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ArtSeg—Artifact segmentation 
and removal in brightfield cell 
microscopy images without manual 
pixel‑level annotations
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Maris‑Johanna Tahk 2, Ago Rinken 2, Kaupo Palo 3, Leopold Parts 1,4* & 
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Brightfield cell microscopy is a foundational tool in life sciences. The acquired images are prone 
to contain visual artifacts that hinder downstream analysis, and automatically removing them is 
therefore of great practical interest. Deep convolutional neural networks are state‑of‑the‑art for 
image segmentation, but require pixel‑level annotations, which are time‑consuming to produce. 
Here, we propose ScoreCAM‑U‑Net, a pipeline to segment artifactual regions in brightfield images 
with limited user input. The model is trained using only image‑level labels, so the process is faster 
by orders of magnitude compared to pixel‑level annotation, but without substantially sacrificing the 
segmentation performance. We confirm that artifacts indeed exist with different shapes and sizes in 
three different brightfield microscopy image datasets, and distort downstream analyses such as nuclei 
segmentation, morphometry and fluorescence intensity quantification. We then demonstrate that our 
automated artifact removal ameliorates this problem. Such rapid cleaning of acquired images using 
the power of deep learning models is likely to become a standard step for all large scale microscopy 
experiments.

Advanced microscopes extract rich visual information from biological samples at scales from individual atoms 
to cells and tissues. Among the different imaging modalities, brightfield illumination with transmitted light is 
the simplest to acquire while avoiding damaging the  sample1. The usefulness of this technology has led to its 
widespread  adoption2–4, and thereby to a dramatic increase in the volumes of microscopy data. However, the 
automated analysis techniques required to extract information at scale are often hindered by the artifacts present 
in the  images5,6. Detecting and neutralizing the impact of such problematic image areas would provide more 
accurate results from  experiments3, making artifact segmentation an important, albeit overlooked, research area 
in cell biology and  beyond7,8.

While any signal that deviates from the reflection of expectation can be considered  artifactual9, the common 
source of artifacts in cell microscopy is the introduction of foreign objects during sample preparation. These 
include dust, fragments of dead cells, bacterial contamination, reagent impurities, defects on the light path, etc. 
We focus on detecting these low-level  anomalies8,10 in brightfield microscopy and use the term artifact with this 
meaning. Manually identifying all the affected images or image regions is a time-consuming solution to this 
 problem11,12. A common alternative approach for large datasets is computer-aided delineation and removal of 
the artifacts, but two complexities make this task challenging. First, artifacts appear stochastically in microscopy 
images leading to sparse data. Second, artifact characteristics, such as morphology and texture, are often very 
heterogeneous and hence are challenging to define.This means, it is unfeasible to comprehensively collect rep-
resentative examples of all possible artifact types, which renders computational modeling difficult.

Deep learning has emerged as the favored solution to artifact  detection7,8. While strongly supervised con-
volutional neural networks (CNN) such as U-Net13–17 are state-of-the-art for most computer vision tasks, they 
cannot overcome some challenges that artifact detection  brings7. A major bottleneck for the strongly supervised 
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deep learning methods is their requirement of pixel-level annotation, which is time-consuming, and requires 
substantial expertise. As an alternative, weakly supervised techniques such as  ScoreCAM18, which involve only 
image-level labeling, greatly reduce the time needed to prepare the dataset. In particular, generative autoencoder-
based  models19–24 are trained to reconstruct artifact-free images and report artifacts on test images as areas with 
large reconstruction error. Alternatively, one-class classification  approaches25–27 train a classifier on artifact-free 
images and report artifacts as images with a low probability of belonging to this clean class. Combining the 
performance advantages of the strongly supervised methods and the convenience of image-level annotations 
would therefore be of great practical interest and impact.

In this work, we make the following key contributions: (1) we empirically confirm the prevalence of artifacts 
in brightfield microscopy images; (2) test a range of existing approaches in domains other than microscopy for the 
artifact segmentation task, and find none of them is accurate for practical use; (3) combine the merits of weakly 
and strongly supervised methods for artifact segmentation from brightfield cell microscopy images using only 
image-level annotations. To our knowledge, this is the first attempt to segment artifacts in microscopy images in 
a weakly supervised way. We introduce ScoreCAM-U-Net, a model that combines the informative pixel-level28 
and cheap-to-generate image-level18 annotation schemes, and accurately detects artifacts in held-out samples. As 
training is performed using only image-level labels, generating training data is orders of magnitude cheaper, but 
without substantially sacrificing performance compared to pixel-level data. (4) We study the impact of removing 
artifacts on different downstream applications. We demonstrate that artifacts in microscopy images confound 
downstream analyses such as nuclei segmentation or quantification of ligand binding, and that ScoreCAM-U-
Net successfully overcomes these problems.

