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Osteoporosis is a common bone metabolic disease among the middle-aged

and elderly, with its high incidence rate and a major cause of disability and

mortality. Early studies found that bone metabolic homeostasis is achieved

through osteogenesis-osteoclast coupling. Although current anti-

osteoporosis drugs can attenuate bone loss caused by aging, they present

specific side effects. With the discovery of CD31hi Emcnhi blood vessels in 2014,

the effect of H-type blood vessels on bone metabolism has been valued by

researchers, and the ternary regulation theory of bone metabolism of

“Angiogenesis-Osteoclast-Osteogenesis” has also been recognized.

Nowadays, more studies have confirmed that peripheral nerves substantially

impact bone metabolism. However, due to the complex function of peripheral

nerves, the crosstalk mechanism of “Peripheral nerve-Angiogenesis-

Osteoclast-Osteogenesis” has not yet been fully revealed. Neuropeptide

serves as signaling molecules secreted by peripheral nerves that regulate

blood vessels, osteoblasts, and osteoclasts’ functions. It is likely to be the

breakthrough point of the quaternary regulation theory of “Peripheral nerve-

Angiogenesis-Osteoclast-Osteogenesis”. Here, we discuss the effect of

peripheral nerves on osteoporosis based on neuropeptides.
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Introduction

Osteoporosis (OP) is a common metabolic bone disease in

the middle-aged and elderly population. It is mainly

characterized by the aggravation of bone loss and the

destruction of bone microstructure, leading to increased bone

fragility and fracture risk (1). A multicenter epidemiological

survey of OP in China in 2018 reported that the incidence rate of

OP in men and women aged 50 and above was 6.46% and

29.13%, respectively. It is predicted that the population of

osteoporosis will increase from 60 million to 120 million by

2050 (2). OP and osteoporotic fracture are also associated with

high medical costs. It is estimated that the treatment cost of

osteoporotic fracture in China will reach 19.92 billion US dollars

by 2035 (3). The currently recognized pathogenesis of OP lies in

the equilibrium between bone formation and bone resorption,

and the primary treatment method is drug therapy, which

requires long-term medication. At present, anti-OP drugs are

mainly divided into bone resorption inhibitors and bone

formation promoters. However, these medications are afflicted

by poorly enduring side effects. For instance, Estrogen and

calcitonin are not suitable for long-term use because of their

carcinogenic risk, while bisphosphate and RANKL inhibitors

may elicit atypical femoral fracture and mandibular

osteonecrosis, and their incidence rate rises with time (4–8).

Conversely, parathyroid hormone analog (PTHA) is a

representative drug for promoting bone formation. However,

it will raise the risk of osteosarcoma, and the drug withdrawal

will provoke a vast bone loss, which alludes that excavating other

factors that affect bone metabolism is imperative (4). Some

studies have shown that atypical femoral fracture is a kind of

stress fracture. The proximal and lateral femur is the tension

side, and it bears large stress. Repeated stress stimulation will

make periosteum hyperplasia and remodeling. Biphosphate and

RANKL inhibitors will deposit here to inhibit bone remodeling,

increase bone brittleness, and eventually lead to stress fracture

(9). Biphosphate also has potential anti-angiogenic properties,

which can inhibit the number of blood vessels in bone marrow,

and may be one of the factors that increase the risk of bone

necrosis in this part (10). Moreover, bone transplantation is an

effective method for the treatment of traumatic bone defects.

Studies reported that the vascularized and neuralized engineered

bone implanted with sensory nerve and the vascular bundle has a

higher degree of osteogenesis than simply vascularized bone

fragments (11). Mounting studies have confirmed that

peripheral nerve innervation is essential for normal bone

metabolism. This means that we should not simply inhibit the

activity of osteoclasts or promote the activity of osteoblasts in the

treatment of osteoporosis. We should consider the role of blood

vessels and peripheral nerves, that is, treating osteoporosis from

the perspective of “quaternary regulation” may obtain greater

benefits. Nevertheless, the mechanism of peripheral nerve
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regulation of bone metabolism has not been fully elucidated.

Neuropeptides are important neurotransmitters of peripheral

nerves. It is believed that in the near future, with the continuous

deepening of research, the specific mechanism of peripheral

nerve regulation of bone metabolism will be revealed. Here, we

describe the effect of neuropeptides on bone metabolism in detail

and help to enrich the quaternary regulation theory of

“Peripheral nerve - Angiogenesis - Osteoclast - Osteogenesis”

based on neuropeptides.
Early bone metabolism
regulation theory

The occurrence of osteoporosis is closely related to the

disorder of bone metabolism. In initial studies, it was believed

that the imbalance between osteoblast-mediated bone formation

and osteoclast-mediated bone resorption was the cause of OP.

