
RESEARCH ARTICLE

Association of specific gene mutations

derived from machine learning with survival in

lung adenocarcinoma

Han-Jun Cho1,2, Soonchul Lee3, Young Geon Ji4, Dong Hyeon LeeID
1*

1 Department of Physiology, CHA University School of Medicine, Gyeonggi, Republic of Korea, 2 Catholic

University School of Medicine, Secho-gu, Seoul, Republic of Korea, 3 Department of Orthopaedic Surgery,

CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi, Republic of Korea,

4 Department of Preventive Medicine, CHA University School of Medicine, Gyeonggi, Republic of Korea

* leedh@cha.ac.kr

Abstract

Lung cancer is the second most common cancer in the United States and the leading cause

of mortality in cancer patients. Biomarkers predicting survival of patients with lung cancer

have a profound effect on patient prognosis and treatment. However, predictive biomarkers

for survival and their relevance for lung cancer are not been well known yet. The objective of

this study was to perform machine learning with data from The Cancer Genome Atlas of

patients with lung adenocarcinoma (LUAD) to find survival-specific gene mutations that could

be used as survival-predicting biomarkers. To identify survival-specific mutations according

to various clinical factors, four feature selection methods (information gain, chi-squared test,

minimum redundancy maximum relevance, and correlation) were used. Extracted survival-

specific mutations of LUAD were applied individually or as a group for Kaplan-Meier survival

analysis. Mutations in MMRN2 and GMPPA were significantly associated with patient mortal-

ity while those in ZNF560 and SETX were associated with patient survival. Mutations in

DNAJC2 and MMRN2 showed significant negative association with overall survival while

mutations in ZNF560 showed significant positive association with overall survival. Mutations

in MMRN2 showed significant negative association with disease-free survival while muta-

tions in DRD3 and ZNF560 showed positive associated with disease-free survival. Mutations

in DRD3, SETX, and ZNF560 showed significant positive association with survival in patients

with LUAD while the opposite was true for mutations in DNAJC2, GMPPA, and MMRN2.

These gene mutations were also found in other cohorts of LUAD, lung squamous cell carci-

noma, and small cell lung cancer. In LUAD of Pan-Lung Cancer cohort, mutations in

GMPPA, DNAJC2, and MMRN2 showed significant negative associations with survival of

patients while mutations in DRD3 and SETX showed significant positive association with sur-

vival. In this study, machine learning was conducted to obtain information necessary to dis-

cover specific gene mutations associated with the survival of patients with LUAD. Mutations

in the above six genes could predict survival rate and disease-free survival rate in patients

with LUAD. Thus, they are important biomarker candidates for prognosis.
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Introduction

Lung cancer is the leading cause of death in patients with cancer. It is the second most com-

mon cancer in men and women to date in the United States, following prostate cancer in men

and breast cancer in women, respectively [1–3]. In the 1990s, stomach and lung cancers were

leading causes of death among cancer patients in Korea, with stomach cancer accounting for

25% of cases while lung cancer accounting for 17% of cases. In 2016, 17,963 people died from

lung cancer in Korea, accounting for 23% of all cancer-related deaths. Although lung cancer

has the highest mortality rate, few biomarkers for predicting overall survival or disease-free

survival have been reported. Accurately predicting survival rate in patients with cancer has a

significant impact on their prognosis and treatment [4–6].

Machine learning methods have been used in a variety of ways in cancer research [7–10].

These methods can be used to identify breast cancer patients by genetic mutations as a result

of applying gene learning methods to breast cancer samples [7]. One prostate cancer study has

combined machine learning methods with National Institute for Health and Care Excellence

features to observe the association between the prognosis of prostate cancer and genetic muta-

tion profile [8]. In addition, previous studies have applied machine learning using healthy eat-

ing index scores to predict the interaction between colorectal cancer and overweight status [9].

In another study, modeling was used to demonstrate the benefit of exact binomial test for ana-

lyzing genome-wide somatic gene mutation through performance comparisons among differ-

ent machine learning models [10].

In this study, machine learning methods with data from The Cancer Genome Atlas

(TCGA) of patients with lung adenocarcinoma (LUAD) were utilized to discover gene muta-

tions associated with patient survival. Results suggested that mutations in six genes, DRD3,

SETX, ZNF560, DNAJC2, GMPPA, and MMRN2, were significantly associated with survival

and overall survival time of patients with LUAD. These gene mutations could be used as sur-

vival-predicting biomarkers. Machine learning can be a useful tool to discover important bio-

markers for predicting prognosis and survival in patients with lung cancer.