Methods
To delineate artifacts from brightfield microscopy images, we introduce ScoreCAM-U-Net, a method that uses 
image-level annotations as input for training, and produces artifact segmentations as an output. We compare the 
performance of our pipeline with a strongly supervised counterpart trained on pixel-level annotations as well as 
with state-of-art models that are trained using image-level labeling on three different datasets.

Datasets. We chose three datasets for this study to cover multiple common variables in experimental design 
to better assess the generalizability of the results. Overall, the datasets cover nine different cell lines, fixed and 
live cells, two different plate formats and two microscopes. The datasets provenances have been described 
 previously3,4,29,30 and we briefly describe their most important properties here.

Seven cell lines dataset. Seven types of cells including human cells from breast cancer (MCF7), fibrosarcoma 
(HT1080), cervical cancer (HeLa), hepatocellular carcinoma (HepG2), alveolar basal epithelial (A549), dog cells 
from kidney tissue (MDCK), and mouse embryonic fibroblast cells (NIH3T3) were seeded in Collagen type 
1-coated CellCarrier-384 Ultra Microplates (PerkinElmer, Waltham, MA; cat. 6057700). The cells were stained 
with 10 µg/ml Hoechst 33342 (Thermo Fisher, Waltham, MA; cat. H3570) and fixed in formaldehyde (Sigma, St. 
Louis, MO; cat. 252549). A 20 × water immersion objective was used to acquire images on an Opera Phenix high-
content screening system (PerkinElmer) in confocal mode. Nine fields of view were acquired from each well with 
a total of 3024 images of size 1080 × 1080 px (1 px = 0.59 µm) with 350 cells in each field of view on average. All 
fields of view were imaged in fluorescent and brightfield modalities, with one modality acquired first on all wells 
and then the second. This dataset is referred to as “seven cell lines” in the further text.

LNCaP dataset. The cells of human prostate adenocarcinoma (LNCaP, from ATCC) were seeded in a Cell-
Carrier-384 Ultra Microplate (PerkinElmer), fixed in formaldehyde, and stained using DRAQ5 fluor (Abcam, 
Cambridge, United Kingdom) to tag nuclear DNA. A 20 × objective was used to acquire images on a CellVoyager 
7000 (Yokogawa, Tokyo, Japan) instrument in confocal mode to acquire fluorescence and brightfield images of 
size 2556 × 2156 pixels (1 pixel = 0.325 µm) with 681 cell in each field of view on average. Similar to the seven cell 
lines dataset, one modality was acquired on all wells before moving on to the second modality.

ArtSeg‑CHO‑M4R dataset. The imaging was performed as described  previously29. Briefly, live CHO-K1-hM4R 
cells were seeded with a density of 25 000 cells per well into µ-Plate 96 Well Black plate (Ibidi) 5–7 h before the 
imaging to allow attachment. All the experiments were performed in the cell culture medium DMEM/F-12 
with 9% FBS (Sigma), antibiotic antimycotic solution (100 U/ml penicillin, 0.1 mg/ml streptomycin, 0.25 μg/
ml amphotericin B, Sigma) and 750 μg/ml of selection antibiotic geneticin (G418, Capricorn Scientific). The 
final volume in the well was 200 μl. All imaging experiments were carried out at 37 °C in the 5%  CO2 atmos-
phere. The images were captured with Cytation 5 Imaging Multi-Mode Reader (BioTek, Bad Friedrichshall, 
Germany). Images were obtained using a LUCPLFLN 20 × objective lens with working-distance of 6.6 mm, and 
numerical aperture of 0.45 (Olympus), using LED excitation source with 531(40) nm filter and captured with 
593(40) nm emission filter. The field of view size was 1224 × 904 pixels (1 pixel = 0.323 µm). For a single field 
of view, a brightfield image was obtained first, which was immediately followed by fluorescence image acquisi-
tion. These steps were repeated for four fields of view in each well. In all experiments, a constant concentration 
of 2 nM UR-CG07231, a TAMRA labeled fluorescence ligand was used to visualize cells expressing muscarinic 
M4 receptors in the fluorescence channel. In concentration–response experiments atropine, arecholine (Sigma), 
UNSW-MK25932 and UR-SK7533 were used. UNSW-MK259, UR-SK75 and UR-CG072 were kindly provided 
by Dr. Max Keller from the University of Regensburg. The ArtSeg-CHO-M4R dataset is made freely available 
for public use.
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Artifact annotation. The seven cell lines and LNCaP data were inspected and 11.4% and 6.5% of the samples 
were found to have artifacts, 344/3024 and 51/784 fields-of-view respectively. The same number of fields-of-view 
from each dataset were randomly sampled to be used as training images without artifacts. At the same time, 
99.2% of samples in the ArtSeg-CHO-M4R dataset (1171/1181) were found to have artifacts. The clean images 
for this dataset were generated as described below.