The interaction of “osteogenesis and osteoclasts” is known as the

“dual regulation theory” of bone metabolism, but this theory

cannot fully explain the pathogenesis of OP. In March 2014,

Kusumbe et al. found that the capillaries of the mouse skeletal

system can be divided into H-type (CD31hi Emcnhi) and L-type

(CD31Lo EmcnLo). The abundance of H-type blood vessels can

be used as a diagnostic index of vascular growth status and

osteogenic ability, confirming the effect of H-type blood vessels

on bone metabolism (12). In November 2014, Xie et al. found

that osteoclast precursor cells can secrete platelet-derived growth

factor BB (PDGF-BB), inducing H-type angiogenesis and

promoting bone formation. Further animal experiments

confirmed that PDGF-BB-deficient mice in the tartrate-

resistant acid phosphatase-positive cell line showed a

significantly lower bone mass and a reduction in the number

of H-type blood vessels compared with wild-type, indicating that

PDGF-BB played an essential role in coupling angiogenesis and

bone formation (13). Therefore, the “ternary regulation theory”

of bone metabolism was formally proposed, namely

“Angiogenesis-Osteoclast-Osteogenesis”.
Quaternary regulation theory of
bone metabolism

The nervous system consists of the central nervous system

and the peripheral nervous system, both of them have endocrine

functions. The difference is that the central nervous system can

release rich hormones (including calcitonin, parathyroid

hormone, growth hormone, lean hormones, etc.) through

neurohumoral regulation to affect bone metabolism (14). The

effects of the central nervous system tend to be systemic, whereas

the effects of the peripheral nervous system on bone metabolism

tend to be local. Peripheral nerves are mainly involved in the
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regulation of the local bone microenvironment. However, the

influence of peripheral nervous system on bone metabolism is

very important. In 2005, Burt-Pichat B et al. (15) first confirmed

that OVX-induced tibial bone loss in rats was related to

decreasing nerve distribution density. In 2017, Grässel et al.

(16) found that sensory and sympathetic neurotransmitters have

trophic effects on bone and are related to the pathogenesis of OP.

In 2018, Elefteriou et al. discussed in detail the effect of the

autonomic nervous system on bone and found that sympathetic

nerves (SNS) can negatively regulate bone mass, and

parasympathetic nerves (PSNS) can regulate bone mass

positively. The decrease of PSNS activity is related to

osteoporosis (17). In 2019, Balasubramanian et al. (18)

proposed that excessive activity of the autonomic nervous

system is a sign of aging, providing new ideas for the

treatment of OP. In December 2021, Xie et al. also found

abundant sympathetic and parasympathetic fibers in bone

tissue. The NE and Ach released from the nerve ending acted

on the b2A receptor and M3 receptor on the surface of bone

cells, respectively, stimulating and inhibiting the generation of

neuropeptide Y (NPY) by bone cells. NPY can inhibit the cAMP/

PKA/CREB signaling pathway and down-regulate the

expression of the transcription factors Tead1 and Junb in bone

marrow mesenchymal stem cells (BMSCs), resulting in the

weakened osteogenic differentiation and enhanced adipogenic

differentiation of BMSCs, which reveals a new mechanism

mode of “nerve-bone axis” leading to osteoporosis (19). In

January 2022, Mi et al. implanted electrodes into the dorsal

root ganglia (DRG) at the L3 and L4 of the rat spine. They found

that electrical stimulation of the DRG could activate the
Frontiers in Endocrinology 03
Ca2+/CaMKII/CREB signaling pathway and action potential,

directly promoting the synthesis and release of CGRP, further

inducing osteoporotic fracture healing and the formation of H-

type blood vessels (20). Peripheral nerves can secrete

neurotransmitters, neuropeptides, neurotrophic factors, among

other signaling molecules, which can affect bone metabolism. In

conclusion, neuropeptides can act as neurotransmitter signals

and also act on adjacent tissues by paracrine regulation.

Although XIE et al. (19) found the critical role of NPY in the

bone microenvironment and revealed the regulatory pattern of

the “nerve-bone axis”, the crosstalk mechanism of “Peripheral

Nerve-Angiogenesis-Osteoclast-Osteogenesis” was not fully

revealed. It is hoped that there will be more evidence to

explain the “Quaternary Regulation” theory in the future.
Peripheral nerves innervating bones
and their characteristics

Bones are dynamic organs, and peripheral nerves are

distributed in cortical and cancellous bone, periosteum, and

bone marrow (21) (Figure 1). Sensory and autonomic nerve

fibers are arranged in a fishnet-like arrangement on the

periosteal surface to detect mechanical or chemical stimulation

of cortical bone (21). The peripheral nervous system includes

somatosensory nerves (sensory nerve fibers) and autonomic

nerves (sympathetic and parasympathetic nerve fibers).

