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Abstract

Kernel methods are powerful machine learning techniques which use generic non-linear

functions to solve complex tasks. They have a solid mathematical foundation and exhibit

excellent performance in practice. However, kernel machines are still considered black-

box models as the kernel feature mapping cannot be accessed directly thus making the ker-

nels difficult to interpret. The aim of this work is to show that it is indeed possible to interpret

the functions learned by various kernel methods as they can be intuitive despite their com-

plexity. Specifically, we show that derivatives of these functions have a simple mathematical

formulation, are easy to compute, and can be applied to various problems. The model func-

tion derivatives in kernel machines is proportional to the kernel function derivative and we

provide the explicit analytic form of the first and second derivatives of the most common ker-

nel functions with regard to the inputs as well as generic formulas to compute higher order

derivatives. We use them to analyze the most used supervised and unsupervised kernel

learning methods: Gaussian Processes for regression, Support Vector Machines for classifi-

cation, Kernel Entropy Component Analysis for density estimation, and the Hilbert-Schmidt

Independence Criterion for estimating the dependency between random variables. For all

cases we expressed the derivative of the learned function as a linear combination of the ker-

nel function derivative. Moreover we provide intuitive explanations through illustrative toy

examples and show how these same kernel methods can be applied to applications in the

context of spatio-temporal Earth system data cubes. This work reflects on the observation

that function derivatives may play a crucial role in kernel methods analysis and

understanding.

1 Introduction

Kernel methods (KMs) constitute a standard set of tools in machine learning and pattern anal-

ysis [1, 2]. They are based on a mathematical framework to cope with nonlinear problems

while still relying on well-established concepts of linear algebra. KMs are one of the preferred
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tools in applied sciences, from signal and image processing [3], to computer vision [4] and

geosciences [5]. Since its introduction in the 1990s through the popular support vector

machines (SVMs), kernel methods have evolved into a large family of techniques that cope

with many problems in addition to classification. Kernel machines have also excelled in regres-

sion, interpolation and function approximation problems [3], where Gaussian Processes (GPs)

[6] and support vector regression [7] have provided good results in many applications. Fur-

thermore, many kernel methods have been engineered to deal with other relevant learning

problems; for example, density estimation via kernel decompositions using entropy compo-

nents [8]. For dimensionality reduction and feature extraction, there are a wide family of mul-

tivariate data analysis kernel methods such as kernel principal component analysis [9], kernel

canonical analysis [10] or kernel partial least squares [11]. Kernels have also been exploited to

estimate dependence (nonlinear associations) between random variables such as kernel mutual

information [12], or the Hilbert-Schmidt Independence Criterion [13]. Finally in the litera-

ture, we find kernel machines for data sorting [14], manifold learning and alignment [15], sys-

tem identification [16], signal deconvolution and blind source separation [3].

However, understanding a model is more difficult than just applying a model, and kernel

methods are still considered black-box models. Little can be said about the characteristics of

the feature mapping which is only implicit in the formulation. Several approaches have been

presented in the literature to explore the kernel feature mapping and to understand what the

kernel machine is actually learning. One way to analyze kernel machines is by visualizing the

empirical feature maps but this is very challenging and only feasible in low-dimensional prob-

lems [1, 17]. Another approach is to study the relative relevance of the input features (covari-

ates) on the output. This is commonly referred to as feature ranking and it typically reduces to

evaluating how the function varies when an input is removed or perturbed. Automatic rele-

vance determination (ARD) kernels [6] or multiple kernel learning [18] allow one to study the

relevance of the feature components indirectly. While this approach has been extensively used

to improve the accuracy and understanding of supervised kernel classifiers and regression

methods, they only provide feature ranking and nothing is said about the geometrical proper-

ties of the feature map. In order to resolve this, two main approaches are available in the kernel

methods literature. For some particular kernels one can derive the metric induced by the ker-

nel to give insight into the surfaces and structures [19]. Alternatively, one can study the feature

map (in physically meaningful units) by learning the inverse feature mapping; a group of tech-

niques known as kernel pre-imaging [20, 21]. However, the current methods are computation-

ally expensive, involve critical parameters, and very often provide unstable results.

Function derivatives is a classical way to describe and visualize some characteristics of mod-

els. Derivatives of kernel functions have been introduced before, yet mostly used in supervised

learning as a form of regularization that controls fast variations of the decision function [22].

However, derivatives of the model’s function with regards to the input features for feature

understanding and visualization has received less attention. A recent strategy is to derive sensi-

tivity maps from a kernel feature map [23]. The sensitivity map is related to the squared deriva-

tive of the function with respect to the input features. The idea was originally derived for

SVMs in neuroimaging applications [24], and later extended to GPs in geoscience problems

[25–28]. In both cases, the goal was to retrieve a feature ranking from a learned supervised

model.

In this paper, we analyze the kernel function derivatives for supervised and unsupervised

kernel methods with several kernel functions in different machine learning paradigms. We

show the usefulness of the derivatives to study and visualize kernel models in regression, classi-

fication, density estimation, and dependence estimation with kernels. Since differentiation is a

linear operator, most kernel methods have a derivative that is proportional to the derivative of
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the kernel function. We provide the analytic form of the first and second derivatives of the

most common kernel functions with regards to the inputs, along with iterative formulas to

compute the m-th order derivative of differentiable kernels, and for the radial basis function

kernel in particular; where m is the number of successive derivatives. In classification prob-

lems, the derivatives can be related to the margin, and allow us to gain some insight on sam-

pling [29]. In regression problems, a models’ function derivatives may give insight about the

signal and noise characteristics that allow one to design regularization functionals. In density

estimation, the second derivative (the Hessian) allows us to follow the density ridge for mani-

fold learning [30], whereas in dependence estimation squared derivatives (the sensitivity

maps) allows one to study the most relevant points and features governing the association

measure [31]. All in all, kernel derivatives allow us to identify both examples and features that

affect the predictive function the most, and allow us to interpret the kernel model behavior in

different learning applications. We show that the solutions can be expressed in closed-form for

the most common kernel functions and kernel methods, they are easy to compute, and we give

examples of how they can be used in practice.

The remainder of the paper is organized as follows. Section 2 briefly reviews the fundamen-

tals of kernel functions and feature maps, and concentrates on the kernel derivatives for feature

map analysis where we provide the first and second order derivatives for most of the common

kernel functions. We also review the main ideas to summarize the information contained in

the derivatives. Section 3 and Section 4 study popular discriminative kernel methods, such as

Gaussian Processes for regression and support vector machines for classification. Section 5

analyzes the interesting case of density estimation with kernels, in particular through the use

of kernel entropy component analysis for density estimation. Section 6 pays attention to the

case of dependence estimation between random variables using the Hilbert-Schmidt indepen-

dence criterion in cases of dependence visualization maps and data unfolding. Section 7 illus-

trates the applicability of kernel derivatives in the previous kernel methods on spatio-temporal

Earth system science data. We conclude in section 8 with some final remarks.

2 Kernel functions and the derivatives

2.1 Kernel functions and feature maps

In this section, we briefly highlight the most important properties of kernel methods, needed

to understand their role of the kernel methods mentioned in the subsequent sections. Recall

that kernel methods rely on the notion of similarity between points in a higher (possibly infi-

nite) dimensional Hilbert space. Let us consider a set of empirical data X ¼ fx1; . . . ; xng,
whose elements are defined in a d-dimensional input space, xi ¼ ½x1

i ; . . . ; xdi �
>
2 Rd, 1� i� n.