For all three datasets, pixel-level ground truth masks of artifacts were generated by manual annotation. All 
annotators had prior training in bioimage analysis, microscopy and cell biology. For seven cell lines and LNCaP 
datasets, the artifacts were annotated as polygons using VGG image  annotator34 and for ArtSeg-CHO-M4R 
dataset, as freehand annotations with the MembraneTools module of Aparecium  software35. For all datasets, the 
artifact pixels were annotated while keeping the number of background pixels annotated as artifacts as low as 
possible. Due to the fuzzy nature of the artifacts borders, including some background pixels during annotation 
was inevitable. We nevertheless tried to emulate the typical human annotator and keep this number as low as 
possible, while maintaining a reasonable speed of the annotation process.

For the ArtSeg-CHO-M4R dataset, the artifact annotations contain a considerable number of background pix-
els in some images as it speeds up annotation and better reflects the annotation process in real-world conditions.

To obtain the weak labels for the seven cell lines and LNCaP datasets, the images were classified to be either 
clean or artifact-containing by manual inspection by the annotator. An image was considered clean if no artifacts 
were observed. For the ArtSeg-CHO-M4R dataset, as the vast majority of images contain at least one artifact, 
the clean images were generated by replacing the pixel values of manually annotated artifacts with the values of 
the corresponding pixels in the estimated background image. The background is estimated by fitting the original 
image with a two-dimensional second order polynomial  function36. To simulate imaging noise, a zero-centered 
noise profile of the background pixels is added to the estimated background. Testing the clean images using 
trained model shows that no artifacts could be detected from the resulting images. Moreover, the modified areas 
were also not visually detectable by human experts (Supplementary Fig. S1).

ScoreCAM‑U‑Net for artifact segmentation. Our weakly supervised artifact segmentation pipeline 
combines the ScoreCAM  model18 that highlights areas of the image most useful for differentiating between 
clean and artifact-containing images with U-Net  model4 that directly classifies pixels into categories. We call this 
pipeline “ScoreCAM-U-Net ’’ (Fig. 1, Appendix A, and supplementary Table S1).

ScoreCAM18 is a technique used to explain predictions made by deep learning methods, mostly applied to 
models that perform image classification. ScoreCAM analyzes both the model output and the corresponding 
image, and highlights parts of the image that had a large impact for the particular prediction. It proceeds in four 
steps. First, visual representations (activation maps) of the last convolutional layer are extracted from an image 
classification model  (ResNet37 in our implementation). Next, each activation map is upscaled to match the size 
of the input image, normalized to a range between 0 and 1, and projected onto a copy of the input image via 
multiplication, producing a projected input image. Then, the classification model (ResNet in our implementation) 
uses projected inputs to calculate the probability of the input image belonging to each class. Finally, all activation 
maps are summed, each multiplied by the corresponding class-largest probability and passed through the  ReLU38 
activation function to generate the final output (Supplementary Fig. S2). Unlike other competitors that rely on 
gradients, ScoreCAM uses the largest class probability to obtain the resulting map. It has been empirically shown 
that this feature makes ScoreCAM less noisy and therefore more useful in  practice18.

The strongly supervised U-Net13 model has already been successfully adapted for brightfield nuclei seg-
mentation and its architecture is described in detail in the corresponding  paper4 (Supplementary Fig. S2). The 
architecture consists of an encoder and a decoder connected by a bottleneck, and skip links which pass the signal 
from the encoder to the decoder. We used an encoder consisting of 15 convolutional layers that use convolutional 
filters of size 3 × 3 and a rectified linear unit (ReLU)4,38 activation function. After every third layer, there is a 2 × 2 
max-pooling layer and a skip connection to the decoder. Symmetrically, the decoder has 15 convolutional layers 
with ReLU activation functions. After every third convolutional layer, there is an upsampling layer that upscales 
its input height and width by a factor of 2. Finally, the bottleneck after the encoder has three convolutional layers. 
There are 64 filters in each convolutional layer in the encoder, decoder, and bottleneck.