Whether the autonomic nerves innervating the bone include

parasympathetic nerves is still controversial. Some scholars

believe that although the immunofluorescence of acetylcholine
FIGURE 1

Peripheral nerves that dominate bones can be classified according to the size of axon diameter and the type of myelin sheath, which can be
divided into C fibers, Ab fibers, and Ad fibers. The most abundant in bones is the unmyelinated C fiber with an axonal diameter of 0.2-0.5um and
conduction velocity of 0.5-2m/s. Sympathetic nerves and some sensory nerves belong to the C-type nerve fibers. The sympathetic nerve has
two phenotypes of adrenaline and cholinergic, which can release NPY (co-release with NE) and VIP (co-release with ACH), respectively. C-type
sensory nerve fibers can be divided into peptide-poor and peptide-rich. Peptide-poor C-type fibers are rarely distributed in bones, while
peptide-rich C-type sensory fibers can secrete CGRP and SP. The second common nerve fibers in bone are A-d fibers, characterized by a thin
myelin sheath, axon diameter of 1-5mm, and conduction velocity of 5-30 m/s. These fibers are peptide-rich fibers, which can also secrete CGRP
and SP. Ab fibers are characterized by a large axon diameter (6-12 um), thick myelin sheath, and fast conduction velocity (35-75 m/s). However,
these fibers are rarely distributed in bones.
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transporter (VACHT) and acetylcholine transferase (ChAT)

exists in the bone microenvironment, some postganglionic

sympathetic neurons also have the chemical characteristics of

cholinergic nerves, and the postsynaptic neurons of the

parasympathetic nerves are relatively short, whether they can

directly reach and dominate the bone remains unclear (17, 22).

Bajayo et al. (23) used the pseudorabies virus to trace the

autonomic nerves innervating the skeleton and did not find

that the posterior autonomic nerves have parasympathetic

ganglia. However, it has been clear that the nerve fibers that

dominate the bone include sensory nerve fibers, norepinephrine

nerve fibers, and cholinergic nerve fibers.

The peripheral nerves dominating the bone can be classified

according to the size of axons, the presence or absence of myelin

sheaths, and the transmission speed. The most significant

proportion of nerve fibers is C fibers with no myelin sheath,

small axon diameter (0.2-0.5 mm in diameter), and slow

transmission speed (0.5-2 m/s). C fibers can be divided into

peptide-poor and peptide-rich fibers. Peptide-rich C fibers can

secrete neuropeptides, such as calcitonin gene-related peptide

(CRPG) and Substance P (SP). The second most common nerve

fibers in bone are A-d fibers with thin myelin sheath, moderate

axon diameter (1-5µm in diameter), and moderate signal

transmission speed (5-30 m/s). These fibers are peptide-rich

fibers, which can also secrete CGRP and SP. Finally, A-b fibers

with thick myelin sheath, large axon diameter (6-12mm in

diameter), and fast conduction velocity (35-75 m/s) are

relatively rare or absent in bone. Sympathetic nerve fibers

dominating bones are C fibers with adrenergic or cholinergic

phenotypes, the former secreting norepinephrine and

neuropeptide Y (NPY), the latter secreting acetylcholine and

vasoactive intestinal peptide (VIP) (24). A-b fibers usually detect

non-noxious stimuli and can transmit subtle pressure changes

(such as touch);in the same way, A-d fibers are the primary fiber

type involved in the transmission of pain stimuli and noxious

mechanical stimuli (such as pressure and mechanical

deformation); C fibers are mainly involved in the detection

and transmission of noxious thermal, mechanical, and

chemical stimuli (25). Functionally, since bones and joints are

deeply located in the body, the lack of A-b nerve fibers may be

related to the fact that bones and joints do not need fine touch

sensation (26). The reason why unmyelinated and peptide-poor

C fibers (abundantly expressed in the skin) are less abundant in

bones and joints is not yet clear (26). XIE et al. (27) confirmed

through animal experiments that the expressions of SP, CGRP

and VIP in the tibia were significantly decreased in the OVX

group, while NPY, NPY1R and NPY2R were significantly

increased. Liu et al. (28) found that: OVX can lead to the

decrease of TACR1, CGRP, CALCRL, NPY, and NPYY2 in the

brain of mice, the increase of TACR1 in bone, and the decrease

of SP, CALCRL, VIP, and VPAC2, confirming that the effect of

estrogen deficiency on bone after ovariectomy is related to It is

related to the regulation of SP, CGRP, VIP and NPY.
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CGRP

In 1982, CGRP was discovered in medullary thyroid cancer

tissue. CGRP is a multifunctional neuropeptide consisting of 37

amino acids. After synthesis, CGRP will be transported to

sensory nerve endings and stored in synaptic vesicles (29, 30).

It was found that CGRP includes two subtypes (a and b). Mice

lacking aCGRP showed decreased bone mass due to decreased

bone formation rate, while mice lacking bCGPR showed an only

mild and temporary reduction in bone formation, indicating

that aCGRP can stimulate bone formation and bCGRP plays a

minor role in osteogenesis (31, 32). CGRP receptor complex is

composed of three independent proteins, including a G-protein

coupled receptor (GPCR), receptor activity modifying protein 1

(RAMP1), and calcitonin receptor-like receptor (CLR). CGRP

receptor is expressed in vascular endothelial cells, osteoclasts,

osteoblasts, and bone marrow stromal cells (33–36).

