Seven concentrations of polyethylene glycol (PEG) 6000: 0%, 5%, 10%, 15%, 20%, 25%,
and 30%, were prepared and autoclaved. Culture isolate SH-6 (0.1%) was inoculated to
10 mL of sterilized LB broth media and placed in a shaking incubator at 25–30◦C for 24 h.
Optical density at 600 nm was measured using a UV spectrophotometer (PG Instruments
Ltd., Leicestershire, UK) [44].

2.4. Phosphate Solubilizing-Index Assay

The phosphate solubilizing index was measured by preparing the assay plates con-
taining the trypticase soy agar media, Ca3(PO4)2, and agar media. Pure bacterial isolate
samples (20 µL) were allowed to grow on the assay plates after they were sealed and placed
in an incubator for 3 d. The phosphate solubilizing index was measured using the following
equation [45,46].

Phosphate solubilizing index = colony diameter + halo zone/colony diameter

2.5. Siderophore Production Assay

For determining the siderophore production, assay plates were prepared using
chromeazurol S reagent following the procedure described by Alexander and Zuberer
(1991) [47]. Pure bacterial isolate samples (20 µL) were inoculated on the plates, which
were then sealed and placed in an incubator for 3–5 d.

2.6. Production of Indole Acetic Acid (IAA)

Salkowski’s reagent was prepared by mixing 50 mL of 35% HClO4 and 1 mL of 0.5 M
FeCl3. Then, the reagent was mixed with an equal amount of the bacterial culture. The
mixture was vortexed for one min, placed in the dark for 30 min, and the color change was
observed. The procedure was as described by Gang et al. (2019) [48,49].

2.7. Molecular Characterization

Universal primer 27F (5′-AGAGTTTGATC (AC) TGGCTCAG-3′) was used for molec-
ular characterization [50–52]. The obtained nucleotide sequence was searched for similarity
in the NCBI website. Mega 10 software was used to construct the phylogenic tree using the
neighbor-joining method.

2.8. Oxidative Stress Media Test

Bacterial isolates were also tested against multiple oxidative stress. Ascorbate per-
oxidase was analyzed by measuring absorbance at 290 nm using a spectrophotometer.
Superoxide dismutase (SOD) and CAT levels were measured using molecular probes
assay-kits (Thermo Fisher, Waltham, MA, USA) [52–54].

2.9. Quantification of Abscisic Acid (ABA) and Sugar Content in Bacterial Isolate SH-6

Pure LB broth media of SH-9 was centrifuged at 7000× g for 12 min, and the con-
centrated bacterial product was retrieved and filtered. Then, the filtrate was used to
determine ABA and sugar contents. ABA was quantified by gas chromatography/mass
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spectrometry with selected ion monitoring (GC/MS SIM) using an ABA standard [55]. ABA
quantification was performed through the method previously published by Khan et al. [43].

For determining the sugar concentration, the filtrate was further filtered through
a C18 cartridge (0.45 µm Nylon-66 syringe) and analyzed by high-performance liquid
chromatographic (HPLC).

2.10. Biopriming Maize Seeds

A completely randomized experiment was designed with eight replications. Maize
seeds of the Chodang corn VSC03 were obtained from the Crop Physiology Laboratory
in the Department of Applied Biosciences at Kyungpook National University, Daegu,
Republic of Korea. Seeds were sterilized with 2.5% sodium hypochlorite for 10 min and
then treated with 70% ethanol for 30 s [56]. The new bacterial isolate gene accession
OM757882 was grown in LB media and then centrifuged at 10,000 rpm for 8 min to
obtain a bacterial pellet. This bacterial pellet was used to bioprime the maize seeds by
placing them together with the seeds in petri dishes and dividing them into nine groups:
(a) control, (b) microbial isolate only, (c) bacterial solution, (d) 5% PEG 6000, (e) 10%
PEG 6000, (f) 15% PEG 6000, (g) 20% PEG 6000, (h) 25% PEG 6000, (i) 30% PEG 6000.
An equal number of seeds (n = 10) and an equal amount of water (5 mL) were placed in
each dish. The plates were sealed and placed in a growth chamber at 28–30/16–18 ◦C
and 60%/80% relative humidity day/night. Germination was recorded at 24 h intervals,
and seedling length, seedling biomass, and germination metrics were recorded after 8 d
using the following equations [57,58].