Model training and evaluation. Training. To train the ScoreCAM-U-Net model, the  ResNet5037 clas-
sification model in the  ScoreCAM18 framework was first trained to classify clean and artifact-containing images. 
The model is trained on the seven cell lines dataset using 482 images for training, 101 for validation and 104 for 
testing; on ArtSeg-CHO-M4R, using 1386 images for training, 404 for validation, and 572 for testing; and on 
LNCaP, using 70 images for training, 16 images for validation and 16 images for testing. The test set in ArtSeg-
CHO-M4R dataset was chosen such that ten concentration–response curves with multiple competitive ligands 
could be obtained. The Adam  optimizer39 was used to optimize binary cross-entropy loss for 150 epochs. The 
initial learning rate (0.002) was reduced by a factor of 10 when the validation loss did not improve for 10 con-
secutive epochs.

The output of ScoreCAM was binarized with the threshold of 0.05 and used as pseudo-labels for the U-Net 
model, which was subsequently trained to segment the artifacts using the same datasets’ splits and training 
procedure. The ScoreCAM binarization threshold was selected to maximize the pixel-wise IoU of the validation 
set. precisely, ScoreCAM-U-Net was trained using different thresholds for binarizing the results of ScoreCAM 
before using them as pseudo-labels for the U-Net model. The results then were evaluated using the validation 
set and the threshold with the best IoU score was selected (Supplementary Fig. S3). All the experiments were 
conducted using a Tesla V100- PCIE-32 GB Graphics Processing Unit.
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Comparison with other methods. We compared the segmentation results obtained from the ScoreCAM-U-Net 
to a number of alternative solutions. As ScoreCAM-U-Net is a combination of ScoreCAM and U-Net models, 
we first compared our performance to each of these models separately. We expected a strongly supervised U-Net 
model trained on pixel-level annotations to show better performance than its weakly supervised counterparts. 
We also compared the proposed approach to the current state-of-the-art algorithms used to detect anomalies 
using image labels in domains other than microscopy: Patch Support Vector Data Description (PatchSVDD)26,27, 
Patch Distribution Modeling (PaDiM)27, and an autoencoder-based method (AE)24. All model architectures, 
training parameters and training processes are adopted here as defined in the original  papers24,26,27.

PaDiM and PatchSVDD are both embedding similarity-based methods that use convolutional neural net-
work-based approaches (encoders) that learn robust and short representations (embeddings) from patches of 
clean images. During the inference, the encoders are used to extract embeddings from test image patches and 
compare them to the embeddings extracted from the clean images based on a similarity metric. The main dif-
ference between these two methods is in the similarity metric employed to compare the embeddings as well as 
in the way the embeddings are constructed. PaDiM applies the Mahalanobis distance  metric40 and constructs 
an embedding by combining the features of multiple encoder layers, whereas PatchSVDD uses the Euclidean 
distance metric and constructs the representation from the features of a single encoder layer. Based on the embed-
ding comparisons, each test image patch is assigned a similarity score in which a low similarity score indicates 
the presence of artifacts. The final segmentation of each test image is constructed after the similarity scores of 
these patches are distributed to their pixels and the corresponding patch segmentations are merged together.

The AE method also utilizes a convolutional neural network based approach (an encoder-decoder network 
architecture) that first learns representations of the clean input images (using the encoder) and then to recon-
struct the original clean input images from the learned representations (via the decoder). During inference, the 
trained model is expected to fail to reconstruct the artifactual areas of the test images as the network has only 
acquired rich representations of clean images. Therefore, artifacts manifest themselves in areas with a high pixel-
wise difference between the input image and its reconstructed counterpart.

Figure 1.  Artifact segmentation pipeline—ScoreCAM-U-Net. During training (top),  ScoreCAM18 (purple) is 
used to generate pixel-level probability maps of artifacts and the corresponding binary masks that are used to 
train the U-Net4 segmentation model (blue). During the inference (bottom), the trained U-Net (blue) is used 
to segment artifacts from the images that were deemed to contain artifacts (image with red borders) by the 
ScoreCAM (purple). Vertical dashed lines: binarization of pixel probability maps values.
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We measure the ability of the models to correctly identify the presence of an artifact in the image using the 
F1 score which is the harmonic mean of precision and recall. We also assess the segmentation performance via 
calculating pixel-wise precision, recall, F1, and the intersection over union (Box 1).

Box 1: Performance measures. 

Post‑processing. We first binarized the probability maps produced by the models at cutoffs of 0.75 for AE, 0.3 
for PaDIM, 0.0005 for PatchSVDD, 0.001 for ScoreCAM, 0.001 for ScoreCAM-U-Net and 0.45 for U-Net. These 
cutoffs were selected to maximize pixel-wise IoU (Box 1) performance on validation data. We then filtered out 
objects smaller than 1000, 500, and 500 pixels in the seven cell lines, the ArtSeg-CHO-M4R, and the LNCaP 
datasets respectively using remove_small_objects function from the skimage  package41. The sizes of the filtered-
out objects were selected to maximize the pixel-wise IoU of the majority number of models, and different sizes 
do not drastically change the performance of the models (Supplementary Tables S2, S3, and S4). We recommend 
using expert knowledge to select the size of objects to filter out.