CGRP inhibits osteoclasts activity
A growing number of studies have found that CGRP can

inhibit the activity of osteoclasts and thus affect bone resorption.

Although CGRP efficacy is lower than that of calcitonin, its role

in inhibiting bone resorption has been valued by many

researchers. It was found that after mouse bone marrow cells

were induced and differentiated into osteoclasts by macrophage

colony-stimulating factor (M-CSF) and nuclear factor-kB
receptor activator of nuclear factor-kB ligand (RANKL). Only

0.1 nM concentration of CGRP can reduce the area of the

absorption lacuna, and when the CGRP concentration needs

to be greater than 10 nM, TRAP-positive cells can be formed,

suggesting that the inhibitory effect of CGRP on osteoclast

activity is more substantial than that on differentiation (33). In

paraplegic patients, the bone mineral density in the paralyzed

area decreases by 30-50% after one year, and the mechanism

leading to increased bone resorption and rapid bone loss after

paralysis is still unclear. Akopian et al. (37) found that the ability

of progenitor cells in the bone marrow to form osteoclast-like

cells increased by extracting bone marrow from paraplegic

patients for in vitro culture and the formation of osteoclasts

was significantly reduced after treatment with CGRP. Valentijn

et al. (38) injected CGRP into OVX rats and found that it

inhibited bone resorption-related indicators. It shows that

CGRP can inhibit the activity of osteoclasts.

Monocytes/macrophages are the source of osteoclasts,

meanwhile macrophages are considered to be an important

cell population that regulates bone regeneration and

osseointegration, and their polarized phenotype is particularly

important. M1 macrophages are pro-inflammatory, while M2

Macrophages have anti-inflammatory properties. Studies have

found that M1 macrophages may promote early and mid-stage

osteogenesis, while M2 macrophages play an important role in

matrix mineralization, and a proper switch from M1 to M2

phenotype is beneficial for fracture healing (39, 40). Yuan et al.
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constructed CGRP knockout mice and found that compared

with the KO group, the CGRP+/+ group was more likely to

induce more macrophages to transform to the M2 phenotype,

which may be beneficial for peri-implant wound healing and

osseointegration (41).

CGRP promote osteogenesis
Li et al. found the CGRP level significantly reduced in the

bone marrow supernatant of elderly mice. In vitro experiments

revealed that CGRP could promote osteogenic differentiation of

BMSCs and inhibit adipogenic differentiation, indicating that

CGRP may be a key regulator of age-related conversion between

osteogenic differentiation and adipogenic differentiation of

BMSCs be used to treat age-related bone loss (42). In the

experiment of primary osteoblasts, CGRP promotes the

proliferation and osteogenic activity of osteoblasts and their

precursors in a dose-dependent manner by increasing the

intracellular cAMP level and up-regulating the expression of

activated transcription factors (34). XIANG et al. (43)

constructed a CGRP gene knockout mouse model and found

that after knocking out the CGRP gene, the amount of bone

formation in mice was reduced. Targeting osteoblasts to express

CGRP could increase the bone density of mice (31, 43, 44). Bone

cement is a kind of medical material for orthopedic surgery.

Studies have found that bone cement with CGRP can

significantly enhance the proliferation of BMSCs, increase the

activity of alkaline phosphatase in the process of BMSCs

differentiation, and up-regulate the expression levels of

osteogenic differentiation-related genes such as Bmp2,

Osteonectin and Runx2 (45).

In conclusion, CGRP can inhibit bone resorption and

promote bone formation in vivo and in vitro.

CGRP promotes angiogenesis
As one of the strongest vasodilators currently known, CGRP

promotes bone formation partly because of its ability to dilate

blood vessels and stimulate endothelial cell migration,

promoting angiogenesis in bone remodeling (46). In vitro

experiments have found that CGRP promotes endothelial cell

proliferation and tube formation by enhancing the expression of

vascular endothelial growth factor (VEGF), and this mechanism

has been further verified in tumor tissues (47, 48). Bo et al. used

CGRP to intervene in the co-culture system of human primary

osteoblasts and human umbilical vein endothelial cells. CGRP

can directly promote osteogenesis and indirectly promote

osteogenesis by stimulating the differentiation of vascular

endothelial cells. At the same time, CGRP can relax blood

vessels, regulate the local blood flow of injury, accelerate blood

supply, and jointly promote bone tissue repair (49). Distraction

osteogenesis (DO), a surgical approach used to treat bone defects

and limb lengthening, researchers injected CGRP into the area of

bone defects and found that CGRP enhanced vascularization
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and bone regeneration in a rat DO model (50). H-type blood

vessels play an important role in coupling osteogenesis.