Germination percentage (GP) = total number of seeds germinated/total number of seeds × 100;

Seed vigor index (SVI) = average root length + average hypocotyl length × GP,

GE Germination energy (GE) = numbers of germinated seeds on days 4 and 7/total number of seeds × 100,
= G4/10 × 100, G7/10 × 100,

Germination rate index GRI =
[

G1
1

]
+

[
G2
2

]
+

[
G3
3

]
+

[
G4
4

]
+

[
G5
5

]
+

[
G6
6

]
+

[
G7
7

]
+

[
G8
8

]
2.11. Early Seedling Metrics

Seedling length (cm), average root length (cm), average hypocotyl length (cm), fresh
weight (mg), and dry biomass (mg) were measured [59].

3. Statistical Analysis

Molecular characterization and construction of phylogenic tree were performed using
MEGA 10 software (version 7.222). All experiments were replicated five times. Graph pad
Prism version 5.8 was used to perform statistical analysis. The mean values were evaluated
by using DMRT analysis, SAS 9.1 (Duncan’s multiple range test) at p ≤ 0.05 via students
T test.

4. Results
4.1. Molecular Characterization Assay

The obtained nucleotide sequences were searched for similarity on NCBI. The results
showed the new SH-6 isolate has similarity with Enterobacter ludwigii. Using Mega 10
software, a phylogenic tree was constructed by the neighbor-joining method. The sequences
were submitted to Genebank. They were all identified under a unique and distinct gene
accession number, i.e., OM757882. These results clearly proved that SH-6 is a novel bacterial
isolate, as shown in Figure 1.
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The phylogenetic tree was constructed using the MEGA 10software.

4.2. Analysis of Siderophore, Indole Acetic Acid, and Exopolysacchrides

The novel isolate was also checked for production of the siderophore, EPS, and IAA,
and for phosphate solubilizing index. The results showed that this isolate produced
significant amounts of EPS, siderophore, and IAA, as shown in Figure 2. The isolate
was also screened for phosphate solubilizing index, and results showed it had a high
phosphate solubilization index of 3.69 ± 0.30 cm with a 1.59 ± 0.11 cm colony diameter
and 4.29 ± 0.25 cm halo zone diameter.
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(D) IAA production by the new rhizosphere bacterial isolate SH-6.

4.3. Drought Tolerance Assay Results

The bacterial isolate was further tested for drought tolerance in PEG 6000 media.
Various concentrations of PEG 6000 were prepared for culturing the isolate. The results
showed that the isolate effectively tolerated up to 20% PEG 6000 but was severely affected
by 25% PEG 6000, as shown in Figure 3.
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Figure 3. Growth of SH-6 under different concentrations of PEG 6000. The latter on each bar is the
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4.4. Sucrose and Abscisic Acid Analysis Results

The results of ABA quantification by GC-MS showed that SH-6 contained signif-
icant amounts of ABA (1.06 ± 0.05 ng/mL). Similarly, free sucrose, as measured by
HPLC, was also significantly higher (0.58 ± 0.14 mg/mL) than in the control group
(0.04 ± 0.004 mg/mL) (Figure 4).
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4.5. Oxidative Stress Tolerance Response

The results of the oxidative stress tolerance test are shown in Figure 5. SH-6 showed
different levels of antioxidant enzyme activities representing the antioxidant system of
the bacterial isolate against drought stress. Particularly, CAT activity was strikingly high
under stress.
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4.6. Effect of Seed Biopriming on Germination under Drought Tolerance

Maize seeds of the Chodang VSC03 variety (Asian Gardner) were bioprimed with the
novel bacterial isolate SH-6 to test its effects on germination metrics and early seedling
growth characteristics. The results show that maize seeds bioprimed with the novel
bacterial isolate SH-6 tolerated significantly a degree of drought stress induced by up to
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10% PEG 6000; tolerance to 15% and 20% PEG 6000 was moderate, but 25% PEG 6000
severely affected germination metrics. The bacterial isolate enhanced GP, GE, GRI, and
SVI. Specifically, GP reached 80% of the control value under the 20% PEG 6000-induced
water stress. Values for SVI (425 ± 0.34) are comparable with those recorded for the control
group. The results are shown in Figure 6. Seed biopriming enhanced average hypocotyl
and root length in maize seeds as shown in Table 1. Furthermore, GRI, which is an indicator
of germination over a time, was also enhanced by seed biopriming.
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Table 1. Seedling characteristics and biomass at day 7. The letters indicate the significant difference
between treatment at p ≤ 0.5.