Measuring impact of artifacts and artifact removal on the downstream analyses. To evaluate the utility of remov-
ing artifacts in microscopy experiments, we focused on two common types of downstream analyses: nuclei seg-
mentation and effective concentration estimation from concentration–response assays. The former is a standard 
step in the majority of cell microscopy workflows while the latter is an example of a commonly used pipeline 
where cell segmentation is used for image intensity quantification which is followed up by regression analysis.

Nuclei segmentation. In order to assess how nuclei segmentation accuracy inside the artifactual regions com-
pares to artifact-free areas, we evaluated the performance of nuclei segmentation in the seven cell lines dataset 
inside and outside the artifactual areas. To detect and segment the nuclei from the brightfield images we used 
an existing PPU-Net3 model. The training, ground truth preparation, and post-processing steps for this model 
are described in the original  publication3. We calculated segmentation pixel-wise F1 and object-wise F1 scores 
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(Box 1), following previously described  approaches3,42, and morphological properties (size and solidity) of the 
resulting nuclei.

Ligand affinity estimation. In downstream analysis of pharmacological experiments, the cell bodies are seg-
mented from brightfield images using a U-Net-based deep learning  model29, and the cell fluorescence intensities 
are quantified from a parallel fluorescence channel based on the segmentation. The fluorescence intensities of 
cells depend on the strength of interaction (affinity) between the protein and the interaction partner (ligand) 
as well as the ligand concentration. The strength of protein–ligand interaction is determined using regression 
analysis of competitive ligand concentrations and the well average fluorescence intensity information from up 
to 64 individual images.

We studied the impact of artifacts and artifact removal on the determination of receptor-ligand interaction 
affinity. For that, in each of the ten individual concentration–response experiments, the cells were detected 
from brightfield images using a previously developed U-Net based segmentation model with an F1-score of 
0.8929. The artifactual areas determined manually or with ScoreCAM-U-Net were removed from the analysis. 
For experimental control, the analysis was also carried out without any artifact removal. The average intensity 
of the detected cell pixels as well as the average intensity of the background were determined from the aligned 
red fluorescence protein filter (excitation: 531(40) nm, emission: 593(40) nm) fluorescence images made in 
parallel with the brightfield images. The values were averaged for all images from the same well. For each well, 
to find the specific fluorescence intensity of bound fluorescence ligand the difference between cellular and back-
ground fluorescence intensities was calculated. LogIC50 values corresponding to half maximal displacement 
of the fluorescence ligand were obtained via nonlinear regression analysis. For that, the fluorescence intensity 
dependence on the competitive ligand concentration was fitted with the Hill equation using GraphPad Prism 
5.0 and "log(inhibitor) vs. response" nonlinear regression model which is equivalent to the logistic regression.

Concentration–response experiments serve as a good example for image analysis pipelines that rely on image 
intensity calculation and regression in the downstream analysis. For quantifying the quality of the full pipeline, 
we chose the absolute difference between the  LogIC50 values calculated from manual artifact removal and the 
alternative option. The difference of  LogIC50 values describes how accurate pharmacological parameters can 
be obtained with and without anomaly removal. We also used the  R2 value of the Hill equation fit as a metric, 
which reflects the overall agreement between the experiment and the model. Finally, we chose the Pearson’s 
correlation coefficient r between predicted fluorescence intensity values using manual artifact removal and the 
alternative method, which allows isolating the effect of artifacts on the signal directly without the influence of 
other sources of uncertainty.

Results
To develop and test a weakly supervised method for artifact segmentation: we confirmed that artifacts exist and 
are prevalent in brightfield microscopy images; annotated artifacts in three datasets; tested models for finding 
them automatically; and evaluated the impact of removal on downstream analysis results.

Artifacts in brightfield images are prevalent and diverse. The artifacts in the seven cell lines dataset 
range from very big (e.g. a clump of detached cells covering 49% of the image pixels) to tiny ones only a few pix-
els in size. The average annotated artifact size in this dataset is 4,417 pixels, which is larger than a typical nucleus 
in this dataset, and 16% of images had at least 10% of their area covered by artifacts. The artifacts in the seven 
cell lines dataset were heterogeneous in their size and morphological properties (Fig. 2, Supplementary Fig. S4).