In supervised settings, each input feature vector x is associated with a target value, which can

be either discrete in the classification case, yi 2 Z
þ

or real in the regression case, yi 2 R, i = 1,

. . ., n. Kernel methods assume the existence of a Hilbert space H with an inner product h�; �iH
where samples in X are mapped into with a feature map � : X ! H; xi 7!�ðxiÞ, 1� i� n. The

mapping function can be defined explicitly (if some prior knowledge about the problem is

available) or implicitly, which is often the case in kernel methods. The similarity between the

elements in H can be estimated using its associated dot product h�; �iH via reproducing kernels

in Hilbert spaces (RKHS), k : X � X ! R, such that pairs of points (x, x0) 7! k(x, x0). So we

can estimate similarities in H without the explicit definition of the feature map φ, and hence

without having access to the points in H. This kernel function k is required to satisfy Mercer’s

Theorem [32].
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Definition 1 Reproducing kernel Hilbert spaces (RKHS) [33]. A Hilbert space H is said to be
a RKHS if: (1) The elements of H are complex or real valued functions f(�) defined on any set of
elements x; And (2) for every element x, f(�) is bounded.

The name of these spaces comes from the so-called reproducing property. In a RKHS H,

there exists a function k(�, �) such that

f ðxÞ ¼ hf ; kð�; xÞiH; f 2 H; ð1Þ

by virtue of the Riesz Representation Theorem [34]. In particular, for any x; x0 2 X

kðx; x0Þ ¼ hkð�; xÞ; kð�; x0ÞiH ð2Þ

A large class of algorithms have originated from regularization schemes in RKHS. The rep-
resenter theorem gives us the general form of the solution to the common loss function formed

by the loss term and a regularization term.

Theorem 1 (Representer Theorem) [34, 35] LetO : ½0;1Þ ! R be a strictly monotonic
increasing function; let V : ðX � R2

Þ
n
! R [ f1g be an arbitrary loss function; and let H be a

RKHS with reproducing kernel k. Then:

f � ¼ min
f2H
fVððx1; y1; f ðx1ÞÞ; . . . ; ðxn; yn; f ðxnÞÞÞ þ Oðk f k

2

HÞg ð3Þ

admits a space of functions f defined as

f ðxÞ ¼
Xn

i¼1

aikðx; xiÞ; ai 2 R; a 2 Rn
; ð4Þ

which is expressed as a linear combination of kernel functions. Also note that the previous the-

orem states that solutions imply having access to an empirical risk term V and a regularizer O.

In the case of not having labels yi, alternative representer theorems can be equally defined. A

generalized representer theorem was introduced in [36], which generalizes Wahba’s theorem

to a larger class of regularizers and empirical losses. Also, in [37], a representer theorem for

kernel principal components analysis (KPCA) was used: the theorem gives the solution as a

linear combination of kernel functions centered at the input data points, and is called the rep-

resenter theorem of learning theory [38], whereby the coefficients are determined by the eigen-

decomposition of the kernel matrix [9, 36]. Should the reader want more literature related to

kernel methods, we highly recommend this paper [39] for a more theoretical introduction to

Hilbert-Spaces in the context of kernel methods and [3] for a more applied and practical

approaches.

2.2 Derivatives of linear expansions of kernel functions

Computing the derivatives of function f can give important insights about the learned model.

Interestingly, in the majority of kernel methods, the function f is linear in the parameters α, cf.

Eq (4) derived from the representer theorem [35] [Th. 1]. For the sake of simplicity, we will

denote the partial derivative of f w.r.t. the feature xj as @ jf ðxÞ ¼
@f ðxÞ
@xj , where j denotes the

dimension. This allows us to write the partial derivative of f as:

@ jf ðxÞ :¼
@f ðxÞ
@xj

¼
@
Pn

i¼1
aikðx; xiÞ
@xj

¼
Xn

i¼1

ai
@kðx; xiÞ
@xj

¼ ð@ jkðxÞÞ
>α; ð5Þ

where @ jkðxÞ :¼
@kðx;x1Þ

@xj ; . . . ;
@kðx;xnÞ
@xj

� �>
2 Rn

and α ¼ ½a1; . . . ; an�
>
2 Rn

. It is possible to take
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the second order derivative with respect to feature xj twice which remains linear as well with α:

@
2

j f ðxÞ :¼
@

2f ðxÞ
@xj@xj

¼
@

2
P

iaikðx; xiÞ
@xj2

¼
X

i

ai
@

2kðx; xiÞ
@xj2

¼ ð@
2

j kðxÞÞ
>α; ð6Þ

where @
2

j kðxÞ :¼
@2kðx;x1Þ

@xj2
; . . . ;

@2kðx;xnÞ
@xj2

h i>
2 Rn

. Inductively, the m-th partial derivative w.r.t the

j-th feature is also linear with α and it follows the following equation:

@
m
j f ðxÞ ¼ ð@

m
j kðxÞÞ

>α: ð7Þ

The gradient of f gives information about the slope (increase rate) of the function and

reduces to

rf ¼
@f ðxÞ
@x1

; . . . ;
@f ðxÞ
@xd

� �>

¼ ðrKÞ>α 2 Rd; ð8Þ

wherer denotes the vector differential operator, andrK ¼ ½@1kðxÞj � � � j@dkðxÞ�. The Lapla-

cian accounts for the curvature, roughness, or concavity of the function itself, and can be easily

computed as the sum of all the unmixed second partial derivatives, which for kernels reduces

to

r2f :¼
Xd

j¼1

@
2f ðxÞ
@xj2

¼ 1>d ðr
2KÞ>α 2 R; ð9Þ

wherer2K ¼ ½@2

1
kðxÞj � � � j@2

dkðxÞ� and 1d is a column vector of ones of size d. Another useful

descriptor is the Hessian matrix of f, which characterizes its local curvature. The Hessian is a d
× d matrix of second-order partial derivatives with respect to the features xj, xk:

½H�jk ¼
@

2f ðxÞ
@xj@xk

¼ ð@ j@kkðxÞÞ
>α 2 R: ð10Þ

The equations listed above have shown that the derivative of a kernel function is linear with

α. Once the α is computed, the problem reduces to (1) computing the derivatives for a particu-

lar kernel function, and (2) to summarize the information contained within the derivatives.

• Derivatives of common kernel functions. Kernel methods typically use a set of positive def-

inite kernel functions, such as the linear, polynomial (Poly), hyperbolic tangent (Tanh),

Gaussian (RBF) kernel, and the automatic relevance determination (ARD) kernel. We give

the partial derivative for all of these kernels in Table 1, and the (mixed) second derivatives in

Table 2. For the most widely used kernels (RBF and ARD), one can recognize a linear rela-

tion between the kernel derivative and the kernel function itself. It can be shown that the m-

Table 1. Partial derivatives for some common kernel functions: Linear, Polynomial (Poly), Radial Basis Functions

(RBF), Hyperbolic tangent (Tanh), and Automatic Relevance Determination (ARD).

Kernel Kernel function, k(x, y) Partial derivative,
@kðx;yÞ
@xj

Linear x> y yj

Poly (γx> y + c0)p γpyj (γx> y + c0)p−1

RBF exp(−γkx − yk2) -2γ(xj − yj)k(x,y)

Tanh tanh(γ x> y + c0) γyj sech2 (γ x> y + c0)

ARD
n2exp � 1

2

PD

d¼1

xd � yd

ld

� �2
� �

xj � yj

l2
j

� �

kðx; yÞ

https://doi.org/10.1371/journal.pone.0235885.t001
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th derivative of some kernel functions can be computed recursively using Faà di Bruno’s

identity [40].