Treatment Groups Fresh Biomass (mg) Dry Biomass (mg) Root Length cm Hypocotyl Length cm

SH-6-M 27.75 ± 0.06 a 1.93 ± 0.08 a 14 ± 0.05 a 5.5 ± 0.01 a

SH-6-S 20.96 ± 0.04 d 1.91 ± 0.05 b 0.5 ± 0.02 g 4.2 ± 0.01 d

SH-6—(5%) PEG 6000 24.82 ± 0.02 b 1.88 ± 0.07 c 11 ± 0.02 b 5.3 ± 0.03 b

SH-6—(10%) PEG 6000 21.27 ± 0.07 d 1.78 ± 0.07 d 10.7 ± 0.08 c 5.2 ± 0.02 c

SH-6—(15%) PEG 6000 18.46 ± 0.08 e 1.25 ± 0.03 f 5.4 ± 0.01 e 3.2 ± 0.02 e

SH-6—(20%) PEG 6000 16.96 ± 0.09 f 1.33 ± 0.06 g 7.9 ± 0.04 e 1.9 ± 0.04 f

SH-6—(25%) PEG 6000 2.56 ± 0.09 g 1.27 ± 0.08 h 1.02 ± 0.04 f 1.01 ± 0.06 g

Control 21.34 ± 0.32 c 1.62 ± 0.18 e 9.69 ± 0.03 d 4.55 ± 0.02 c
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5. Discussion

Maize is the third most important cereal crop consumed as a staple food globally, after
rice and wheat [60,61]. It is cultivated as a cereal grain throughout the world. It is known
as the queen of the cereals because of its genetic yield potential [62]. Maize plants require
large amounts of water for successful growth and development to achieve their poten-
tial yields [63]. Maize is gaining importance worldwide because of the nutrient content
available in the grains. The agriculture industry has to face dual pressure: environmental
stresses such as drought stress, and meeting the needs of the population [64].

Among environmental stresses, drought is the leading stress that affects plant pro-
ductivity. The agricultural industry frequently faces environmental threats because of the
sessile nature of plants [65,66]. Unfortunately, 35–40% of our land is semi-arid, whereby
maize crops are constantly challenged with drought stress, which affects plant growth
and development at every stage, from germination to maturity, thereby causing severe
crop-yield losses [67,68]. Conventional strategies fail to meet the needs of the agriculture
industry because of their wide range of side-effects [69]. To counter these negative effects
of drought [70–72], seed biopriming is a promising approach, as it effectively enhances the
plants’ drought tolerance, improves germination, and ultimately, improves yield [27,73,74].
Further, as a feasible, ecofriendly approach, biopriming is an alternative to the conventional
approaches that rely on agrochemicals [75–77]. Increasing public awareness on the environ-
mental and human health hazards entailed by such approaches has led to their decline and
to increasing interest and acceptance of alternative strategies for coping with the negative
effects of abiotic stress on agricultural production [16,21,78].

Drought stress is a natural ecological burden on agriculture production. Beneficial
microbes play an important role in providing the resistance and adaptation of plants
to osmotic stress, and will have a key role in providing food and energy security in
future. The results presented here demonstrated that biopriming enhance plant growth and
development during drought stress [79,80]. Plant-growth-promoting rhizobacteria have
been examined for their ability to combat drought stress in nature. They have the ability to
colonize plant cells and establish a long mutual symbiotic relationship [81,82]. They not
only provide the safety to plants, but also are a source of energy. In plants, the microbial
involvement in drought tolerance is attributed to the production of the phytohormones
such as indole acetic acid, absicis acid, sucrose, and oxidative stress tolerance, as shown in
Figure 7 [83–85].

Plants 2022, 11, x FOR PEER REVIEW 9 of 14 
 

 

known as the queen of the cereals because of its genetic yield potential [62]. Maize plants 
require large amounts of water for successful growth and development to achieve their 
potential yields [63]. Maize is gaining importance worldwide because of the nutrient con-
tent available in the grains. The agriculture industry has to face dual pressure: environ-
mental stresses such as drought stress, and meeting the needs of the population [64]. 