Additionally, VEGF can promote the formation of H-type

angiogenesis, indirectly indicating a positive correlation

between CGRP and H-type angiogenesis.
Substance P (SP)

SP is a peptide composed of 11 amino acids, widely

distributed in the peripheral and central nervous systems, and

belongs to the tachykinin family. SP receptors include NK-1,

NK-2, and NK-3 receptors. Among them, SP has the highest

affinity with the NK-1 receptor, which is the primary receptor of

SP (51). NK1 receptors are not only found in cells of the nervous

system and immune system, but also widely exist in osteoclasts,

osteoblasts, osteocytes, epithelial cells, and vascular endothelial

cells (52). SP is involved in many physiological and pathological

processes, including angiogenesis and dilation, smooth muscle

contraction, pain transmission, neurogenic inflammation, and

bone metabolism (53). When SP receptor antagonist was used to

block SP signal, the bone loss of OVX mice was aggravated,

indicating that SP was of great significance to maintaining

normal bone mass (54).

SP promotes bone resorption
SP was shown to induce osteoclastogenesis and enhance

bone resorption activity by activating the transcription of NF-kB
in bone marrow macrophages (55). Niedermair et al. (56) found

the osteoclast apoptosis levels increased and a decreased rate of

bone resorption after specific knockout of SP in a constructed

kinin precursor 1 (Tac1)-deficient mice (Tac1 is the gene

encoding SP). Hemokinin-1 (HK-1) is also a member of the

tachykinin family. HK-1 has a strong affinity for NK-1 receptors,

but HK-1 does not affect the proliferation and differentiation of

osteoclasts. Fukuda et al. divided bone marrow cells into two

groups. The control group was intervened by 10-7M SP, and the

experimental group was intervened by 10-7M SP and 10−5MHK-

1. It was found that TRAP-positive multinucleated cells in the

experimental group were significantly reduced, confirming that

SP could promote osteoclast differentiation (57).

SP regulates osteogenesis
Both osteoblast precursor cells and bone marrow stromal cells

express NK1 receptors. Wang et al. confirmed through in vitro cell

experiments that SP could stimulate the proliferation and

differentiation of bone marrow stromal cells in a dose-

dependent manner. Low concentrations (10-12M) of SP can

stimulate the expression of alkaline phosphatase, osteocalcin

and Runx2 protein. A high SP concentration (10-8M) could

enhance bone marrow stromal cells mineralization (55). Goto

et al. used SP to intervene in rat osteoblasts and observed that SP
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could stimulate the expression of osteocalcin, Runx2, and type I

collagen in the late osteogenic process. However, it could not

produce the above effect in the early differentiation process,

suggesting that SP could improve the osteogenic activity of late

osteoblasts by acting on the NK1 receptor (58). Fu et al. (59)

confirmed that SP could accelerate b-catenin translocation

through the Wnt pathway to enhance osteogenic differentiation

of BMSCs, and SP could also promote osteoblast differentiation

and bone formation by increasing the production of cAMP and

bone morphogenetic protein 2 (BMP-2). Fu et al. (60) used SP to

intervene in BMSCs and found that SP promoted the expression

of Bcl-2 and increased the ratio of Bcl-2 to Bax, confirming that SP

inhibited the apoptosis of BMSCs through NK-1 receptors. Zhang

et al. (61) found in the co-culture experiments of dorsal root

ganglion (DRG) cells and BMSCs that DRG enhanced the

autophagy level of BSMCs through the AMPK/mTOR signaling

pathway, thereby maintaining the differentiation activity, and this

process was related to the release of substance P. Therefore, SP can

stimulate the proliferation, differentiation, and mineralization of

pre-osteoblasts and improve the activity of late osteoblasts, but the

specific mechanism needs to be further studied (62).

SP regulates angiogenesis
In a previous report, Liu et al. established a co-culture system

of trigeminal ganglion sensory neurons and vascular endothelial

cells. They found that when sensory neurons secreted SP

increased, it could effectively promote the activation of

vascular endothelial cells and promote angiogenesis,

confirming that sensory neurons could directly promote

angiogenesis through SP signal (63). Moreover, Kim et al.

immobilized SP in nanofibrous materials to enable continuous

release of SP and used this material to intervene in the hind limb

ischemia model in mice. It was found that SP could promote the

recruitment of mesenchymal stem cells into the ischemic area,

promote angiogenesis, enhance tissue perfusion and prevent

limb ischemic necrosis (64). Um et al. (65) reported that the

number of circulating endothelial progenitor cells and CD31+

cells in peripheral blood increased after subcutaneous injection

of SP, while CD31+ cells were associated with an angiogenic

activity. In experiments in which sensory neurons (SNs) were

co-cultured with endothelial cells, Leroux et al. found that CGRP

and SP up-regulated angiogenic markers, including VEGF,

angiopoietin 1, and Col4, and promoted angiogenesis (66). SP

can promote angiogenesis, but whether it can target H-type

blood vessels to affect bone metabolism still needs further

research directions.
NPY

NPY is a polypeptide composed of 36 amino acids and 1

carboxamide, expressed in the central nervous and peripheral

nervous systems. NPY can be released into peripheral bone
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tissue through paracrine function. In sympathetic fibers of

peripheral nerves, NPY is co-stored with norepinephrine, and

when stimulated, both are co-released into bone tissue (67).