Materials and methods

Ethics statement

All patient data were acquired from previously published studies where written informed con-

sents were obtained [1,11–15]. The TCGA-LUAD cohort, Pan-Lung Cancer cohort, Lung Squa-

mous Cell Carcinoma TCGA cohort, Small Cell Lung Cancer cohort, Lung Adenocarcinoma

Broad cohort, and Lung Adenocarcinoma MSKCC cohort in their methods stated that “Speci-

mens were obtained from patients, with appropriate consent from institutional review boards”

[1], “All specimens were obtained from patients with appropriate consent and with approval

from the relevant institutional review boards” [11], “All specimens were obtained from patients

with appropriate consent from the relevant Institutional Review Board” [12], “Human tumour

samples were obtained from patients under IRB-approved protocols following written informed

consent” [13], “Informed consent (Institutional Review Board) was obtained for each sample

using protocols approved by the Broad Institute of Harvard and MIT and each originating tis-

sue source site” [14], and “All patients had consented to Institutional Review Board-approved

protocols permitting tissue collection and sequencing” [15], respectively.

Data resource

TCGA-LUAD provided data for LUAD patients with somatic non-silent mutations and clini-

cal information. These TCGA data were downloaded and then divided into clinical data matrix
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and mutation data matrix. In the original data, clinical information of 471 patients and muta-

tion status of about 40,000 genes were recorded. After preprocessing, label setting and identifi-

cation were given. Among 471 patients in the data set, 303 living (64.3%) and 168 dead

(35.7%) patients were divided accordingly into the survival and non-survival groups, respec-

tively. Data sets of Pan-Lung Cancer cohort (n = 954), Lung Squamous Cell Carcinoma TCGA

cohort (n = 498), Small Cell Lung Cancer cohort (n = 101), Lung Adenocarcinoma Broad

cohort (n = 135), and Lung Adenocarcinoma MSKCC cohort (n = 34) were also used to deter-

mine specific gene mutation frequencies. The first three data sets were used for association of

specific gene mutation with survival. All data used within this study were obtained from open

access data sets. They have passed the criteria for unrestricted publication with the following

statement listed at https://cancergenome.nih.gov/publications/publicationguidelines “No

restrictions; all data available without limitations”.

Machine learning

RapidMinor (Boston, MA, USA) was the software used for machine learning. For feature selec-

tion, information gain, Chi-squared test, minimum redundancy maximum relevance, and cor-

relation algorithm were used. Classification algorithms included Naive Bayes, k-nearest

neighbors, support vector machine, and decision trees [16]. This study concentrated on the

yield and selection of gene mutations using dependent algorithms rather than improvement of

algorithms (S1 Fig). Accuracy, precision, recall, classification error, and correlation are shown

in S1 Table.

Data analysis

For the specificity of gene mutations, Fisher’s exact test and Kaplan-Meier analysis were

applied. Frequencies of gene mutations were compared using Fisher’s exact test. Overall sur-

vival and disease-free survival were calculated using Kaplan-Meier analysis based on clinical

information of mortality, survival, and observation time for patients. cBioPortal software was

used to evaluate gene mutation status within the TCGA-LUAD cohort [17, 18]. Statistical sig-

nificant was considered when p value was less than 0.05.

Results

In this study, to discover gene mutations predicting survival, data of LUAD patients obtained

from TCGA were processed and classified using machine learning methods. Mutations in 19

genes were then selected and analyzed by frequencies, overall survival, and disease-free sur-

vival. Results suggested that specific gene mutations were associated with patient survival.