Among environmental stresses, drought is the leading stress that affects plant 
productivity. The agricultural industry frequently faces environmental threats because of 
the sessile nature of plants [65,66]. Unfortunately, 35–40% of our land is semi-arid, 
whereby maize crops are constantly challenged with drought stress, which affects plant 
growth and development at every stage, from germination to maturity, thereby causing 
severe crop-yield losses [67,68]. Conventional strategies fail to meet the needs of the agri-
culture industry because of their wide range of side-effects [69]. To counter these negative 
effects of drought [70–72], seed biopriming is a promising approach, as it effectively en-
hances the plants’ drought tolerance, improves germination, and ultimately, improves 
yield [27,73,74]. Further, as a feasible, ecofriendly approach, biopriming is an alternative 
to the conventional approaches that rely on agrochemicals [75–77]. Increasing public 
awareness on the environmental and human health hazards entailed by such approaches 
has led to their decline and to increasing interest and acceptance of alternative strategies 
for coping with the negative effects of abiotic stress on agricultural production [16,21,78]. 

Drought stress is a natural ecological burden on agriculture production. Beneficial 
microbes play an important role in providing the resistance and adaptation of plants to 
osmotic stress, and will have a key role in providing food and energy security in future. 
The results presented here demonstrated that biopriming enhance plant growth and de-
velopment during drought stress [79,80]. Plant-growth-promoting rhizobacteria have 
been examined for their ability to combat drought stress in nature. They have the ability 
to colonize plant cells and establish a long mutual symbiotic relationship [81,82]. They not 
only provide the safety to plants, but also are a source of energy. In plants, the microbial 
involvement in drought tolerance is attributed to the production of the phytohormones 
such as indole acetic acid, absicis acid, sucrose, and oxidative stress tolerance, as shown 
in Figure 7 [83–85]. 

 
Figure 7. Microbial mitigation of drought stress. 

In the present study, rhizobacteria were isolated from Pohang beach from Artemisia 
plants and screened for growth promoting characteristics. From 23 bacterial isolates, one 
competent bacterial isolate SH-6, was selected. SH-6 produced significant amounts of 
IAA, a natural auxin that promotes cellular plant growth [86,87]. Furthermore, SH-6 pro-
duced EPS, which plays a critical role in the formation of a biofilm that is very important 

Figure 7. Microbial mitigation of drought stress.



Plants 2022, 11, 1674 10 of 14

In the present study, rhizobacteria were isolated from Pohang beach from Artemisia
plants and screened for growth promoting characteristics. From 23 bacterial isolates, one
competent bacterial isolate SH-6, was selected. SH-6 produced significant amounts of IAA,
a natural auxin that promotes cellular plant growth [86,87]. Furthermore, SH-6 produced
EPS, which plays a critical role in the formation of a biofilm that is very important for
attachment of the microbe to the surface of plant roots. The resulting plant-microbial
interaction also contributes to the availability of siderophore, which in turn contributes to
the availability of iron for plant cells under the stress condition [88,89]. The novel isolate
SH-6 was also analyzed for the production of ABA, another important phytohormone in
plant growth and stress responses. Specifically, during water stress, ABA is a signaling
molecule responsible for stomatal closure to minimize transpirational water loss [90,91].
Thus, ABA also enhances drought resistance and improves early seedling metrics in maize.
HPLC analysis showed that SH-6 contained significant (1.08 ± 0.05 ng/mL) amounts of
ABA. Additionally, GC-MS results showed that SH-6 accumulated significant amounts
(0.58 ± 0.14 mg/mL) of soluble sugars. Particularly, sucrose is very important in plant
nutrition. After preliminary screening, the isolate was selected for in vitro seed biopriming
to see its effects on germination metrics. The results showed that the isolate effectively and
significantly preserved germination metrics with an up to 20% induced osmotic stress level.
After 20%, there was inhibited germination, and the isolate did not tolerate the drought
stress significantly, resulting in 16.96 ± 0.09 mg, 1.33 ± 0.06 mg fresh and dry biomass,
respectively. This may be due to several mechanisms, i.e., morphological, biochemical, and
metabolic [92–94].

