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Abstract: The potential of the plasma membrane (∆ψ) regulates the electrochemical potential
between the outer and inner sides of cell membranes. The opportunistic fungal pathogen, Candida
albicans, regulates the membrane potential in response to environmental conditions, as well as the
physiological state of the cell. Here we demonstrate a new method for detection of cell membrane
depolarization/permeabilization in C. albicans using the potentiometric zwitterionic dye di-4-ANEPPS.
Di-4-ANEPPS measures the changes in the cell ∆ψ depending on the phases of growth and external
factors regulating ∆ψ, such as potassium or calcium chlorides, amiodarone or DM-11 (inhibitor of
H+-ATPase). We also demonstrated that di-4-ANEPPS is a good tool for fast measurement of the
influence of amphipathic compounds on ∆ψ .

Keywords: Candida albicans; plasma membrane potential; membrane polarization;
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1. Introduction

Though the plasma membrane potential (∆ψ) is an electrochemical potential difference between
extracellular and intracellular compartments in all living cells, the mechanisms maintaining ∆ψ differ
between cell types [1]. ∆ψ acts as an indicator of the physiological status of the cell; for example,
depolarization of the cell membrane in lymphocytes prevents cell proliferation [2]. The influence of
the value of ∆ψ on the lipid lateral localization in the plasma membrane of the yeast Saccharomyces
cerevisiae is another example that highlights the importance of the ∆ψ in cell biology [3].

Candida albicans is a microorganism of human microflora (skin, as well as urinary and
gastrointestinal tracts) and the most common cause of opportunistic fungal infections of
immunocompromised patients [4]. The value of C. albicans ∆ψ is ~−120 mV and is comparable
to that of pathogenic bacteria, which ranges from ~−130 mV to ~−150 mV [5,6]. Unlike in C. albicans,
the value of ∆ψ of non-pathogenic S. cerevisiae is ~−71 mV and is comparable to the potential of
mammalian cells, which is ~−90 mV [5,6].

Highly desirable activities of antifungal compounds include binding to ergosterol and subsequent
permeabilization of the cell membrane [7,8]. The loss of cell membrane integrity due to the action of
antifungal drugs causes plasma membrane depolarization [9].

Two types of fluorescent probes are commonly used for measurements of C. albicans plasma
membrane polarity: slow response potential-sensitive cationic carbocyanines (Dil, DiS and DiO) and
anionic bis-barbituric acid oxonols (DiBAC) [10–13].

Carbocyanines accumulate in hyperpolarized membranes, while bis-oxonol dyes enter depolarized
cells [13,14]. Binding to the cell by both groups of dyes results in a red shift of the fluorescence
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spectrum while a blue shift of fluorescence spectrum is observed when probes are not bound [12,15].
Accumulation of the cationic and anionic dyes in the plasma membrane and changes of ∆ψ caused by
interfering factors require constant monitoring of the time course of the fluorescence spectrum shifts.
Additionally, carbocyanines are substrates for C. albicans drug ATP-binding cassette (ABC) transporters
(Cdr1 and Cdr2) and are used to measure the activity of these pumps in real time [15]. However,
Cadek et al. [16] found that the excretion of carbocyanines by ABC transporters could interfere with
the proper measurement of cell membrane potential.

Potentiometric zwitterionic aminonaphthylethenylpyridinium (ANEP) dyes (di-4-ANEPPS and
di-8-ANEPPS) were previously used to map the membrane potential along neurons and muscle
fibers [16–18]. Both probes reduce the excitation fluorescence intensity at ~440 nm and increase it at
~530 nm in response to membrane hyperpolarization [19,20]. In addition, after excitation in the range
of ~470 nm to 490 nm, ANEP dyes cause a blue or red fluorescence shift during depolarization or
hyperpolarization of membranes, respectively [21–23]. Di-4-ANEPPS was also used for measuring
membrane potential in S. cerevisiae. The use of this dye in these walled cells showed its lower stability,
but faster response, in comparison to previously used cationic and anionic dyes [24].

In this study, we report a new application of monitoring di-4-ANEPPS fluorescence spectral shift
in Candida albicans’ ∆ψmeasurement. We developed a straightforward and reliable assay in monitoring
de-/hyperpolarization as a result of ion homeostasis disturbance and after treatment with amphipathic
compounds, which may provide a better understanding of the physiology of C. albicans.