• Summarizing function derivatives. Summarizing the information contained in the deriva-

tives is not an easy task, especially in high dimensional problems. The most obvious strategy

is to use the norm of the partial derivative, that is k@j fk, which summarizes the relevance of

variable xj. A small norm implies a small change in the discriminative function f with respect

to the j-th dimension, indicating the low importance of that feature. This approach was

introduced as sensitivity maps (SMs) in [24] for the visualization of SVM maps in neuroim-

aging and later exploited in GPs for ranking spectral channels in geosciences applications

[26]. The SM for the j-th feature, is the expected value of the squared derivative of the func-

tion with respect the input argument xj:

sj ¼
Z

X j

@f ðxÞ
@xj

� �2

pðxjÞdxj; ð11Þ

where p(x) is the probability density function (pdf) over dimension j of the input space X . In

order to avoid the possibility of cancellation of the terms due to its signs, the derivatives are

squared. Other transformations like the absolute value could be equally applied. The empiri-
cal sensitivity map approximation to Eq (11) is obtained by replacing the expected value with

a summation over the available n samples

sj �
1

n

Xn

i¼1

@f ðxiÞ
@xji

� �2

; ð12Þ

which can be grouped together to define the sensitivity vector as s = [s1, . . ., sd]>.

This can be thought of as studying the relevance of the sample points. Similarly,one can aver-

age over the features to obtain a point sensitivity:

qi ¼
1

d

Xd

j¼1

@f ðxiÞ
@xji

� �2

; ð13Þ

which can be grouped to define the point sensitivity vector as q = [q1, . . ., qn]>. The informa-

tion contained in q is related to the robustness to changes of the decision in each point of the

space.

Now we are equipped to use the derivatives and the corresponding sensitivity maps in arbi-

trary kernel machines that use standard kernel functions. In the following sections, we study

Table 2. Second derivatives for some common kernel functions.

Kernel 2nd partial derivative,
@2kðx;yÞ
@xj2

Mixed partial derivative,
@2kðx;yÞ
@xj@xk

Linear 0 0

Poly (p − 1)p (γyj)2 (γ x> y + c0)p−2 (p − 1)pγ2 yj yk (γ x> y + c0)p−2

RBF 2γ [2γ (xj − yj)2 − 1] k(x, y) 4γ2 (xk − yk) (xj − yj) k(x, y)

Tanh −2(γyj)2 sech2(γ x> y + c0)k(x, y) −2γ2 yj yk sech2(γ x> y + c0)k(x, y)

ARD
1

l2
j
þ

xj � yj

l2
j

� �2
 !

kðx; yÞ
xj � yj

l2
j

� �
xk � yk

l2
k

� �
kðx; yÞ

https://doi.org/10.1371/journal.pone.0235885.t002
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its use in kernel methods for both supervised (regression and classification) and unsupervised

(density estimation and dependence estimation) learning.

3 Kernel regression

3.1 Gaussian Process Regression

Multiple proposals to use kernel methods in a regression framework have been done during

the last few decades. Gaussian Processes (GPs) is perhaps the most successful kernel method

for discriminative learning in general and regression in particular [6]. Standard GP regression

approximates observations as the sum of some unknown latent function f(x) of the inputs plus

some additive Gaussian noise, yi = f(xi) + εi, where εi � N ð0; s2Þ. A zero mean GP prior is

placed on the latent function f(x) and a Gaussian prior is used for each latent noise term εi, in

other words f ðxÞ � GPðmðxÞ;KÞ, where m(x) = 0, and K is a covariance function, [K]ij = k
(xi, xj), parameterized by a set of hyperparameters θ (e.g. θ = [λ1, . . ., λd] for the ARD kernel

function).

If we consider a test location x� with the corresponding output y�, a GP prior induces a

prior distribution between the observations y and y�. Collecting all available data in

D � fðxi; yiÞji ¼ 1; . . . ng, it is possible to analytically compute the posterior distribution over

the unknown output y� given the test input x� and the available training set D,

pðy�jx�;DÞ ¼ N ðy�jmGP�; s
2
GP�Þ, which is a Gaussian with the following mean and variance:

mGP� ¼ k>
�
ðKþ s2

nIÞ
� 1y ¼ k>

�
α; ð14Þ

s2
GP� ¼ s

2
n þ k�� � k>

�
ðKþ s2

nIÞ
� 1k�; ð15Þ

where k� ¼ kðx�Þ ¼ ½kðx�; x1Þ; . . . ; kðx�; xnÞ�
>
2 Rn

contains the kernel similarities of the test

point x� to all training points in D, K is a n × n kernel (covariance) matrix whose entries con-

tain the similarities between all training points, y ¼ ½y1; . . . ; yn�
>
2 Rn

, k�� = k(x�, x�) is a scalar

with the self-similarity of x�, and I is the identity matrix. The solution of the predictive mean

for the GP model in (14) is expressed in the same way as equation (4), where

mGP� ¼ f ðx�Þ ¼ k>
�
α. This expression is exactly the same as in other kernel regression methods

like the Kernel Ridge Regression (KRR) [2] or the Relevance Vector Machine (RVM) [2]. The

derivative of the mean function can be computed through Eq (5) and the derivatives in

Table 1.

3.2 Derivatives and sensitivity maps

Let us start by visualizing derivatives in simple 1D examples. We used GP modeling with a

standard RBF kernel function to fit five regression data sets. We show in Fig 1 the first and sec-

ond derivatives of the fitted GP model, as well as the point-wise sensitivities. In all cases, first

derivatives are related to positive or negative slopes, while the second derivatives are related to

the curvature of the function. Since the derivative is a linear operator, a composition of func-

tions is also the composition of derivatives as can be seen in the last two functions. This could

be useful for analyzing more complex composite kernels. See Table 3 for a comparison with

other kernel methods derivatives.

3.3 Derivatives and regularization

We show an example of applying the derivative of the kernel function as a regularization

parameter for the noise. We modeled the function f(x) = sin(3πx) with an additive white
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Gaussian noise (AWGN) n � N ð0; s2
nÞ using a Kernel Ridge Regression (KRR) model with

RBF kernel. Different amounts of noise power s2
n was used resulting in different values of the

signal to noise ratio (SNR), SNR = 10 log ðs2
y=s

2
nÞ, SNR2[0, 50] dB. Two different settings were

explored to analyze the impact of the standard regularizer, k f k2
H, and the derivatives in KRR

modeling: (1) either using the optimal amount of regularization in (14), s2
n ¼ s

2
r , or (2) assum-

ing no regularization was needed, s2
n ¼ 0.

Four scenarios were explored in this experiment: k f k2
H¼ α>Kα, k f k2

2
¼ α>K>Kα,

k rf k2
2
¼ α>ðrKÞ>ðrKÞα, and k r2f k2

2
¼ α>ðr2KÞ>ðr2KÞα, where K is a matrix with

entries [K]ij = k(xi, xj) (for definitions of gradients see Eqs (8) and (9)). The resulting SNR

curves were then normalized in such a way that they are comparable. We explore two scenar-

ios; the regularized and unregularized. Since the maximum SNR was subtracted from all norm

values, in Fig 2a any norm greater than zero signifies the need to regularize more and in Fig 2b

any norm less than zero signifies the need to regularize less.

Fig 1. Different examples of functions, derivatives and sensitivity maps. Original data (red), the GP predictive

function (black), high derivative values are in yellow, close-to-zero derivative values are in gray and negative derivative

values are in blue.

https://doi.org/10.1371/journal.pone.0235885.g001

Table 3. Summary of the formulation for each of the main kernel methods GPR (Gaussian Process Regression, section 3), SVM (Support Vector Machines, section

4), KDE (Kernel Density Estimation, section 5), HSIC (Hilbert-Schmidt Independence Criterion, section 6). The derivative formulation as well as some related analysis

procedures in the literature as well as demonstrated in this paper.