In the LNCaP dataset, we annotated 60 objects that affected 6.5% of the images. The sizes of artifacts range 
from big (e.g. a hair covering 10% of the image pixels) to small, which covers only 0.07% of the pixels, with the 
average artifact being 75,933 pixels (Supplementary Fig. S4).

In the ArtSeg-CHO-M4R dataset, almost all images had artifacts, with a total of 13,713 artifact objects in 
1,171 affected images. Again, the largest object covered a large part of the image (e.g. 63% as a clump of detached 
cells), while the smallest one was a few pixels in size (Supplementary Fig. S4). An average artifact in this dataset 
had an area of 3,450 pixels, or 0.31% of image size.

Artifacts can be accurately detected with weak supervision. Next, we compared different 
approaches for artifact detection and segmentation qualitatively and quantitatively (Fig. 3A,B; Supplementary 
Fig. S5). We first evaluated the ability of the models to detect artifacts in the images. As ScoreCAM-U-Net and 
ScoreCAM both use the same ResNet classification backend, their detection performance is the same, with both 
models achieving image classification F1 scores of 93.2%, 93.7% and 90% in seven cell lines, LNCaP and ArtSeg-
CHO-M4R datasets respectively (Fig. 3B, Supplementary Table S5). Other methods were less accurate, with the 
only exception of U-Net outperforming ScoreCAM-based models in the LNCaP dataset (99.4% F1 score for 
U-Net over 93.7% for ScoreCAM-U-Net; Fig. 3B).

We then assessed the models’ performance in segmenting artifacts. ScoreCAM-U-Net outperforms the other 
non-strongly supervised models by achieving the highest area under the precision-recall curve, as well as the larg-
est average object intersection over union on seven cell lines and LNCAP datasets (Fig. 3B). There was no domi-
nant weakly supervised model in the ArtSeg-CHO-M4R dataset. Compared to the strongly supervised U-Net 
model, ScoreCAM-U-Net got the second-highest IoU performance in the seven cell lines (49.5 ScoreCAM-U-Net 
vs 72.9 U-Net) and the LNCaP (39.9 ScoreCAM-U-Net vs 65.74 U-Net) datasets (Supplementary Table S5).

Although the strongly supervised approach outperformed weakly supervised methods, it took substantial 
time to prepare the pixel-level annotations required for the U-Net model compared to weak labeling. On aver-
age, an expert spent 279 s to produce pixel-level annotation for a single microscopy image, while it took them 
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only 2 s to point out if a given image contained an artifact. Hence, weakly supervised methods consume about 
two orders of magnitude less of expert time for the given case. Therefore, when making a choice of method for 
dealing with artifacts, it is reasonable to take into account the dataset size and the amount of time needed to 
produce relevant annotations. For complex projects which require large training datasets for model development, 
generating precise pixel-level labels is prohibitively time-consuming, and hence weakly supervised approaches 
like ScoreCAM-U-Net are the best automated option available.

Weakly supervised artifact removal improves downstream analysis. After establishing the qual-
ity of the proposed ScoreCAM-U-Net method for artifact detection and segmentation, we evaluated the impact 
of using it for cleaning images on two downstream applications.

Removing artifacts improves quality of nuclei segmentation. As artifacts distort pixels that otherwise represent 
nuclei (Fig. 4), we observed substantial degradation in nuclei segmentation performance due to artifacts. The 
pixel-wise F1 score decreased from 0.89 in artifact-free to 0.60 in artifactual regions; and the object-wise F1 
score decreased from 0.65 in artifact-free to 0.28 in artifactual regions (Fig. 5). This had a direct impact on naive 
analyses that do not differentiate between artifactual and clean regions, reducing segmentation accuracy (0.87 
pixel-wise F1, 0.61 object-wise F1; Fig. 5). Importantly, automatically removing artifacts using ScoreCAM-U-
Net has the same impact as manual removal, improving the segmentation performance to near-optimal 0.89 and 
0.64 pixel-wise and object-wise F1 scores (Fig. 5).

We next considered nuclear size and morphology metrics with and without artifact correction. Nuclei in 
areas containing artifacts show different morphological properties with nuclei solidity of 0.92 and size of 213 
pixels while the same properties are 0.95 and 400 pixels respectively in the artifact-free regions (Supplementary 
Fig. S6). In concordance with the segmentation results, automatically removing artifacts using ScoreCAM-U-
Net recovers the expected nuclei size and solidity of 397 pixels and 0.95 respectively for artifact-free areas, again 
performing close to the gold standard of manual removal (Supplementary Fig. S6). These results demonstrate 
that automatic removal can overcome the detrimental effect of artifacts with quality close to manual filtering.