Most mammals have the same NPY sequence, NPY is one of the

known evolutionarily conserved peptides, and NPY plays a role

by activating G protein-coupled receptors (Y receptors). At

present, five known Y receptors are Y1, Y2, Y4, Y5, and Y6.

NPY had the highest affinity with the Y2 receptor, followed by

Y1 and Y5, and the lowest affinity with the Y4 receptor (67).

NPY acts on peripheral bone tissue through
the Y1 receptor

Studies have found that the systemic knockout of Y1 and Y2

receptors can increase the cancellous bone mass, cortical bone

mass, and osteoblast activity in mice, showing a protective effect

on bone loss in OVX mice (68–70). The gene knockout of the Y4

receptor did not show changes in bone mass, osteoblast, and

osteoclast activity, but there was a synergistic relationship

between Y2 and Y4. The increased cancellous bone volume in

mice with double gene knockout of Y2 and Y4 was more

significant than in mice with a single gene knockout of Y2

(68). Y5 receptor is involved in angiogenesis, energy metabolism,

and seizure control, while the Y6 receptor has no function in the

human body (71). According to the review, the effect of NPY on

bone metabolism mainly acts on the Y1 and Y2 receptors.

NPY can bind to specific receptors in target organs to

regulate bone metabolism, which is considered a potential

target for treating OP and promoting bone repair (51). The

mechanism of NPY regulating bone metabolism is very complex,

affecting the endocrine through the central nervous system, such

as the expression of leptin, or directly affecting the peripheral Y1

receptor through the paracrine function peptidergic nerves (72).

It was found that NPY regulated bone metabolism by directly

acting on osteoblasts, and the expression of OPG was not related

to Y2 receptor (73). Current research has found that Y1 and Y2

are expressed in the central nervous system, while osteoblasts

express the Y1 receptor but not the Y2 receptor. The Y2 receptor

in the central nervous system can regulate the function of the

peripheral Y1 receptor (74, 75). This article mainly describes

NPY and the role of Y1 receptors in the bone microenvironment.

When the Y1 receptor of mice was knocked out, bone

formation and bone absorption increased simultaneously, but

bone formation increased significantly (76). In this sense, bone

marrow stromal cells extracted from Y1 receptor knockout mice

were cultured under osteogenic conditions, and it was found that

these bone marrow stromal cells could form more mineralized

nodules, which not only increased the proliferation and

differentiation ability of bone progenitor cells but also

significantly enhanced the mineralization ability of mature

osteoblasts (74). Khor et al. found that osteoclasts have Y1

receptors, and NPY can directly act on osteoclasts through Y1

receptors to inhibit bone resorption by regulating the expression

of cAMP, RNKL, and OPG (73, 77). In summary, NPY directly
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inhibits the differentiation of mesenchymal stem cells and the

activity of mature osteoblasts through the Y1 receptor, resulting

in a high bone mass phenotype in Y1 receptor knockout mice.

NPY can significantly inhibit bone formation and slightly inhibit

bone resorption, but the overall phenotype is reduced bone mass

and bone strength.

NPY can promote angiogenesis
In addition to its effects on osteoblasts and osteoclasts, NPY

also regulates angiogenesis. Jiang et al. (78) intervened in

vascular smooth muscle cells with NPY and found that NPY

promoted the proliferation and migration of vascular epithelial

cells and stimulated the growth of vascular smooth muscle.

BIIE0246 is a Y2 receptor antagonist. Alasvand et al. (79) used

this antagonist to intervene in tumor tissue and found that

capillary density and VEGF level in tumor tissue decreased,

confirming that NPY could regulate angiogenesis by activating

the Y2 receptor on endothelial cells, but the specific mechanism

was not precise. Other studies also confirmed that NPY at

physiological concentrations promoted the synthesis of nitric

oxide and VEGF release by activating Y2 and Y5 receptors,

thereby inducing angiogenesis, and presented the therapeutic

potential to promote the recovery of blood supply in ischemic

tissues (80–82). Liu et al. found that NPY promoted osteoblast

differentiation through the canonical Wnt pathway in a

concentration-dependent manner at concentrations ranging

from 10-12 to 10-8 mol/L, while that NPY treatment increased

the migration of BMSCs and the expression of VEGF (83). This

conclusion does not conflict with the above point, because NPY

can exert different effects through different receptors.
VIP

VIP was isolated from porcine intestines in 1970 and was

named vasoactive intestinal peptide because of its vasodilating

effect, which belongs to the glucagon/secretin superfamily. It was

later found that VIP exists in the intestines and expresses in the

central and peripheral nervous systems and can act as a

neurotransmitter, so it was categorized as a neuropeptide.

Furthermore, VIP is closely related to the occurrence of OP.

In a cross-sectional study, Wang et al. (84) found that the

expression level of VIP in serum of postmenopausal

osteoporosis (PMOP) patients was lower than that of the

healthy group, and the level of VIP was positively correlated

with the bone mineral density of lumbar 1-4 and total hip.