Method Function Derivative Analysis

GPR k>
�
a @k>

�
a Sensitivity, Ranking, Regularization

SVM g(yα k� + b) ð1 � g2ðx�ÞÞ @k
>

�
y a Sensitivity, Feature Ranking, Margin

KDE n� 1k�1n rp̂ðx�Þ
>Erðx�Þ Principal Curves

HSIC n−2Tr(KHLH) 2n−2 Ai @q k(xi) Leverage, Feature/Point Relevance

https://doi.org/10.1371/journal.pone.0235885.t003
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Fig 2 shows the effect of the noise on the norm for different regularization terms. All four

regularization functions give the user information about how noisy the signal is for the

unregularized case and the regularized case. The graph for the regularized case has the

norms of the functions below zero, except for the k f k2
H, when the SNR is extremely low.

Since the norm of the functions are increasing as one increases the SNR, this says that there

needs to be less regularization. The k f k2
H has a straight line because the ‘optimal’ parameter

for using the norm of the weights for regularization has already been chosen. However, the

norm of the first and second derivative still give us information that the problem needs to

be regularized less. So both cases showcase the functionality of the first and second deriva-

tive as viable regularizers.

4 Kernel classification

4.1 Support vector machine classification

The first effective and influential kernel method introduced was the Support Vector Machine

(SVM) [1, 41–43] classifier. Researchers and practitioners have used it to solve problems in

speech recognition [44], computer vision and image processing [45–47], or channel equaliza-

tion [48]. The binary SVM classification algorithm minimizes a weighted sum of a loss and a

regularizer

Xn

i¼1

Vðyi; f ðxiÞÞ þ l k f k
2

Hk
;

where the cost function is called the ‘hinge loss’ and is defined as

Vðyi; f ðxiÞÞ ¼ max ð0; 1 � yif̂ ðxiÞÞ, yi 2 {−1, + 1}, f 2 Hk and Hk is the RKHS of functions

generated by the kernel k, and λ is a parameter that trades off accuracy for smoothness. The

norm k f kHK
is generally interpreted as a roughness penalty, and can be expressed as a

Fig 2. Signal-to-Noise Ratio (SNR) versus the expected normalized value of different norms (Ejj � jj) to act as

regularizers. A unregularized (left) and an regularized (right) Kernel Ridge Regression (KRR) model was fitted. The top

row shows a few examples of these fitted KRR models with a different quantity of noise added. The red data points are the

data with different noise levels, the true function is black and the fitted KRR model is in blue. The second row shows the

norm for the different regularizers. All lines were normalized in such a way that they are comparable. The norm of the

true signal (SNR = 50 dB) is subtracted from all points so any curve with values below zero require less regularization and

any points above zero require more regularization.

https://doi.org/10.1371/journal.pone.0235885.g002

PLOS ONE Kernel methods and their derivatives

PLOS ONE | https://doi.org/10.1371/journal.pone.0235885 October 29, 2020 9 / 30

https://doi.org/10.1371/journal.pone.0235885.g002
https://doi.org/10.1371/journal.pone.0235885


function of kernels, k f kHK
¼ f >Kf . The decision function for any test point x� is given by

ŷ� ¼ gðf ðxÞÞ ¼ sgn
Xn

i¼1

yiaikðx�; xiÞ þ b

 !

; ð16Þ

where αi are Lagrange multipliers obtained from solving a quadratic programming (QP) prob-

lem, being the support vectors (SVs) of those training samples xi with non-zero Lagrange multi-

pliers αi 6¼ 0 [1]. See [49] for more details on the formulation and more practical examples.

4.2 Function derivatives and margin

The SVM decision function in (16) uses a mask function g(x) = sgn(�) to decide between the

two classes, which is inherited from the hinge loss used. Since the sgn(�) function is not differ-

entiable at 0 and for the sake of analytic tractability we replaced it with the hyperbolic tangent,

g(�) = tanh(�). Now one can simply compute the derivative of the model by applying the chain

rule:

@gðx�Þ
@xj�

¼
@gðx�Þ
@f ðx�Þ

@f ðx�Þ
@xj�

¼ ð1 � g2ðxÞÞ
@f ðx�Þ
@xj�

ð17Þ

where the leftmost term in the product can be seen as a mask function on top of the derivative

of the regression function and allows us to study the model in terms of decision and estimation

separately. See Table 3 for a comparison to other kernel methods derivatives.

Three datasets were used to illustrate the effect of the derivative in the SVM classifier. We

used a SVM with RBF kernel in all cases, and hyperparameters were tuned by 3-fold cross-vali-

dation and the results are displayed in Fig 3. The mask function only focuses on regions along

the decision boundary. However the derivative of the kernel function displays a few regions

along the decision boundary along with other regions outside of the decision boundary. The

composite of the derivative of the masking function and kernel function showcases a combina-

tion of the two components: the high derivative regions along the decision boundary. The two

half moons and two circles examples have a clear decision boundary and the derivative of the

composite function is able to capture this. However, the two ellipsoid example is less clear as

the decision boundary passes through two overlapping classes. This is related to the density

within the margin as the regions with less samples have a smaller slope and the regions with

more samples have a higher slope, which results in wider and thinner margin, respectively.

This fact could be used to define more efficient sampling procedures.

5 Kernel density estimation

The problem of density estimation is difficult in machine learning and statistics and it has

been widely studied via kernels [50–52]. Kernel density estimation (KDE) is a classical non-

parametric method for estimating a probability density function (pdf) [53]. In KDE, the choice

of the kernel function is key to properly approximating the underlying pdf from a finite num-

ber of samples. The KDE kernel must be a non-negative function that integrates to one (i.e. a

proper pdf), yet does not need to be positive semi-definite (PSD). KDE is versatile in that

sense. However, if the kernel is PSD, there are close relations between density estimation and

RKHS learning via the kernel eigendecomposition. Many KDE kernels are PSD, and some

well-known examples include the Gaussian kernel, the Student kernel and the Laplacian kernel

[54] functions.
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5.1 Density estimation with kernels

For the Parzen window expression, KDE defines the pdf as a sum of kernel functions defined

on the training samples,

p̂ðx�Þ ¼
1

n

Xn

i¼1

kðx�; xiÞ ¼
1

n
k�1n; ð18Þ

Fig 3. Visualizing three examples of sensitivity maps in SVM classification. The top row shows a figure has red and

green points to showcase the classes, black points showing the support vectors chosen by the SVM classifier, and a

contour map showcasing the same color scheme for the decision function. In the subsequent plots, we plot the

sensitivity measures where the high derivative values are in yellow and negative derivative values are in gray. The

leftmost column showcases which derivative is plotted.

https://doi.org/10.1371/journal.pone.0235885.g003
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where k� is the vector of kernel evaluations between the point of interest x�, and all training

samples (see section 3.1). KDE kernel functions have to be non-negative and integrate to one

to ensure that p̂ is a valid pdf. When a point-dependent weighting, βi, is employed, then the

above expression can be modified as p̂ðx�Þ ¼
Pn

i¼1
bikðx�; xiÞ, where the βi have to be positive

and sum to one, i.e. βi� 0 and
Pn

i¼1
bi ¼ 1. In [51] a solution to find a suitable β vector based

on kernel principal components analysis was proposed. If the decomposition of the un-cen-

tered kernel matrix follows the form K = EDE>, where E is orthonormal and D is a diagonal

matrix, then the kernel-based density estimation can be expressed as

p̂ðx�Þ ¼ k�ErE
>

r 1n; ð19Þ

where Er is the reduced version of E by keeping r< n top eigenvectors. If we keep all the

dimensions, i.e. r = n the solution reduces to (18). By reducing the number of components we

restrict the capacity of the density estimator and hence obtain a smoother approximation of

the pdf as r reduces.