2. Materials and Methods

2.1. Chemicals, Strains and Growth Conditions

All chemicals and reagents used in this study were purchased from the following sources:
3,3′-Dipropylthiacarbocyanine iodide (diS-C3(3)), sodium dodecyl sulfate (SDS), benzalkonium chloride
(BAC), Triton X-100 (Sigma-Aldrich; Poznań, Poland); D-glucose, bacteriological agar, propidium
iodide (PI) (manufacturer: Bioshop, distributor: Lab Empire; Rzeszów, Poland); peptone, yeast
extract (YE) (manufacturer: BD; distributor: Diag-med; Warszawa, Poland); potassium chloride (KCl)
(Chempur; Piekary Śląskie, Poland); calcium chloride (CaCl2) (POCH; Gliwice, Poland); pyridinium,
4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl), hydroxide inner salt (di-4-ANEPPS)
(Thermo Fisher; Warszawa, Poland); 2-dodecanoyloxyethyl-dimethylammonum chloride (DM-11) was
a gift from Dr. Łuczyński (Wroclaw, Poland).

C. albicans strain CAF2-1 (genotype: ura3∆::imm434/URA3) was a kind gift from prof. D. Sanglard
(Lausanne, Switzerland) [25]. It was routinely grown at 28 ◦C on YPD medium (2% glucose, 1%
peptone, 1% YE) in a shaking incubator (120 rpm). Agar in a final concentration of 2% was used for
medium solidification.

To determine growth phases, CAF2-1 was grown in 20 mL of YPD medium for 24 h at 28 ◦C with
shaking (120 rpm). Every two hours, the A600 measurements were performed using a Hach Odyssey
DR/2500 spectrophotometer in three independent repetitions.

For specific experiments, CAF2-1 cells were grown until they reached either early (8 h) or late
(14 h) logarithmic phase.

2.2. DiS-C3(3) Assay

The fluorescence assay of ∆ψ was performed in the early and late logarithmic phase of C. albicans
growth as described previously [26]. ∆ψmeasurements using de- and hyperpolarizing compounds
(200 mM KCl, 50 µM DM-11; 25 mM CaCl2, 2 µM Amiodarone, respectively) and di-4-ANEPPS (final
conc. = 3 × 10−6 M) were performed in the early phase of growth. All reagents were prepared shortly
before fluorescence measurements and added at t = 0 min (de- and hyperpolarizing compounds) or at
t = 60 min (di-4-ANEPPS).
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2.3. Di-4-ANEPPS Assay

Detection of ∆ψ by di-4-ANEPPS was performed by labelling 3 mL of C. albicans cell suspensions
(A600 = 0.1) in citrate phosphate (CP) buffer (pH 6.0). The final concentration of di-4-ANEPPS probe
was 3 × 10−6 M. Samples were incubated for 30 min at room temperature (RT). The growth-dependent
membrane potential was measured both in the early and late logarithmic phase of C. albicans growth.
Membrane potential measurements using de- and hyperpolarizing compounds (200 mM KCl, 50 µM
DM-11; 25 mM CaCl2, 2µM Amiodarone respectively) were performed only in the early phase of growth
because of physiological depolarization of plasma membrane in late log phase cells. KCl, DM-11, CaCl2,
Amiodarone were added immediately after incubation of cells with di-4-ANEPPS. In all experiments,
di-4-ANEPPS was excited at 488 nm (Ex slit = 10 nm) and fluorescence spectra at 520–720 nm (Em slit =

2.5 nm) (PMT voltage = 700 V) were recorded using fluorescence spectrophotometer (HITACHI F-4500)
equipped with a xenon lamp. Each experiment was performed in three independent replications
and each probe was excited three times. Fluorescence spectra from corresponding experiments were
averaged and normalized (value 1 for maximum emission intensity in each case) for comparison of
fluorescence maxima shifts.

2.4. Toxicity of di-4-ANEPPS

C. albicans suspensions were treated as described in Section 2.3 (CP buffer; A600 = 0.1; 3 × 10−6 M
di-4-ANEPPS; 30 min), washed with CP, and resuspended in CP (100). Suspensions were serially diluted
up to 10−3, then 2 µL were spotted onto YPD agar and cultured for 48 h at 28 ◦C. Afterwards, the plates
were photographed using FastGene® B/G GelPic imaging box (Nippon Genetics, Dueren, Germany).