Among mutations in 19 genes, mutations in GMPPA and MMRN2 were significantly associ-

ated with patient mortality while mutations in ZNF560 and SETX were significantly associated

with patient survival (Fig 1 and Table 1). Mutations in DNAJC2 and MMRN2 showed signifi-

cant negative association with overall survival while mutations in ZNF560 showed significant

positive association with overall survival. The median survival time in patients with LUAD was

about 49 months. However, the median survival time in patients with mutations in MMRN2
was about 11 months. Mutations in MMRN2 were significantly and negatively associated with

disease-free survival while mutations in DRD3 and ZNF560 were significantly and positively

associated with disease-free survival. The median disease-free survival time in patients with

LUAD was about 36 months while that in patients with mutations in MMRN2 was about 5

months. Mutations in DNAJC2, GMPPA, MMRN2, DRD3, SETX, and ZNF560 were associated

with survival in patients with LUAD.
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As shown in Table 2, patients with LUAD lacking mutations in DNAJC2 or MMRN2 had

median survival time of about 48 months while those with mutations in DNAJC2 or MMRN2
all died within 20 months (S2 Fig). About 42% of patients with LUAD lacking a mutation in

MMRN2 relapsed with a median disease-free time of about 33 months while those with muta-

tions in MMRN2 all relapsed within 10 months. Therefore, mutations in DNAJC2 and/or

MMRN2 are considered to be predictors of survival or relapse of patients with LUAD since the

probability of death or recurrence due to LUAD might be higher in the presence of mutations

in DNAJC2 or MMRN2. In contrast, patients with LUAD without a mutation in ZNF560 had

shorter survival than other patients, with a median survival time of about 45 months while

those with mutations in ZNF560 all survived. Additionally, about 42% of patients with LUAD

without a mutation in ZNF560 or DRD3 relapsed with a median disease-free time of about 30

months. However, those with mutations in ZNF560 or DRD3 relapsed at a rate of about 11%

or 0%, respectively. Because the probability of death or relapse due to LUAD might be lower

when the ZNF560 or DRD3 was mutated, mutations in ZNF560 or DRD3 were considered to

be predictors of survival or relapse in patients with LUAD.

To evaluate the association of mutations in multiple genes and survival, mutations in 19

genes and those in genes associated with survival were analyzed (Fig 2 and S2 Table). Muta-

tions in these 19 genes were not associated with overall survival or disease-free survival. Muta-

tions in DNAJC2 or MMRN2 were negatively associated with survival. They significantly

decreased the median survival time to 9.95 months and the median disease-free survival time

to 4.57 months. However, mutations in DRD3 or ZNF560 were positively associated with sur-

vival. They significantly increased both survival time and disease-free survival time. Further-

more, mutations in DNAJC2, GMPPA, or MMRN2 significantly decreased median survival

time to 11.27 months and the median disease-free survival time to 6.87 months (Fig 3). Muta-

tions in DRD3, SETX, or ZNF560 significantly increased both survival time and disease-free

survival time. Patients with LUAD who had mutations in DNAJC2, GMPPA, or MMRN2
exhibited significantly shorter survival and earlier recurrence than those without mutations.

However, patients with mutations in DRD3, SETX, or ZNF560 exhibited longer survival and

later recurrence than those without these mutations.

Fig 1. Comparison of mutation frequencies in 19 genes. Mutations in 19 genes were demonstrated as frequent and analyzed using Fisher’s extract test. � indicates

p< 0.05.

https://doi.org/10.1371/journal.pone.0207204.g001
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The frequency of mutations in six gene associated with survival was further analyzed in

other lung cancer types such as lung squamous cell carcinoma, small cell lung cancer, and

another two data sets of LUAD (Table 3 and S3 Fig). Mutations in these six genes were found

not only in another two LUAD data sets (n = 21 and n = 4), but also in lung squamous cell car-

cinoma (n = 28), small cell lung cancer (n = 12), and Pan-lung cancer (n = 146).

Associations of mutations in six genes with survival were analyzed using three data sets of

lung cancer cohorts with survival information (Table 4). Mutations in GMPPA, DNAJC2, and

MMRN2 were significantly associated with patient mortality in lung adenocarcinoma of Pan-

Lung Cancer cohort. Mutations in DNAJC2 and MMRN2 were significantly associated with

shortened overall survival (median survival of 10 and 21.9 months, respectively) (S4 Fig).

Mutations in DRD3 and SETX were significantly associated with patient survival, and muta-

tions in SETX extended overall survival. These gene mutations were not associated with mor-

tality or overall survival in other types of lung cancer. These results suggested that mutations

in DNAJC2, GMPPA, MMRN2, DRD3, and SETX could be significantly associated with sur-

vival in patients with LUAD. They might be considered as biomarkers for predicting survival

or recurrence in patients with LUAD.