The retained kernel components should be selected by keeping the dimensions that maxi-

mize a sensible pdf characteristic, e.g. the variance. However, other criteria can be used to

select the retained components. For instance, the kernel entropy component analysis (KECA)

method uses the information potential as criterion to select the components from the eigenvec-

tor decomposition [8]. In this case, the decomposition method is already optimized to maxi-

mize the variance, therefore the solution will be sub-optimal. A more accurate way of finding a

decomposition was presented in [55] where the features are directly optimized to maximize

the amount of retained information. This method was named optimized KECA (OKECA),

and showed excellent performance using very few extracted components.

The relevant aspect for this paper is that, by doing α ¼ ErE
>

r 1n, Eqs (18) and (19) can be

cast in the general framework of kernel methods we proposed in Eq (4). Through this equality

the derivatives and the second derivatives (and therefore the Hessian) can be obtained in a

straightforward manner using Eqs (5) and (6). This information can be used for different

problems, such as computing the Fisher’s information matrix, optimizing vector quantization

systems, or the example in the following section where we use them to find the points that

belong to the principal curve of the distribution.

5.2 Derivatives and principal curves

This example illustrates the use of kernel derivatives in the KDE framework. In particular, we

use the gradient and the Hessian of the pdf, to find points that belong to the principal curve
along the data manifold [56]. A principal curve is defined as the curve that passes through the

middle of the data. How to find this curve in practice is an important problem since multiple

data description methods are based on drawing principal curves [30, 57–60]. In [30], they

characterize the principal curve as the set of points that belong to the ridge of the density func-

tion. These points can be determined by using the gradient and the Hessian of the pdf: a point

x� is an element of the d-dimensional principal curve iff the inner product of the gradient,

rp̂ðx�Þ, and at least r eigenvectors of the Hessian, H(x�), is zero:

rp̂ðx�Þ
>Erðx�Þ ¼ 0; ð20Þ

where Er(x�) are the top r eigenvectors of the matrix H(x�). Note that applying this definition

using our framework is straightforward as we can use the KDE to describe the probability den-

sity function, and Eqs (5) and (6), as well as formulas in Table 1, to find the gradient and the

Hessian of the defined pdf with respect to the points. See Table 3 for a comparison to other

kernel methods derivatives.
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In Fig 4, we show an illustrative example of this application in three different toy datasets.

The pdf can be obtained from the data points by using the OKECA method and the derivative

lines describe the direction to which the density changes the most. The last row shows the

points of the dataset with smaller dot products between the gradient and the last eigenvector of

the Hessian, see Eq (20). Note that these points belong to the ridge of the distribution, and

thus to the principal curve.

6 Kernel dependence estimation

6.1 Dependence estimation with kernel methods

Measuring dependencies and nonlinear associations between random variables is an active

field of research. The kernel-based dependence estimation defines a covariance and cross-

covariance operators in RKHS, and the subsequent statistics from these operators allows one

to measure dependence between functions therein.

Let us consider two spacess X � Rdx and Y � Rdy , which we jointly sample observation

pairs (x, y) from distribution Pxy. The covariance matrix is Cxy ¼ Exyðxy>Þ � ExðxÞEyðy>Þ,
where Exy is the expectation with respect to Pxy, and Ex. A statistic that summarizes the content

of the covariance matrix is its Hilbert-Schmidt norm. This quantity is zero if and only if there

exists no second order dependence between x and y.

The nonlinear extension of the notion of covariance was proposed in [13] to account for

higher order statistics. Essentially, let us define a (possibly non-linear) mapping � : X ! F
such that the inner product between features is given by a PSD kernel function k(x, x0). The

feature space F has the structure of a RKHS. Similarly, we define c : Y ! G with associated

kernel function l(y, y0). Then, it is possible to define a cross-covariance operator between these

feature maps, and to compute the squared norm of the cross-covariance operator, k Cxy k
2
HS,

which is called the Hilbert-Schmidt Independence Criterion (HSIC) and can be expressed in

terms of kernels [61, 62]. Given a sample dataset D ¼ fðx1; y1
Þ; . . . ; ðxn; ynÞg of size n drawn

from Pxy, an empirical estimator of HSIC is [13]:

HSICðF ;G;PxyÞ ¼
1

n2
TrðKHLHÞ ¼

1

n2
TrðHKHLÞ; ð21Þ

where Tr(�) is the trace operation, K, L are the kernel matrices for the input random variables

x and y (i.e. [K]ij = k(xi, xj)), respectively, and H ¼ I � 1

n 11> centers the data in the feature

spaces F and G, respectively. HSIC has demonstrated its capability to detect dependence

between random variables but, as for any kernel method, the learned relations are hidden

behind the kernel feature mapping. To address this issue, we consider the derivatives of HSIC.

6.2 Derivatives of HSIC

HSIC empirical estimate is parameterized as a function of two random variables, so the func-

tion derivatives given in section 2 are not directly applicable. Since HSIC is a symmetric mea-

sure, the solution for the derivative of HSIC wrt xji will have the same form as the derivative

wrt yji. For convenience, we can group all terms that do not explicitly depend of X as A = HLH,

which allows us expressing (21) simply as:

HSIC :¼
1

n2
TrðKAÞ ¼

1

n2

Xn

i¼1

Xn

j¼1

½A�ijkðxi; xjÞ: ð22Þ
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Fig 4. First row: Original data points. Second, third and fourth row: probability density in gray scale (brighter means

denser). Second row: derivative direction of the pdf for some data points is represented using red lines. Third row:

Hessian eigenvectors for some points represented with blue lines (first eigenvector) and green lines (second

eigenvector). Fourth row: points on the ridge computed using the formula proposed in [30], different brightness of

green has been computed using the Dijkstra distance over the curve dots (see text for details).

https://doi.org/10.1371/journal.pone.0235885.g004
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Note that the core of the solution is the same as in the previous sections; a weighted combi-

nation of kernel similarities. However, now we need to derive both arguments of the kernel

function k with respect to entry xji that appears twice. By taking derivatives with regards to a

particular dimension q of sample xi, i.e. xqi , and noting that the derivative of a kernel function

is a symmetric operation, i.e.
@kðxi;xjÞ
@xqi
¼

@kðxj;xiÞ
@xqi

, one obtains

@HSIC
@xqi

¼
2

n2

Xn

j¼1

½A�ij
@kðxi; xjÞ
@xqi

¼
2

n2
Ai@qkðxiÞ; ð23Þ

where Ai is the i-th row of the matrix A. For the the RBF kernel we obtain [31]:

@HSIC
@xqi

¼ �
2

s2n2
Tr HLH K �Mqð Þð Þ; ð24Þ

where entries of matrix Mq are ½Mq�ij ¼ xqi � xqj (1� j� n), and zeros otherwise, and where

the symbol � is the Hadamard product between matrices.

Recently [63] extended the notion of leverage scores for the ridge regression problem.

Leverage is a measure of how points with low density neighbours are enforcing the model for

passing through them. By definition, the leverage (of a regressor) is the sensitivity of the pre-

dictive function w.r.t. the outputs. There is no definition of leverage in the case of HSIC as it is

not a regression model but a dependence measure. However, HSIC could be interpreted in a

similar way by fixing one of the variables and taking the derivative w.r.t. the other. By this

interpretation, one can think of the HSIC sensitivity as a measure of how individual points are

affecting the dependence measurement, i.e. how sensitive HSIC is to the perturbations for

each particular point. This interpretation allows us to link the concepts of leverage and sensi-

tivity in kernel dependence measures.

In this case, the derivatives of HSIC report information about the directions that impact the

dependence estimate the most. This allows one to evaluate the measure as a vector field repre-

sentation of two components. As in the previous kernel methods analyzed, the derivatives here

are also analytic, just involving simple matrix multiplications and a trace operation. See

Table 3 for a comparison to other kernel methods derivatives.