2.5. Influence of Detergents on ∆ψ

The impact of SDS (0–320 µg/mL), BAC (0–320 µg/mL) and Triton X-100 (0–320 µg/mL) on ∆ψ
was evaluated as described in Section 2.3, with modifications. Fluorescence spectra of di-4-ANEPPS
(3 × 10−6 M) solution in CP buffer (pH 6.0) were collected after 30 min incubation in the presence of
detergents. Because an interaction between the fluorescent probe and detergents was identified, early
log phase C. albicans cells were pretreated with detergents for 30 min at RT, washed three times with
CP buffer (pH 6.0), and labelled with di-4-ANEPPS for 30 min. Fluorescence measurements were
performed as described above. For data analysis, the red-blue signal ratio (R-B ratio) was calculated by
dividing the sum of fluorescence intensity (IF) between 580 and 620 nm by the sum of IF between 540
and 580 nm as shown in the formula below.

RB ratio =

∑620 nm
i=580 nm IFi∑580 nm
i=540 nm IFi

(1)

Additionally, all results were normalized to the control (value = 1 for the control experiment
without the addition of detergents). In this approach, it was assumed that the fluorescence spectra
symmetry had a maximum at 580 nm (plasma membrane potential of early log phase cells in control
conditions); therefore, blue shift (depolarization) and red shift (hyperpolarization) result in an R-B
ratio of <1 and >1, respectively.

2.6. Propidium Iodide (PI) Staining

Assessment of plasma membrane permeability was performed as described before [8], with
modifications. Briefly, 3 mL of C. albicans cell suspensions (A600 = 0.1) in CP buffer (pH 6.0) were mixed
with SDS (0–320 µg/mL), BAC (0–320 µg/mL) or Triton X-100 (0–320 µg/mL), incubated for 30 min at
RT, washed three times with CP buffer, and stained for 5 min with PI to the final dye concentration
of 6 × 10−6 M. Next, cell suspensions were washed twice with CP buffer and observed under a Zeiss
Axio Imager A2 microscope equipped with a Zeiss Axiocam 503 mono microscope camera and a
Zeiss HBO100 mercury lamp. The percentage of permeabilized cells was evaluated by counting PI
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positive cells out of one hundred cells in three independent repetitions for each experiment. Statistical
significance analysis was performed using Student’s t-test (binomial, unpaired).

2.7. Sequences Alignmets

TOK1 gene and Tok1p sequences from S. cerevisiae S288C strain were obtained from Saccharomyces
Genome Database (accession ID: SGD:S000003629) [27]. TOK1 gene and Tok1p sequences from
C. albicans SC5314 strain were obtained from Candida Genome Database (accession by systematic name:
C4_00670W_A) [28]. Sequences alignments were performed by EMBOSS Needle program [29].

3. Results and Discussion

Di-4-ANEPPS dye is widely used in the measurement of the ∆ψ in tissues [30], but in walled cells
it was used only in yeast S. cerevisiae [24]. H+-ATPase forms ∆ψ in both pathogenic C. albicans and
non-pathogenic S. cerevisiae, but its activity in these two species is different. In contrast to S. cerevisiae,
C. albicans up-regulates energy reserve metabolism [31] and has a lower acidification activity of
H+-ATPase [32]. Our previous investigations indicated that the ∆ψ of C. albicans measured by diS-C3(3)
dye differs from S. cerevisiae [15]. To expand this observation, we used di-4-ANEPPS to measure
C. albicans’ ∆ψ under different conditions and compare this method with the method using diS-C3(3).

3.1. Di-4-ANEPPS and DiS-C3(3) Measure Cell Depolarization Depending on the Phases of Growth

First, we compared diS-C3(3) and di-4-ANEPPS in the detection of growth phase-dependent
plasma membrane depolarization for C. albicans (Figure 1A,B). Previously, depolarization of S. cerevisiae
plasma membrane resulting from decreased H+-ATPase activity in the late exponential phase was
observed using diS-C3(3) [16,33]. In the case of C. albicans, log phase was observed between 8 to 14 h
of growth (Figure 1C). Staining with diS-C3(3) in the cells was considerably slower in the late log
phase (λmax = ~ 572 nm at 40 min) compared to the early phase (λmax= ~ 577–578 nm at 28 min) of
exponential growth (Figure 1A), which indicates membrane depolarization and is in agreement with
our previous studies [15].