Fig 2. Survival analysis for mutations in 19 genes and survival-related genes. Survival and disease-free survival time of patients with or without specific gene

mutations were analyzed using Kaplan-Meier curves. These 19 gene mutations, two gene mutations negatively associated with survival (DNAJC2 or MMRN2), and

two gene mutations positively associated with survival (DRD3 or ZNF560) were analyzed. Overall survivals is shown in A-C while disease-free survival is shown in

D-F. Red lines indicate mutation positive while blue lines indicate mutation negative. P-values were obtained from Log rank test.

https://doi.org/10.1371/journal.pone.0207204.g002

Association of specific gene mutations and survival in LUAD

PLOS ONE | https://doi.org/10.1371/journal.pone.0207204 November 12, 2018 7 / 14

https://doi.org/10.1371/journal.pone.0207204.g002
https://doi.org/10.1371/journal.pone.0207204


Discussion

Lung cancer is the second most common cancer. It has a high mortality rate. The discovery of

biomarkers that can predict overall survival of lung cancer patients is essential for treatment of

patients. Identification of survival-specific gene mutations is important not only for under-

standing genetic disparities associated with survival, but also for predicting the survival of

LUAD patients. These gene mutations can be significant biomarkers for LUAD. In this study,

TCGA LUAD data set was used to derive gene mutations by machine learning. Patients with

LUAD were divided into surviving and non-surviving groups and machine learning was per-

formed with four feature selection methods to identify gene mutations associated with survival

of patients with LUAD from mutations in about 40,000 genes [16,19–24]. The most frequently

observed mutations determined by machine learning were in SETX and ZNF560 genes.

Fig 3. Comparative survival analysis for mutations in survival-related genes. Survival and disease-free survival time of patients with or without specific

gene mutations were analyzed using Kaplan-Meier curves. Mutations in three genes (DNAJC2, GMPPA, or MMRN2) negatively associated with survival

and mutations in three genes (DRD3, SETX, or ZNF560) positively associated with survival were analyzed. Overall survival is shown in A and B while

disease-free survival is shown in C and D. Red lines indicate mutation positive while blue lines indicate mutation negative. P-values were obtained from

Log rank test.

https://doi.org/10.1371/journal.pone.0207204.g003
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Mutational incidence of SETX, ZNF560, GMPPA, and MMRN2 was significant. Mutations in

MMRN2 and DNAJC2 were significantly and negatively associated with patient survival while

those in ZNF560 and DRD3 were positively associated with patient survival. Mutations in

genes determined by machine learning seem to influence survival in LUAD.

Because of the relatively small number of mutations in LUAD cohort, mutations in six

genes were applied to other data sets of lung cancer cohorts to analyze mutation frequencies

and association with survivals such as Lung Adenocarcinoma (Broad and MSKCC) cohorts,

Lung Squamous Cell Carcinoma TCGA cohort, Pan-Lung Cancer cohort, and Small Cell Lung

Cancer cohort. The average frequency of mutations in six genes was 0.81% ~ 3.30% and their

associations with survival were similar between LUAD cohort and Pan-Lung Cancer cohort.

Data set of Pan-Lung Cancer cohort was composed of LUAD and lung squamous cell carci-

noma. In LUAD of Pan-Lung Cancer cohort, mutations in DNAJC2, GMPPA, MMRN2,

DRD3, and SETX were significantly associated with survival status, and those in DNAJC2,

MMRN2, and SETX were significantly associated with overall survival. This result supports

that mutations in these six genes can predict the survival of patients with LUAD and overall

survival time. They could be considered as biomarkers of LUAD.

Mutations in MMRN2 and DNAJC2 were observed to be important for predicting the sur-

vival and prognosis negatively. MMRN2 encodes a multimerin2 which is an elastin microfibril

interface-located (EMILIN)-like protein, extracellular matrix glycoprotein [25]. MMRN2 acts

as a modified growth factor β antagonist. It can interfere with VEGF-A/VEGFR2 pathway in

endothelial cells [25]. Recent studies have demonstrated that CLEC14A-MMRN2 binding has

potential for future anti-angiogenic therapy because it plays a role in inhibiting angiogenesis

during tumor growth [26]. The DNAJC2 gene encodes a phosphorylated protein with a J-

domain and a Myb DNA-binding domain. Its protein is observed in both nucleus and cyto-

plasm [27]. DNAJC2 protein can form a heterodimeric complex with the ribosome to acts as a

molecular protector for the initial polypeptide chain when exiting the ribosome [27]. DNAJC2

protein has been identified as a leukemia-associated antigen. Its expression is increased in

those with leukemic seizures [28]. In addition, chromosomal abnormalities involving the

DNAJC2 gene are associated with primary head and neck squamous cell tumors [29]. These

studies have revealed molecular mechanisms that MMRN2 and DNAJC2 either cause or exac-

erbate cancers. However, further studies are needed to determine the role of MMRN2 and

DNAJC2 in LUAD.