6.3 Visualizing kernel dependence measures

HSIC derivatives give information about the contribution of each point and feature to the

dependence estimate. Fig 5 shows the directional derivative maps for three different bi-dimen-

sional problems of variable association. We show the different components of the (sign-val-

ued) vector field as well as its magnitude. In all problems, arrows indicate the strength of

distortion to be applied to points (either in directions x, y, or jointly) such that the dependence

is maximized. For the first example (top row), the map pushes the points into the 1-1 line and

tries to collapse data into 2 different clusters along this line. In the second example (middle

row), the distribution is a noisy ring: here the sensitivity map tries to collapse the data into

clusters in order to maximize the dependence between the variables. In the last third experi-

ment (bottom row), both variables are almost independent and the sensitivity map points

towards some regions in the space where the dependence is maximized. In all cases, the Sx and

Sy are orthogonal in direction and form a vector field whose intensity can be summarized in its

norm |S| (columns in the figure).

PLOS ONE Kernel methods and their derivatives

PLOS ONE | https://doi.org/10.1371/journal.pone.0235885 October 29, 2020 15 / 30

https://doi.org/10.1371/journal.pone.0235885


6.4 Unfolding and independization

We have seen that the derivatives of the HSIC function can be useful to learn about the data

distribution and the variable associations. The derivatives of HSIC give information about the

directions most affecting the dependence or independence measure.

Fig 6 shows an example of how the derivatives of the HSIC can be used to modify the data

and achieve either maximum dependence or maximum independence. We embedded the

derivatives in a simple gradient descent scheme, in which we move samples iteratively to maxi-

mize or minimize data dependence. Departing from a sinusoid, one can attain dependent or

independent domains.

Note that HSIC can be understood as a maximum mean discrepancy (MMD) [64] between

the joint probability measure of the involved variables and the product of their marginals, and

MMD derivatives are very similar to those of HSIC provided here. The explicit use of the ker-

nel derivatives would allow us to use gradient-descent approaches in methods that take advan-

tage of HSIC or MMD, such as in algorithms for domain adaptation and generative modeling.

7 Analysis of spatio-temporal earth data

Kernel methods are widely applied in the Earth system sciences [5], where they have proven to

be effective when dealing with low numbers of (potentially high dimensional) training sam-

ples. Data of this kind are characteristic for hyperspectral data, multidimensional sensor infor-

mation, and different noise sources in the data. The most common applications in Earth

system sciences are anomaly and target detection [65], the estimation of biogeochemical or

biophysical parameters [66–68], dimensionality reduction [15, 69, 70], and the estimation of

data interdependence [31]. However, so far multivariate spatio-temporal data problems have

Fig 5. Visualizing the derivatives and the modulus of the directional derivative for HSIC in three toy examples.

https://doi.org/10.1371/journal.pone.0235885.g005
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received comparable little attention [71, 72], and in particular regarding the use of the deriva-

tives of kernel methods [25, 26]. This is surprising, given the high-dimensional nature of most

spatio-temporal dynamics in most sub-domains of the Earth system, e.g. land-surface dynam-

ics, land-atmosphere interactions, ocean dynamics, etc. [73]. Hence, this section explores the

added value of kernel derivatives for analyzing multivariate spatio-temporal Earth system data.

We showcase applications considering the four studied problems of classification, regression,

density estimation and dependence estimation. Please see github.com/IPL-UV/sakame for a

working implementation of the algorithms as well as the subsequent ESDC experiments.

7.1 Spatio-temporal earth data

Today, data-driven research into Earth system dynamics has gained momentum and comple-

ments global modelling efforts. Much of Earth data is generated by a wide range of satellite

sensors, upscaled products from in-situ observations, and model simulations with constantly

improving spatial and temporal resolutions. The question is whether using kernel derivatives

may help in (1) choosing the appropriate space and time scales to analyze phenomena, (2)

visualize the most informative areas of interest, and (3) detect anomalies in spatio-temporal

Earth data. We will work with products contained in the Earth System Data Lab (ESDL) [73].

The analysis-ready data-cube contains and harmonizes more than 40 variables relevant to

monitor key processes of the terrestrial land-surface and atmosphere. The data streams con-

tained in the ESDL are grouped in three data streams: land surface, atmospheric forcings and

socio-economic data. Here we focus on three land-surface variables which exhibit nonlinear

Fig 6. Modification of the input samples to maximize of minimize HSIC dependence between their dimensions

(see text for details).

https://doi.org/10.1371/journal.pone.0235885.g006
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relations in space and time. The following three variables; the gross primary productivity

(GPP), root-zone soil moisture (SM), and land surface temperature (LST); are outlined below:

• GPP is the rate of fixation of carbon dioxide through the photosynthesis and one of the larg-

est single flux in the global carbon cycle. However, the process is sensitive to climate variabil-

ity. For instance, it has been shown that regional extreme events like droughts, heatwaves,

and other types of disturbances may even influence the inter-annual variability of the glob-

ally integrated GPP [74]. Hence, it is key to understand the spatial and temporal dynamics of

GPP at regional and global scales. Here, we consider the GPP FLUXCOM (http://www.

fluxcom.org/) product, computed as described in [75, 76].

• SM plays a fundamental role for the environment and climate system, as it influences hydro-

logical and agricultural processes, runoff generation and drought development processes,

and land-atmospheric feedbacks [77] There are two products of soil moisture in our experi-

ments. Standard SM products carry information limited to a few centimeters below the sur-

face (±5 cm), and do not allow access to the whole zone from where water can be absorbed

by roots. This is why we used root-zone soil moisture (RSM) [78–80] in the dependence esti-

mation problem instead, a product from GLEAM that is a more sensitive variable to monitor

water stress and droughts in vegetation.

• LST is an essential variable within the Earth climate system as it influences processes such as

the exchange of energy and water between the land surface and atmosphere, and influences

the rate and timing of plant growth. The LST product contained in the ESDL is the result of

an ESA project called GlobTemperature, that developed a merged LST data set from thermal

infrared (geostationary and polar orbiters) and passive microwave satellite data to provide

best possible coverage.

The data is organized in 4-dimensional data cube x(u, v, t, k) involving (latitude, longitude)

spatial coordinates (u, v), time sampling t, and the variable k. The data in ESDL contains a spa-

tial resolution (high 0.083˚ resolution and coarser grid aggregation at 0.25˚) and a temporal

resolution of 8 days spanning the years 2001-2011. In our experiments, we focus on the lower

resolution products, during 2008-2010, and over Europe only. In the year 2010, a severe com-

bination of spring and summer drought combined with a summer heat stress event affected

large parts of Russia which can be observed in the three variables under study here [81], and

we expect that also their interrelations must be affected. We use this well known event to pro-

vide a proof of concept for our suggestion approaches to interpret regressions, principal

curves, and dependence estimation.

7.2 Sensitivity analysis in GP modelling

Studying time-varying processes with GPs is customary. Designing a GP becomes more com-

plicated when dealing with spatio-temporal datasets. This can be cumbersome when the final

goal is to understand and visualize spatial dependencies as well as to study the relevance of the

features and the samples. Sensitivity analysis can be useful for either scenario. In this experi-

ment, we study the impact of features in the GP modeling of the GPP and LST variables during

2010. To do so, we developed GP regression models trained to predict a pixel from their neigh-

bourhood pixels. This is similar to geographically weighted regression [82] which can be used

to model the local spatial relationships between these features and the outputs. From this

framework, we can get sensitivity values for each of the contributing dimensions. We further

split the data into subsets of spatial ‘minicubes’ which ranged in size from 2 × 2 until size 7 × 7.

We use a GP model on a training subset of minicubes whereby the neighbours were used as
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input dimensions to predict the center pixel for both GPP and LST. For metrics, we used the

R2-value to measure the goodness of fit between our model and the real data.