When plants are exposed to drought stress, reactive oxygen species accumulate, re-
sulting in the degradation of cellular proteins and loss of turgor due to membrane damage
caused by membrane lipid peroxidation, which in turn leads to cytoplasmic leakage [95,96].
Biopriming improves the defensive mechanisms, selective absorption, membrane stability,
and stress tolerance [97]. The results summarized here in proved that the novel isolate
SH-6 tolerated oxidative stress well owing to high SOD, CAT, and APX activities, and
improved the plant’s antioxidant system. As for germination metrics, the data showed
that the maximum level of stress tolerance of maize seeds was observed under 20% PEG
6000 stress, whereas water-deficit levels above that induced by 20% PEG 6000 negatively
affect seed germination metrics. This might be due to membrane stability and the defensive
mechanism of the seed biopriming approach. Maize seeds tolerated stress up to 20%,
indicating that seed biopriming only allows selective absorption. It likely restricted the
polyethylene glycol from entering plant cells, ultimately inhibiting the drought stress.

The germination metrics, i.e., seed vigor index, germination energy, and germination
rate index, decreased with increasing stress level. Inoculation with a bacterial strain can
rescue the stress tolerance by only up to 20%, as shown in the Figure 6. After that, there is
inhibition of the germination, which clearly indicates that SH-6 can tolerate stress only up
to 20%. The results clearly demonstrate that the new isolate can serve as a seed biopriming
agent for drought stress tolerance and enhancing the germination metrics.

Phytohormones play an important role in the mitigation of the stress. The bacterial
isolate produced absicis acid significantly as compared to the control group. Absicis acid is
known as the stress hormone which is involved in stress tolerance. When a plant is exposed
to drought stress, ABA is released, and it causes the closure of the stomata to reserve the
water from evaporation [98,99]. In the present study, the SH-6 improved the stress tolerance
that may be due to production of ABA by a bacterial isolate.

The present study confirmed the growth promoting characteristics and improved
germination potential under drought stress with the production of phytohormones, sucrose,
exopolysacchrides, and siderophore. Further intensive research is needed to evaluate the
potential of SH-6 under open agronomic management.
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6. Conclusions

Bacteria are natural biostimulants that have the potential to improve crop seeds’ ger-
mination metrics under drought and improve plants’ cellular responses to stress. The novel
bacterial isolate SH-6 improved drought tolerance under drought stress, as simulated by
the addition of as much as 20% PEG 6000 to the germination media, and it can be used
as a biostimulant to increase maize yield. SH-6 contributed positively to the germination
potential and seed vigor index. The application of bacteria as seed biopriming agents is
an inexpensive and effective approach for the mitigation of drought stress effects. Further-
more, they have a positive effect on the plant’s antioxidant system under conditions of
drought stress. To conclude, the application of rhizosphere bacterial isolate SH-6 improved
germination of maize seeds under drought conditions.
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71. Efeoğlu, B.; Ekmekçi, Y.; Çiçek, N. Physiological responses of three maize cultivars to drought stress and recovery. S. Afr. J. Bot.

2009, 75, 34–42. [CrossRef]
72. Mohammadkhani, N.; Heidari, R. Effects of drought stress on soluble proteins in two maize varieties. Turk. J. Biol. 2008, 32, 23–30.
73. Negi, S.; Bharat, N.K. Seed Defense Biopriming. In Plant-Microbial Interactions and Smart Agricultural Biotechnology; CRC Press:

Boca Raton, FI, USA, 2021; pp. 129–146.
74. Sandini, I.E.; Pacentchuk, F.; Hungria, M.; Nogueira, M.A.; da Cruz, S.P.; Nakatani, A.S.; Araujo, R.S. Seed Inoculation with

Pseudomonas fluorescens Promotes Growth, Yield and Reduces Nitrogen Application in Maize. Int. J. Agric. Biol. 2019, 22,
1369–1375.

75. Sarkar, D.; Singh, S.; Parihar, M.; Rakshit, A. Seed bio-priming with microbial inoculants: A tailored approach towards improved
crop performance, nutritional security, and agricultural sustainability for smallholder farmers. Curr. Res. Environ. Sustain. 2021,
3, 100093. [CrossRef]

76. Ranathunge, N.P. Biopriming of Seeds for Plant Disease Tolerance and Phytopathogen Management. In Microbial Biocontrol:
Sustainable Agriculture and Phytopathogen Management; Springer: Berlin/Heidelberg, Germany, 2022; pp. 355–369.