Table 3. Comparative analysis of mutation frequencies of lung adenocarcinoma-associated six genes in six data

sets of different lung cancer cohorts.

Data set \ Gene name GMPPA DRD3 DNAJC2 SETX MMRN2 ZNF560

Lung Adenocarcinoma TCGA (n = 471) 3 (0.64%) 5 (1.06%) 2 (0.42%) 9 (1.91%) 3 (0.64%) 9 (1.91%)

Pan-Lung Cancer Nat Genet 2016 (n = 954) 10

(1.05%)

33

(3.46%)

12

(1.26%)

44

(4.61%)

10

(1.05%)

37

(3.88%)

Lung Squamous Cell Carcinoma TCGA

(n = 498)

2 (0.40%) 5 (1.00%) 0 (0.00%) 10

(2.01%)

0 (0.00%) 11

(2.21%)

Small Cell Lung Cancer U Cologne, Nature

2015 (n = 101)

2 (1.98%) 3 (2.97%) 1 (0.99%) 5 (4.95%) 1 (0.99%) 0 (0.00%)

Lung Adenocarcinoma Broad, Cell 2012

(n = 135)

1 (0.74%) 7 (5.19%) 0 (0.00%) 4 (2.96%) 4 (2.96%) 5 (3.70%)

Lung Adenocarcinoma MSKCC 2015

(n = 34)

0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (2.94%) 0 (0.00%) 3 (8.82%)

Sum 18

(0.82%)

53

(2.42%)

15

(0.68%)

73

(3.33%)

18

(0.82%)

65

(2.96%)

https://doi.org/10.1371/journal.pone.0207204.t003
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Mutations in ZNF560 and SETX were observed to be important for predicting the survival

and prognosis positively. The ZNF560 gene has been reported in colorectal cancer studies [30].

Left-sided colon cancer (LSCC) and right-sided colon cancer (RSCC) differ in their genetic

susceptibilities to neoplastic transformation. Patients with LSCC had low mortality and

improved overall 5-year survival rate than patients with RSCC [30]. ZNF560 was down-regu-

lated in LSCC compared to that in RSCC. It may be useful for predicting a positive prognosis.

Table 4. Comparative analysis of six-gene mutation frequency and survival in three data sets of lung cancer

cohorts.

Chromosome 2 3 7 9 10 19

Mutated gene GMPPA DRD3 DNAJC2 SETX MMRN2 ZNF560

Pan-Lung Cancer Nat

Genet 2016 (n = 954)

Mutation Total 10

(1.05%)

33

(3.46%)

12 (1.26%) 44

(4.61%)

10 (1.05%) 37

(3.88%)

Living 5 25 6 37 3 28

Deceased 5 8 6 7 7 9

Fisher’s

exact

0.158 0.697 0.111 0.061 0.0075� 0.711

Overall

Survival

P-value 0.12 0.757 0.0066�� 0.063 0.00014��� 0.89

Median

Months

28.1 31.51 14.1 63.59 15 39.1

Pan-Lung Cancer Nat

Genet 2016; Lung

Adenocarcinoma

(n = 481)

Mutation Total 6

(1.25%)

14

(2.91%)

5 (1.04%) 22

(4.57%)

8 (1.66%) 18

(3.74%)

Living 2 14 1 21 3 16

Deceased 4 0 4 1 5 2

Fisher’s

exact

0.034� 0.027� 0.014� 0.023� 0.024� 0.27

Overall

Survival

P-value 0.074 0.16 0.00014��� 0.027� 0.0025�� 0.65

Median

Months

28.1 NA 14.1 NA 21.9 NA

Lung Squamous Cell

Carcinoma TCGA

(n = 498)

Mutation Total 2

(0.40%)

5

(1.00%)

0 10

(2.01%)

0 11

(2.21%)