Fig 7 show how the sensitivity changes according to the mean prediction of the GPP and

LST for two neighbourhood spatial window sizes (3 × 3 and 5 × 5). It also shows the spatial

sensitivity maps for both settings and the R2-value and the average sensitivity for each GP

model. What’s reassuring is that we see consistently low sensitivity values in areas (e.g. near

the Black and Caspian Sea) for the GPP and LST regardless of the spatial window size as these

are typically areas of low GPP and SM. For GPP, we see that sensitivities tend to become

smoother as the neighbourhood size increases. These particular maps for GPP reach an R2

value of 0.93 and 0.95 for each respective window size. Unlike the small differences in good-

ness of fit (+2% in R2), the sensitivity curves show a wider variation and suggest that bigger

windows are more appropriate to capture smoother areas; this is expected. Although we get a

better model with a higher spatial window size, the sensitivity of neighbouring points become

more dispersed over larger areas over Europe instead of just staying within small clusters. A

similar pattern of dispersion of the sensitive points is observed for the LST maps w.r.t. the spa-

tial window size. For LST, we notice that there is not a large difference in the R2 as we increase

the spatial window size. The most sensitive regions mostly stay the same but there is a small

shift from the northern regions of Europe from more sensitive to less sensitive. So it’s clear

that the number of spatial-pixels used as input features would be different depending upon the

input variable, e.g. one can use a higher neighbourhood size for LST because we get the same

R2 and similar sensitivity maps whereas the GPP could have a lower window size to ensure

that we capture the local variability.

7.3 Classification of drought regions

Support vector machines (SVMs) is a very common classification method widely used in

numerous applications in the field of machine learning in general and remote sensing in par-

ticular [5]. The derivatives of the SVM function, however, have not been used before to under-

stand the model, nor linked to the concept of margin. The derivatives of SVMs can be broken

Fig 7. Visualizing the spatial maps for the senstivity of the Gaussian process (GP) regression model under

different spatial sampling sizes for the Gross Primary Productivity (GPP) [top] and land surface temperature

(LST) [bottom] for the summer of 2010 (Jun-Jul-Aug). The rightmost column shows the summary R2 and Sensitivity

for each spatial window size for the GP model.

https://doi.org/10.1371/journal.pone.0235885.g007
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into two components via the product rule (section 4): 1) the derivative of the mask function

and 2) the derivative of the kernel function. Typically one would use a sgn function as the

mask but we used the tanh function to allow us to observe how the boundary or margin

behaves w.r.t. the inputs.

In this experiment, we chose to study the relationship between gross primary productivity

and root soil moisture during the year 2010 affected by a severe heatwave. There was a severe

drought that occurred over this region for the entire summer of 2010 (June, July and August)

[81]. Drought classification is an unsupervised problem and so there is a lot of debate about

how to detect droughts within different scientific communities. We use a pre-defined drought

mask of the countries affected by the 2010 heatwave found from the EM-DAT database [83]

which reports all drought events which follow at least one of the criteria: 10 or more people

dead, 100 or more people affected, declared state of emergency, or a call for international assis-

tance. The region where the droughts are reported is just over the region of Eastern Europe, as

shown in the binary classification maps in Fig 8. We chose this pre-defined drought area to

simplify the problem which would allow us to see if we can indeed classify a drought region

spatially and then look at the derivatives. We did a simple binary classification problem over

the spatial coordinates using the two input variables (GPP and RM). We sampled only from

the month of July at different time intervals within the month to make the samples more varied

as the GPP and RM can still fluctuate within a monthly span. This is an unbalanced dataset as

there are more non-drought regions than drought regions in the spatial subsample. While

there are numerous advanced methods to deal with imbalanced datasets, we only used the

standard SVM as that complexity is out of the scope for this experiment. The ESDC is very

dense so we used 500 randomly selected points for the drought region and 1,000 randomly

Fig 8. Visualizing the (a) labels, (b) predictions (b), and (c) the 2D representation space for the predictions. This is

the classification problem of drought (red) versus no-drought (green) with the support vectors (black) for the SVM

formulation (section 4).

https://doi.org/10.1371/journal.pone.0235885.g008
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selected points for the non-drought regions. The remaining points (*3800) were considered

for calculating test statistics, while the visualizations include all of the points for the dataset.

We applied a standard cross-validated SVM classification algorithm with an RBF kernel func-

tion. For metrics, we used the standard precision, recall, F1-score and Support for the predic-

tions of drought over non-drought. Table 4 shows the classification results compared to the

labels of the trained SVM algorithm and Fig 8 shows the classification maps.

Fig 9 shows the sensitivity spatial maps as well as the 2D latent space for the outputs of

the SVM classification model. We show the full derivative and the mask and kernel product

components. The mask derivative has high sensitivity values for almost all regions where the

decision function is unsure about the classification region. We see that the highest yellow

regions are near the Caspian Sea which is also the area where there is a lot of overlap

Table 4. This table summarizes classification results for the drought and non-drought regions over Eastern Europe using the SVM (Support Vector Machines, sec-

tion 4) formulation.

Class Label Precision Recall F1-Score Support

Non-Drought Regions 0.90 0.91 0.91 28590

Drought Regions 0.69 0.67 0.68 8268

Accuracy 0.86 36858

https://doi.org/10.1371/journal.pone.0235885.t004

Fig 9. Visualizing the scatter plot of the drought (red) versus no-drought (green) and the support vectors (black) using

the SVM section 4 classification algorithm. We also display the sensitivity of the full derivative and its components: the

mask function (tanh) and the kernel function (@k� αy) based on the predictive mean of the SVM classification results.

https://doi.org/10.1371/journal.pone.0235885.g009
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between the classes. Recall that the mask used is based on the reported regions and not the

actual GPP or SM values. So naturally the SVM algorithm is probably picking up the incon-

sistencies with the data given. Nevertheless, the kernel derivative indicates where there are

regions of little data and in regions where there is significant overlap. Ultimately, the combi-

nation of the products represents a good balance between lack of data and the width of the

margin between the two classes.

7.4 Principal curves of the ESDC

In this experiment we analyze GPP spatial-temporal patterns for different seasons for the

year 2010 using the principal curve (PC) framework in Section 4. Each sample consists of a

vector with the variable value for a particular location and all the time dimensions in the

season: (05-Jan to 05-May), (21-May to 08-Aug), and (17-Aug to 31-Dec) For each season we

have around 28, 000 samples of size 1 × T. Fig 10 shows the results. For each data set we plot

the mean GPP value of the season in each point. The location of the points that belong to

the PC are plotted in green using the Dijkstra distance inside the curve (as in the toy exam-

ples in Fig 4). The points belonging to the PC can be interpreted as the landmarks of the

whole dataset, similar to a centroid of a cluster. But in this example, they refer to the points

on the probability ridge of the data manifold (i.e. similar to the points closer to the first

eigenvector in PCA). These points could be used for multiple purposes, e.g. as a summary to

analyze the behaviour of the whole manifold or used for a temporal analysis of their evolu-

tion. One one hand, the location of the points is quite independent of the mean values, so

they give different, alternative information. On the other hand, the location depends on the

time of the year represented.

Most of the GPP ‘representative’ points are scattered around the manifold which depends

on the season. For instance during the colder season (Jan-May), the dots are concentrated in

the middle and low latitudes. During this period, the dots in northern Germany have a similar

temperature and GPP than in the North-West part of Europe. Therefore, there is no need to

add extra landmarks in these regions. Points in Morocco represent the warmer part of the

manifold and Balcans area and Turkey represent the central part of the manifold. During the

warmest period (May-Aug) the distribution of the dots follow an opposite direction, Southern

regions are weighted less while Northern regions have more representation. In the case of mild

temperatures (Aug-Dec), more landmarks in different regions are needed.

Fig 10. Principal curves on the ESDC. Each figure represents the results for GPP at different time periods during the 2010.