Figure 2.  Artifacts are heterogeneous, and range in shapes and sizes. A UMAP projection of all artifacts from 
the seven cell lines dataset. The inputs to the UMAP are the pixels of each patch that contains an artifact and 
the outputs are the first two features in the UMAP embeddings of each patch. We then used these two features 
respectively as ‘x’ and ‘y’ values to plot the corresponding input patch in 2D space.
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Figure 3.  Artifact segmentation and image-level classification results for all models (colors) in seven cell 
lines, LNCaP, and ArtSeg-CHO-M4R datasets. (A) Examples of brightfield images and the corresponding 
artifact segmentation of all models (columns, colors) and datasets (rows; separated by lines and dataset names). 
White contour: expert annotated artifact boundaries; colored contours: artifact segmentation boundaries of 
the corresponding model. (B) Different performance metrics for all models (colors) and datasets (rows). Left 
column: artifact segmentation precision (x-axis) and recall (y-axis) of artifact detection at different thresholds 
(points along the curve) for all models and datasets. Middle column: artifact segmentation pixel-wise IoU 
(y-axis) for all models and all datasets. Right column: image-level classification F1 score (y-axis) for all models 
(x-axis) and datasets (rows).
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Figure 4.  Visual impact of artifacts on nuclei segmentation. Two pairs of brightfield images with corresponding 
nuclei segmentation (in dark red) overlaid. Zoomed-in purple circles represent examples of artifact-free areas 
and artifactual areas (light red). White contours: artifact borders; yellow-ish white contours: nucleus ground 
truth borders; arrows and text: guides to corresponding regions and elements.

Figure 5.  Impact of artifacts and artifact removal on downstream analyses. Density (y-axis) of image-average 
nucleus segmentation pixel-wise F1 (top, x-axis) and object-wise F1 (bottom, x-axis) in the seven cell lines 
dataset for different areas of the image (colors). Pink: area in the images manually annotated as not artifacts; 
blue: area in the images manually annotated as artifacts; green: area in the images automatically annotated as not 
artifacts by ScoreCAM-U-Net; yellow: all image area. Dashed lines: mean pixel-wise F1 and object-wise F1 of 
segmented nuclei in the artifactual and artifact-free regions (different colors).
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Removing artifacts improves pharmacological parameter estimates. Cell segmentation in images is a commonly 
used process to determine biochemical or pharmacological parameters from microscopy experiments. Common 
examples of such experiments include quantifying image intensity of the segmented areas. This can be followed 
up by a test of significance or regression analysis to determine biochemical parameters like half-life of a reaction 
or the half maximal effective concentration of a substance. We analyzed how presence of artifacts affects the 
quality of a microscopy image-based analysis used to determine ligand affinity to  M4 muscarinic receptors using 
the ArtSeg-CHO-M4R dataset. Manual anomaly removal has a clear effect on both the plateau locations and 
the estimated Log(IC50) values (Fig. 6, Supplementary Fig. S7). The mean absolute difference between Log(IC50) 
calculated with manual artifact removal and no artifact removal is 0.29 units, equivalent to a two-fold error in 
dose. In contrast, after automatic artifact removal with ScoreCAM-U-Net, the Log(IC50) difference from manual 
anomaly removal was reduced to just 0.16 units, which is similar to the standard deviation of 0.11 observed 
between biological replicate experiments. The model fit explained 0.89, 0.86, and 0.74 of the data variation for 
manual anomaly removal, ScoreCAM-U-Net anomaly removal, and no anomaly removal respectively. Finally, 
the Pearson’s correlation coefficient of well-average fluorescence intensities between manual anomaly removal 
and ScoreCAM-U-Net anomaly removal is 0.98 while the correlation between manual anomaly removal and 
no anomaly removal is only 0.93. Overall, removing artifacts leads to an increase in replicate correlation, which 
itself results in reduction in estimate uncertainty. The estimated ligand affinity better reflects the values estab-
lished from manually cleaned images. This confirms that artifact removal leads to considerable improvement of 
downstream regression or statistical analysis which relies on image intensity quantification.