77. Sood, M.; Kumar, V.; Rawal, R. Seed biopriming a novel method to control seed borne diseases of crops. In Biocontrol Agents and
Secondary Metabolites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 181–223.

http://doi.org/10.1016/j.parint.2007.12.007
http://www.ncbi.nlm.nih.gov/pubmed/18276183
http://doi.org/10.1007/s12010-014-1290-7
http://www.ncbi.nlm.nih.gov/pubmed/25315387
http://doi.org/10.1371/journal.pone.0173203
http://doi.org/10.1186/1746-4811-8-11
http://doi.org/10.1007/BF00013101
http://doi.org/10.1080/03650340.2022.2026931
http://doi.org/10.7324/JABB.2022.103ed
http://doi.org/10.1016/j.ijdrr.2021.102654
http://doi.org/10.3389/fpls.2022.870626
http://www.ncbi.nlm.nih.gov/pubmed/35665140
http://doi.org/10.1080/19475705.2022.2072774
http://doi.org/10.2135/cropsci1981.0011183X002100010029x
http://doi.org/10.1016/j.sajb.2008.06.005
http://doi.org/10.1016/j.crsust.2021.100093


Plants 2022, 11, 1674 14 of 14

78. Yadav, R.S.; Singh, V.; Pal, S.; Meena, S.K.; Meena, V.S.; Sarma, B.K.; Singh, H.B.; Rakshit, A. Seed bio-priming of baby corn
emerged as a viable strategy for reducing mineral fertilizer use and increasing productivity. Sci. Hortic. 2018, 241, 93–99.
[CrossRef]

79. Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia,
M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [CrossRef]
[PubMed]

80. Ozturk, M.; Turkyilmaz Unal, B.; García-Caparrós, P.; Khursheed, A.; Gul, A.; Hasanuzzaman, M. Osmoregulation and its actions
during the drought stress in plants. Physiol. Plant. 2021, 172, 1321–1335. [CrossRef]

81. Neal, A.L.; Ahmad, S.; Gordon-Weeks, R.; Ton, J. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the
rhizosphere. PLoS ONE 2012, 7, e35498. [CrossRef]

82. Becerra-Castro, C.; Monterroso, C.; Prieto-Fernández, A.; Rodríguez-Lamas, L.; Loureiro-Viñas, M.; Acea, M.; Kidd, P. Pseudomet-
allophytes colonising Pb/Zn mine tailings: A description of the plant–microorganism–rhizosphere soil system and isolation of
metal-tolerant bacteria. J. Hazard. Mater. 2012, 217, 350–359. [CrossRef] [PubMed]

83. Söderberg, K.H.; Olsson, P.A.; Bååth, E. Structure and activity of the bacterial community in the rhizosphere of different plant
species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiol. Ecol. 2002, 40, 223–231. [CrossRef]

84. Watt, M.; Kirkegaard, J.; Passioura, J. Rhizosphere biology and crop productivity—A review. Soil Res. 2006, 44, 299–317. [CrossRef]
85. Jacoby, R.P.; Kopriva, S. Metabolic niches in the rhizosphere microbiome: New tools and approaches to analyse metabolic

mechanisms of plant–microbe nutrient exchange. J. Exp. Bot. 2019, 70, 1087–1094. [CrossRef]
86. Zenser, N.; Ellsmore, A.; Leasure, C.; Callis, J. Auxin modulates the degradation rate of Aux/IAA proteins. Proc. Natl. Acad. Sci.

USA 2001, 98, 11795–11800. [CrossRef]
87. Raven, J. Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for

polar IAA transport. New Phytol. 1975, 74, 163–172. [CrossRef]
88. Winkelmann, G. Microbial siderophore-mediated transport. Biochem. Soc. Trans. 2002, 30, 691–696. [CrossRef] [PubMed]
89. Hider, R.C. Siderophore mediated absorption of iron. Siderophores Microorg. Plants 1984, 58, 25–87.
90. Finkelstein, R. Abscisic acid synthesis and response. Arab. Book/Am. Soc. Plant Biol. 2013, 11, e0166. [CrossRef] [PubMed]
91. Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev.