In each image the mean value of the variable for each location is shown in colormap (minimum blue, maximum red), and the

points that belong to the principal curves are represented in green. Different brightness of green has been computed using the

Dijkstra distance over the curve dots.

https://doi.org/10.1371/journal.pone.0235885.g010
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7.5 Sensitivity analysis of kernel dependence measures

HSIC is a dependence measure which can show differences in the higher-order relations

between random variables. The derivatives of HSIC w.r.t. the input features are related to the

change of the dependence measure which summarizes the relevance of the input features in

the dependence. Therefore, these derivative maps can be related to the sensitivity of the inputs.

In this experiment, we chose to study the relation between GPP and RM for Europe and

Russia during the years 2008, 2009 and 2010. We apply the HSIC with a linear kernel and com-

pute the sensitivity maps, which is an estimation of how much the dependency criterion

changes. We take spatial segments of GPP and RM at each time stamp, T and compute the

HSIC value for each T independently for Russia and Europe. We also computed the derivative

of HSIC for the same T time stamps independently for Russian and Europe. We computed the

modulus to summarize the impact of each dimension to act as a proxy for the total average

sensitivity. The final step involved computing the expectation between the modulus of the

derivative of HSIC between Russian and Europe. Europe acts as a proxy stable environment

and Russia is the one we would like to compare to. We estimated the expected value for three

time periods (before: 05-Jan, 20-May; during: 28-May, 01-Sep; after: 09-Sep, 30-Dec) for each

year individually. Then we compared each of the values to see how the expectation changes

between Europe and Russia for each period across the years. The expected value of the HSIC

derivatives summarize the change of association between variables differently than the HSIC

measure itself.

The experiment focuses on studying the coupling/association between RM and GPP during

the Russian drought in 2010. The HSIC algorithm captures an increased difference in depen-

dencies of GPP and RM for Russia relative to Europe in 2010 if we compare this relationship

to the years 2008 and 2009, see Fig 11a. However, HSIC only captures instantaneous instances

of dependencies and not how fast these changes occur. The derivatives of HSIC (Fig 11b) allow

us to quantify and capture when these changes actually occur. The gradients of HSIC do not

show obvious differences in magnitude or shape across years between Russia and Europe. By

taking the expected value of specific time periods of interest (before-during-after drought), we

can highlight the contrast in the dependency trends between different periods with respect to

their previous years, both in terms of HSIC and HSIC derivatives. We observe in Fig 11c, a

change the mean value of the difference in the derivative of HSIC in Fig 11d which reveals a

noticeable change in the trend for the springtime and summertime of 2010 compared to 2008

and 2009.

8 Conclusions

The use of Kernel methods is very popular in pattern analysis and machine learning and have

been widely adopted because of their performance in many applications. However, they are

still considered black-box models as the feature map is not directly accessible and predictions

are difficult to interpret. In this note, we took a modest step back to understand different ker-

nel methods by exploiting partial derivatives of the learned function with respect to the inputs.

To recap, we have provided intuitive explanations for derivatives of each kernel method

through illustrative toy examples, and also highlighted the links between each of the formu-

lations with concise expressions to showcase the similarities. We show that 1) the derivatives

of kernel regression models (such as GPs) allows one to do sensitivity analysis to find rele-

vant input features, 2) the derivatives of kernel classification models (such as SVMs) also

allows one to do sensitivity analysis and visualize the margin, 3) the derivatives of kernel

density estimators (KDE) allows one to describe the ridge of the estimated multivariate den-

sities, 4) the derivatives of kernel dependence measures (such as HSIC) allows one to
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visualize the magnitude and change of direction in the dependencies between two multivari-

ate variables. We have also given proof-of-concept examples of how they can be used in

challenging applications with spatial-temporal Earth datasets. In particular, 1) we show that

we can express the spatial-temporal relationships as inputs to regression algorithms and

evaluate their relevance for prediction of essential climate variables, 2) we show that we can

assess the margin for classification models in drought detection, as a way to identify the

most sensitive points/regions for detection, 3) we show that the ridges can be used as indica-

tors of potential regions of interest due to their location in the PDF, which could be related

to anomalies, and 4) we show that we can detect changes in dependence between two events

during an extreme heatwave event.

A Higher order derivatives of kernel functions

It can be shown that the m-th derivative of some kernel functions can be computed recursively

using Faà di Bruno’s identity [40] for the multivariate case:

@
ðmÞ

@xjðmÞ
f ðgðxÞÞ ¼

X m!

t1! 1!t1 t2! 2!t2 � � � tm!m!tm
�
@
ðt1þ���þtmÞf
@gðxÞ

�
Yn

i¼1

@gðiÞ

@xjðiÞ

� �mj

;

where the sum is over all m-tuples ðt1; . . . ; tmÞ 2 N
m

and
Pm

j¼1
j tj ¼ m. It is also useful the

Fig 11. Each figure represents different summaries of how HSIC can be used to capture the differences in

dependencies between Europe and Russia for GPP and RSM. (a) shows the HSIC value for Europe and Russia at

each time stamp, (b) shows the derivative of HSIC for Europe and Russia at each time stamp, and the mean value for

the difference in the (c) HSIC between Europe and Russia for different periods (Jan-May, Jun-Aug, and Sept-Dec), and

(d) in the derivative of HSIC for the same periods.

https://doi.org/10.1371/journal.pone.0235885.g011
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expression for mixed derivatives:

@
ðmÞ

@x1 � � � @xm
f ðgðxÞÞ ¼

X

p2P

@
jpjf

@gðxÞ
�
Y

B2p

@g jBj
Q

j2B@xjBj
;

whereP is the ensemble all the partitions sets in 1. . .m, π is a particular partition set, B 2 π
runs over the blocks of the partition set π, and |π| is the cardinality of π.

For the RBF kernel we can identify f = exp(�) and g = −γkx − yk2. The derivatives for the f(g
(x)) are always the same @m f/@g(x)m = f(g(x)) = exp (g(x)), and the derivatives for the g(x) are:

@g/@xj = −2γ(xj − yj), @2 g/@xj2 = −2γ, @m g/@xjm = 0, for m� 3, and
@mg

@x1...@xm ¼ 0.

Applying the previous formula for m = 1 the first derivative is:
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The second derivative is:
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The mixed derivative is:

@
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þ

@
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¼ 4g2ðxj � yjÞðxi � yiÞkðx; yÞ:

B Custom regression function

In this example we show the behaviour of the first and second derivatives for a multivariate

input. A GP model is fitted over the dataset using the RBF kernel function. The experiment

uses a custom linear multivariate function with two inputs, x1 and x2, as inputs:

y ¼ ax1 þ bx2; ð25Þ

where the coefficients a and b have varying values. Both x1,2 were generated along the same

range uniform distribution Uð½� 20; 20�Þ but there was a linear transformation a = 5, b = 1

from ([0, 20]) and constant everywhere else, i.e. a = b = 1 from ([−20, 0]).

The GP model smooths the piece-wise continuous function which results in some addi-

tional slopes than the original formulation. This is visible (see Fig 12) from the derivatives of

the kernel model as the first derivative for the x1 and x2 components have positive values for

the sensitivities of the slopes in the regions where a and b are equal to some constant, respec-

tively. The second derivative for both x1 and x2 show the same effect except for curvature. This

experiment successfully highlights the derivatives of the individual components as well as their

combined sensitivity.
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Fig 12. First row: The original toy data is displayed as well as the predicted GP model which presents a smoother

curve. Second row: the first derivative in the x1,x2 direction and combined direction (the sensitivity) respectively.

Third row: the second derivative in the x1, x2 direction and combined direction (the sensitivity) respectively. The

yellow colored points represent the regions with positive values, the blue colored points represent the regions with

negative values and the gray colored points represent the regions where the values are zero.
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