Discussion
We proposed ScoreCAM-U-Net, a deep learning model for identifying artifacts in brightfield microscopy images 
that combines the benefits of weakly supervised learning which does not require delineating objects, and strongly 
supervised learning that provides pixel-level resolution. ScoreCAM-U-Net outperforms the other non fully 
supervised models in segmenting the artifacts from the images. Moreover, ScoreCAM-based methods outperform 
the others in detecting artifactual images with the only exception of U-Net in the LNCaP dataset. This is due to 
the relatively small size of the test set in the LNCaP dataset (16 images), so missing only one image could cause 
this difference in classification accuracy. Inspecting the results, we found that the scoreCAM-U-Net constantly 

Figure 6.  Cell fluorescence intensity dependence on M4 receptor ligand concentration determined with live-
cell fluorescence microscopy at the presence of 2 nM UR-CG072. Displacement curves of three different ligands 
are shown: pirenzepine (A,C), atropine (B) and arecholine (D). Three different artifact removal methods at the 
image analysis stage are compared (colors): manual artifact segmentation, ScoreCAM-U-Net segmentation 
and no artifact removal. For each combination of ligand and artifact removal method a regression analysis is 
performed with Hill equation (Hill coefficient fixed at − 1) with the best fits shown as continuous lines. For each 
displacement curve, the Log(IC50) ± SD is presented, where SD represents the standard deviation estimation of 
Log(IC50). Each displacement curve was measured in duplicates with each data point representing the average 
fluorescence intensity of cells in each well.
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classified one of the clean images as artifactual while U-Net missed it only once. As the training of the ScoreCAM-
U-Net is performed using only image-level labels, generating training data is orders of magnitude faster, but 
without substantially sacrificing performance compared to pixel-level annotation. To our knowledge, this is the 
first attempt to automatically detect artifacts in large sets of brightfield microscopy images.

Several factors can contribute to dissimilar model performance in different datasets, including but not limited 
to dataset size, nature of artifacts, average artifacts size, etc. We speculate that the relatively inferior performance 
of the models on the ArtSeg-CHO-M4R dataset compared to the other two datasets could be attributed to the 
more blurry nature of the artifact borders and the relatively small average artifact size (“Artifacts in brightfield 
images are prevalent and diverse”). On the other hand, the moderate fuzziness of the borders in both seven cell 
lines and the LNCaP datasets may contribute to the better performance than the ArtSeg-CHO-M4R; having 
seven cell lines superior as it has more representative samples in the training set.

Due to the blurry nature of the borders of the artifact objects, a mismatch between predicted and annotated 
pixels has appeared which led to an accuracy gap. However, the impact of artifact removal on downstream tasks, 
rather than classification and segmentation performance, is arguably the most relevant metric for practical 
application (“Weakly supervised artifact removal improves downstream analysis”). Our results demonstrate 
that artifacts have an adverse impact on nuclei segmentation and that detection and measurement of nuclei are 
improved when removing such artifacts. We showed that this impact manifests in both quantitative segmenta-
tion metrics such as pixel-wise and object-wise F1 score, as well as morphological properties of the nuclei like 
solidity and size, which are central for cytometry applications. Almost all study designs that use large-scale cell 
microscopy and image quantification-based readout would benefit from our model.

One important application of cell microscopy is intensity quantification for studying the localization and 
co-localization of fluorescently labeled molecules. To exemplify this type of analysis, we studied how artifact 
removal affects the calculation of drug-receptor binding affinities based on live-cell fluorescence and brightfield 
microscopy. After artifact removal with ScoreCAM-U-Net, the estimated ligand affinities are in better agreement 
with the values established from manually cleaned images. The model-based estimates also reduce linear regres-
sion uncertainty and result variability of independent experiments, indicating a combination of better fit of the 
theoretical model and improved reproducibility of the measurements. Thus, artifact removal improves image 
intensity quantification independent of the nature of statistical analysis applied downstream.

Our ScoreCAM-U-Net method establishes the utility of automatically segmenting artifacts from brightfield 
microscopy images. The key advantage of our approach is its scalability, such that clean images can be obtained 
for screening campaigns that would be prohibitively expensive to process manually. For example, a screening 
experiment generating 100,000 images could take around 388 h of continuous work by an expert to delineate 
artifacts from only 5% of them.

The limitation of our approach is an inability to differentiate different types of artifacts. For example, the 
current model would not tell if an image contains an artifact of cell debris and the other contains bacterial 
contamination. A natural extension can build on our approach to train a model that can differentiate between 
different types of artifacts. Other extensions can use the power of deep learning for other imaging modalities, 
such as histopathology, as well as to further reduce annotation time. We envision that ultimately, all common 
artifacts will be automatically segmented and optionally removed at the time of acquisition with no input needed 
by the operator. Moreover, we believe that the encouraging results presented in this work will motivate the use of 
weakly supervised segmentation methods such ScoreCAM-U-Net in other areas where pixel-level annotations 
are prohibitively expensive or time-consuming to acquire, i.e. medicine.

Data availability
The ArtSeg-CHO-M4R dataset is publicly available at https:// datad oi. ee/ handle/ 33/ 433; with https:// doi. org/ 
10. 23673/ re- 307.
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