Plant Biol. 2010, 61, 651–679. [CrossRef]
92. Yadav, A.N.; Yadav, N. Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci.

Agric. 2018, 2, 85–88.
93. Singh, D.P.; Singh, V.; Gupta, V.K.; Shukla, R.; Prabha, R.; Sarma, B.K.; Patel, J.S. Microbial inoculation in rice regulates

antioxidative reactions and defense related genes to mitigate drought stress. Sci. Rep. 2020, 10, 4818. [CrossRef]
94. Dai, L.; Zhang, G.; Yu, Z.; Ding, H.; Xu, Y.; Zhang, Z. Effect of drought stress and developmental stages on microbial community

structure and diversity in peanut rhizosphere soil. Int. J. Mol. Sci. 2019, 20, 2265. [CrossRef]
95. Kaur, G.; Asthir, B. Molecular responses to drought stress in plants. Biol. Plant. 2017, 61, 201–209. [CrossRef]
96. Cruz de Carvalho, M.H. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal. Behav.

2008, 3, 156–165. [CrossRef]
97. Chakraborti, S.; Bera, K.; Sadhukhan, S.; Dutta, P. Bio-priming of seeds: Plant stress management and its underlying cellular,

biochemical and molecular mechanisms. Plant Stress 2021, 3, 100052. [CrossRef]
98. Hasan, M.M.; Gong, L.; Nie, Z.-F.; Li, F.-P.; Ahammed, G.J.; Fang, X.-W. ABA-induced stomatal movements in vascular plants

during dehydration and rehydration. Environ. Exp. Bot. 2021, 186, 104436. [CrossRef]
99. Bharath, P.; Gahir, S.; Raghavendra, A.S. Abscisic acid-induced stomatal closure: An important component of plant defense

against abiotic and biotic stress. Front. Plant Sci. 2021, 12, 615114. [CrossRef] [PubMed]

http://doi.org/10.1016/j.scienta.2018.06.096
http://doi.org/10.3390/plants10020259
http://www.ncbi.nlm.nih.gov/pubmed/33525688
http://doi.org/10.1111/ppl.13297
http://doi.org/10.1371/journal.pone.0035498
http://doi.org/10.1016/j.jhazmat.2012.03.039
http://www.ncbi.nlm.nih.gov/pubmed/22483595
http://doi.org/10.1016/S0168-6496(02)00233-7
http://doi.org/10.1071/SR05142
http://doi.org/10.1093/jxb/ery438
http://doi.org/10.1073/pnas.211312798
http://doi.org/10.1111/j.1469-8137.1975.tb02602.x
http://doi.org/10.1042/bst0300691
http://www.ncbi.nlm.nih.gov/pubmed/12196166
http://doi.org/10.1199/tab.0166
http://www.ncbi.nlm.nih.gov/pubmed/24273463
http://doi.org/10.1146/annurev-arplant-042809-112122
http://doi.org/10.1038/s41598-020-61140-w
http://doi.org/10.3390/ijms20092265
http://doi.org/10.1007/s10535-016-0700-9
http://doi.org/10.4161/psb.3.3.5536
http://doi.org/10.1016/j.stress.2021.100052
http://doi.org/10.1016/j.envexpbot.2021.104436
http://doi.org/10.3389/fpls.2021.615114
http://www.ncbi.nlm.nih.gov/pubmed/33746999

	Introduction 
	Material and Methods 
	Isolation and Characterization 
	Orange Media Test and Congo Red Assay 
	Polyethylene Glycol Tolerance Test 
	Phosphate Solubilizing-Index Assay 
	Siderophore Production Assay 
	Production of Indole Acetic Acid (IAA) 
	Molecular Characterization 
	Oxidative Stress Media Test 
	Quantification of Abscisic Acid (ABA) and Sugar Content in Bacterial Isolate SH-6 
	Biopriming Maize Seeds 
	Early Seedling Metrics 

	Statistical Analysis 
	Results 
	Molecular Characterization Assay 
	Analysis of Siderophore, Indole Acetic Acid, and Exopolysacchrides 
	Drought Tolerance Assay Results 
	Sucrose and Abscisic Acid Analysis Results 
	Oxidative Stress Tolerance Response 
	Effect of Seed Biopriming on Germination under Drought Tolerance 

	Discussion 
	Conclusions 
	References