Living 1 2 NA 6 NA 5

Deceased 1 3 NA 4 NA 6

Fisher’s

exact

1 0.657 NA 1 NA 0.545

Overall

Survival

P-value 0.33 0.107 NA 0.919 NA 0.747

Median

Months

1.71 9.82 NA 63.5 NA 30.09

Small Cell Lung Cancer

U Cologne, Nature

2015 (n = 101)

Mutation Total 2

(1.96%)

3

(2.94%)

1 (0.98%) 5

(4.90%)

1 (0.98%) 0

Living 1 1 1 3 1 NA

Deceased 1 2 0 2 0 NA

Fisher’s

exact

1 1 0.333 0.33 0.333 NA

Overall

Survival

P-value 0.722 0.812 0.266 0.159 0.351 NA

Median

Months

3 27 NA 72 NA NA

Fisher’s exact P-value: Log rank test, NA: not available,

� indicates p<0.05,

�� indicates p<0.01,

��� indicates p<0.001

https://doi.org/10.1371/journal.pone.0207204.t004
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SETX is a RNA/DNA helicase that splices RNA, regulates gene expression, terminates tran-

scription, and stabilizes telomere and genome [31]. Mutations in SETX are linked to neurode-

generative disorders, ataxia oculomotor apraxia type 2, and amyotrophic lateral sclerosis type

4 [31]. Although the role of SETX in cancer has not been known, its expression level is rela-

tively lower than other genes. Since there is little research on the role of ZNF560 and SETX in

cancers, more researches are needed to understand their roles in LUAD.

Since this study focused on the yield and selection of gene mutation rather than deducing

an efficient algorithm through machine learning, a dependent algorithm was used. In this case,

the weighted results of the independent algorithm could not be obtained. Utilizing 100%

trained data is closer to probability statistics than machine learning. Of 19 gene mutations, six

gene mutations were significantly associated with survival in LUAD, showing a relatively high

rate (about 32%). Further study is needed to determine the differences between using depen-

dent and independent algorithms in machine learning methods for analyzing medical infor-

mation of solid tumors.

It is important to apply the optimal feature selection method that classifies human cancer

genetic mutations according to specific factors among various feature selection methods. Pre-

viously reported feature selection methods in medical studies have used Weka that can imple-

ment information gain, correlation, and ranker algorithms, and ensemble learning methods

[32–34]. However, in order to classify gene mutations using dependent algorithm, selection

methods for prediction of economic demand as well as the above feature selection method

were applied to feature selection in this study. Of combination algorithms used, the combina-

tion with the highest classification prediction rate was information gain-Naïve bayes combina-

tion. It can be adopted to analyze RNA sequence or other medical information in LUAD.

In summary, machine learning was conducted to obtain information necessary to select

mutations in genes associated with survival of patients with LUAD. We identified specific

mutational markers associated with survival of patients with LUAD. Mutations in DNAJC2,

GMPPA, and MMRN2 can be used as biomarkers of negative prognosis for patient’s overall

survival and disease-free survival while mutations in DRD3, SETX, and ZNF560 can be used as

biomarkers of positive prognosis. This study also suggested a predictive classification model of

LUAD based on mutation expression.

Supporting information

S1 Fig. Machine learning method for gene extraction. The general machine learning method

is Method I and our machine learning method is Method II. FS indicates feature selection.

(JPG)

S2 Fig. Survival analysis for mutations in survival-related six genes. Survival and disease-

free survival time of patients with or without specific gene mutations were analyzed using

Kaplan-Meier curves. Overall survival is shown in the left column while disease-free survival is

shown in the right column. P-values were obtained from Log rank test.

(JPG)

S3 Fig. Comparison of mutation frequencies of lung adenocarcinoma-associated six genes

in six lung cancer data sets. Mutations in six genes were demonstrated as frequency (per-

cent).

(JPG)

S4 Fig. Survival analysis for mutations in survival-related six genes in adenocarcinoma of

Pan-Lung Cancer. Overall survival time of patients with or without specific gene mutations
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were analyzed using Kaplan-Meier curves. P-values were obtained from Log rank test.

(JPG)

S1 Table. Accuracy, precision, recall, and classification error of feature selection.

(DOCX)

S2 Table. Comparative analysis of overall survival and disease-free survival in the muta-

tion group (two or three genes) and non-mutation group.

(DOCX)
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