VIP is abundant in the periosteum, and VIP nerve fibers are

mainly distributed in the Haversian and Volkmann’s canals. As early

as 1986, Hohmann et al. (85)found that the nerve fibers that

dominate the bone and periosteum can regulate bone

mineralization by expressing VIP. After the resection of the

sympathetic postganglionic fibers, the VIP release was inhibited,

and further studies found that VIP and acetylcholine coexist in
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vesicles, confirming that the sympathetic nerve releases VIP with the

cholinergic phenotype. VIP receptors include the VPAC1 receptor,

VPAC2 receptor, and PAC1 receptor. Moreover, the VPAC1

receptor and VPAC2 receptor have similar affinity to VIP and

Pituitary adenyl cyclase active peptide (PACAP), while the PAC1

receptor has 100-1000 times higher affinity to PACAP than VIP (86).

Effects of VIP on bone metabolism and
blood vessels

Both osteoblasts and osteoclasts have functional receptors

for VIP, and VIP regulates the bone formation, metabolism, and

remodeling by specifically binding to receptors on different cells

(87). In this sense, Lundberg et al. (88) proved by RT-PCR that

unmineralized mouse skull osteoblasts expressed VPAC2 but did

not express VPAC1 or PAC1. However, after induced osteoblast

mineralization, it can express VPAC1. Furthermore, Ransjö et al.

(89) demonstrated that mouse bone marrow osteoclasts

expressed VPAC1 and PAC1 receptor mRNA but not

VPAC2 mRNA.

Observing the morphology of osteoclasts in rat bone

marrow, researchers found that VIP can lead to cytoplasmic

contraction of osteoclasts and decreased osteoclast motility (89).

The binding of VIP to the VPAC1 receptor can inhibit the

aggregation of osteoclasts and weaken the bone resorption

activity of osteoclasts. Additionally, VIP can also stimulate

osteoblasts and downregulate osteoclastogenesis by promoting

cAMP production (90). VIP binds to VPAC2 receptors in

osteoblasts, activates AMP and ERK signaling pathways, and

increases the ratio of RANKL/OPG, confirming the important

role of VIP in bone remodeling (91)Liu et al. (92) confirmed that

VIP could promote osteogenic differentiation of rat bone

marrow mesenchymal stem cells in vitro by activating Wnt/b-
catenin signaling pathway. Besides, the team used the

sympathetic resection mouse model constructed by 6-

hydroxydopamine (6-OHDA). Based on the model, the femur

fracture model was established. It was found that the VIP

expression in the fracture site of the sympathetic resection

mouse was significantly reduced, and the expression levels of

osteocalcin (OCN) and osteopontin (OPN) were reduced. VIP

treatment could inhibit bone resorption and rescue the

inhibitory effect of 6-OHDA on bone remodeling (93).

Although many studies have confirmed that VIP can inhibit

osteoclast activity, the effects of VIP on osteoblasts and

osteoclasts are not mutually exclusive. VIP binds to the

VPAC2 receptor of osteoblasts to activate protein kinase A,

thereby stimulating the production of IL-6, which can promote

osteoclast activity (94). In the case of co-culture of osteoclasts

and osteoblasts, after adding VIP, osteoclasts will be inhibited in

the early stage, but with the extension of VIP stimulation,

osteoclasts will get rid of the initial inhibition and gradually

recover their activity. It indicates that VIP has a dual regulatory

function on osteoclast activity (95). The existence of dual

regulation may be that the VIP receptors of osteoblasts and
frontiersin.org

https://doi.org/10.3389/fendo.2022.908043
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2022.908043
osteoclasts are different, and the affinity of each receptor to VIP

is different, resulting in different effects of VIP on osteoclasts at

different times and concentrations. The mechanism of VIP on

osteogenesis and osteoclast still needs further research.

Furthermore, VIP is an endogenous vasodilator. Intravenous

injection of VIP can lead to strong vasodilation and reduced

blood pressure. VIP and its receptors are potential targets for

migraine drugs (96). In vitro experiments revealed that VIP can

also stimulate tube formation in human umbilical vein cells and

increase VEGF expression during the osteogenic differentiation

of rat bone marrow mesenchymal stem cells (93). The

concentration of serum VIP correlated with the severity of

non-traumatic femoral head necrosis, which may be related to

the role of VIP in promoting angiogenesis (97).
Discussion

There is an interaction between peripheral nerve and bone

tissue. Bone cells can secrete BMPs, chemokines, axon guidance
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factors, neurotrophic factors, and CGRP to regulate the development

and repair of the nervous system, indicating that there is a crosstalk

between bone cells and peripheral nerve, which is essential for

regulating the dynamic balance of bone growth, and repair.

Correct innervation is necessary for fracture repair and bone

development. Neurological changes and abnormal levels of

specific neuropeptides are thought to be partly responsible for

degenerative changes in the bones, such as OP and osteoarthritis.

Although neuropeptides and their receptors are not the only

factors in the regulation of peripheral nerves on bone,

neuropeptides are one of the mediators, but their role should

be monitored. At present, neuropeptides are considered one of

the targets for the treatment of OP, but the clinical evidence of

the application of neuropeptides and their receptor antagonists

or agonists in OP still has significant limitations. Although

neuropeptides have essential effects on bone metabolism, it is

still a long way to treat them as drugs for OP.

Neuropeptides are a complex system. Neuropeptides have

opposite effects on bone cells due to different concentrations and

receptor-ligand interactions (Figure 2). Furthermore,
FIGURE 2

Effects of different neuropeptides on “Angiogenesis-Osteoclast-Osteogenesis”. CGRP released from peripheral sensory nerve endings can inhibit
the activity of osteoclasts and inhibit the differentiation of macrophages to osteoclasts by acting on CGRP receptors. At the same time, CGRP
can promote the activity of osteoblasts and the osteogenic differentiation of bone marrow mesenchymal stem cells. SP is another neuropeptide
released from sensory nerve endings, promoting the differentiation of macrophages into osteoclasts and improving osteoclast activity by acting
on NK1 receptors. SP can also promote osteoblast activity and bone marrow mesenchymal osteogenic differentiation of stem cells. NPY is
released from adrenergic nerve endings. NPY is released from adrenergic nerve endings, and NPY acts on peripheral Y1 receptors to inhibit
osteoblast activity, osteogenic differentiation of bone marrow mesenchymal stem cells, and osteoclast activity. VIP is released from
acetylcholinergic nerve endings, inhibits osteoclast activity by binding to VPAC1 receptor, and can also promote osteoblast activity by binding to
VPAC2 receptor. VIP also promotes osteogenic differentiation of bone marrow mesenchymal stem cells. CGRP, SP, NPY, VIP can promote VEGF
production indirectly promote the formation of CD31hi Emcnhi blood vessels. In addition, CGRP, SP, and VIP have the effect of vasodilation.
Figure 2 was modified from Servier Medical Art(http://smart.servier.com/), licensed under a Creative Common Attribution 3.0 Generic License.
(https://creativecommons.org/licenses/by/3.0/).
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neuropeptides do not act independently, and the relationship

between neuropeptides is also worthy of further exploration. It

was found that both SP and CGRP could promote the expression

of BMP2 and Runx2 and induce mineralization in mouse

osteoblasts in vitro. However, when SP and CGRP were used

in combination, the BMP2 signal was down-regulated and

osteogenic differentiation was inhibited, suggesting that there

might be an interaction between these two neuropeptides (98).

Among the four neuropeptides described in this paper, CGRP is

the most studied, showing prominent promotion of bone

formation and angiogenesis in various aspects. Experimental

results show that magnesium-containing intramedullary nails

can stimulate local CGRP release, promote osteogenic

differentiation of periosteal stem cells, and accelerate femoral

shaft fracture healing in OVX mice (99). Whether similar

mechanisms can be used to treat osteoporotic fractures is

worthy of further study. All four neuropeptides have been

confirmed to promote VEGF expression, thereby promoting

angiogenesis. Although it has not been reported that these

four neuropeptides can directly target H-type vascular

endothelial cells, VEGF is an important promoter of H-type

vascular differentiation. Neuropeptides have regulatory effects

on nerves, osteoblasts, osteoclasts, and blood vessels and are

likely to be an essential factor in the crosstalk of “Peripheral

Nerve-Angiogenesis-Osteoclast-Osteogenesis”. Neuropeptide is

an important entry point to improve the theory of “quaternary

regulation theory”.

The peripheral nerves that innervate the bones include sensory

nerves. When talking about sensory nerves, we must mention the

transmission of pain signals by sensory nerve fibers. Pain is one of

the most terrible complications of OP, and about 85% of OP

patients suffer from bone pain (100). Pain is also the most direct

and typical symptom of OP and is one of the main reasons OP

patients seek medical attention. Both OP and osteoporotic fractures

are related to chronic bone pain. At present, the mechanism of

chronic pain in OP is still unclear. Nonsteroidal anti-inflammatory

drugs or opioids are generally used according to the degree of pain,

but long-term use of opioids will reduce bonemineral density, cause

gastrointestinal damage, renal toxicity, and addiction (101).

Moreover, studies have confirmed that CGRP, SP, and VIP can

induce peripheral pain maintain microglia activation and central

sensitization (102, 103). However, NPY can mediate analgesic

effects through Y1 and Y2 receptors, and intrathecal injection of

NPY can relieve neuropathic, inflammatory pain, or postoperative

pain (104). The density of bone innervation is related to the severity
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of bone pain after an injury. Reducing the density of CGRP-positive

nerve fibers can effectively reduce the pain caused by fractures (105).

Promoting bone metabolism and inhibiting pain are the best

strategies for treating OP. Neuropeptides are a new way to

achieve this therapeutic strategy.
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