In our study, we used the C. albicans CAF2-1 strain, which has both ABC transporters (Cdr1 and
Cdr2). DiS-C3(3) is the substrate for ABC transporters and its efflux is observed at 40–50 min after
addition of it to the S. cerevisiae cell suspension [16]. In the case of C. albicans, an efflux of this dye occurs
after 60–70 minutes (Figure 1E, control) [15]. For ∆ψ measurements, we did not monitor diS-C3(3)
fluorescence longer than that to avoid ABC transporters interference.

We compared the fluorescence spectrum of di-4-ANEPPS bound to plasma membrane of C. albicans
cells in early and late exponential phases of growth (Figure 1B). The di-4-ANEPPS emission maximum
(EM) was at ~580 nm for the early exponential phase, whereas in the late exponential cells the EM
shifted to ~574 nm, with the spectrum area being noticeably narrowed. Blue-shift of di-4-ANEPPS
fluorescence indicates depolarization of the plasma membrane, as previously reported for tissues
stained with ANEP dyes [23,34].

In our experiments, di-4-ANEPPS treatment was not toxic in C. albicans (Figure 1D). We conclude
that ∆ψmeasurements were not affected by an adverse effect of the dye on C. albicans cells. Additionally,
di-4-ANEPPS did not inhibit diS-C3(3) efflux after addition at 60 min. (Figure 1E). The addition of
ABC transporter substrate during diS-C3(3) assay results in lower or lack of diS-C3(3) efflux [15], thus
di-4-ANEPPS is not an ABC transporter substrate and ∆ψmeasurements were not affected by the ABC
transporters efflux activity.
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inhibited by addition (arrow) of di-4-ANEPPS, means ±SD (n = 4). 
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The single Trk isoform (CaTrk1p) in C. albicans is nearly 60% homologous in four transmembrane 
motifs to both isoforms of Trkp in S. cerevisiae; this is expected to reflect quantitatively similar 
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Figure 1. Growth phase-dependent depolarization of C. albicans cells measured by: (A) monitoring
fluorescence maxima in time by diS-C3(3), means ± SD (n = 4) and (B) fluorescence spectrum shift of
di-4-ANEPPS (red-blue signal ratio (R-B) values = 1.043 ± 0.011 and 0.921 ± 0.002 for 8 h and 14 h,
respectively), each spectrum is averaged (n = 9); (C) growth curve of C. albicans CAF2-1, strain was
grown to 8 h and 14 h (early and late log phases), means ± SD (n = 3); (D) di-4-ANEPPS was not
toxic towards C. albicans CAF2-1; (E) ATP-binding cassettes (ABC) mediated diS-C3(3) efflux was not
inhibited by addition (arrow) of di-4-ANEPPS, means ± SD (n = 4).

3.2. Di-4-ANEPPS and DiS-C3(3) Measure Cell Depolarization and Hyperpolarization Induced by
External Factors

In addition to H+-ATPase, other transmembrane transporters form ∆ψ in pathogenic and
non-pathogenic yeast. K+ ions are transported to the inside of the C. albicans cells by Trk1p uniporter.
The single Trk isoform (CaTrk1p) in C. albicans is nearly 60% homologous in four transmembrane motifs
to both isoforms of Trkp in S. cerevisiae; this is expected to reflect quantitatively similar functions of these
transporters [35]. C. albicans needs a highly efficient K+ uptake system because of low concentration
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of potassium in the niches of the host organism [36]. The accumulation of potassium ions inside the
cell depolarizes the plasma membrane, as demonstrated in S. cerevisiae by Gaskova et al. [37] using
diS-C3(3) dye. We used diS-C3(3) and di-4-ANEPPS dyes to measure the C. albicans ∆ψ after KCl
application (Figure 2A,B). A blue shift of λmax (di-4-ANEPPS; EM: 575 nm) and fluorescence intensity
kinetics (diS-C3(3); λmax = ~ 575-576 nm at 50 min) were observed (Figure 2A,B), which indicate
depolarization of the membrane.
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Figure 2. Plasma membrane potential (∆ψ ) reduction and membrane depolarization in C. albicans
induced by KCl (200 mM) and DM-11 (50 µM) in early log phase (8 h) shown by: (A) diS-C3(3), means
± SD (n = 4) and (B) di-4-ANEPPS (R-B values = 1.040 ± 0.025, 0.991 ± 0.002 and 0.978 ± 0.010 for
control, KCl, DM-11, respectively), each spectrum is averaged (n = 9).

Among transmembrane transporters that contribute to ∆ψ are regulators of intracellular potassium
concentrations, such as the Tok1 channel [38]. Tok1p is a potassium specific channel that releases K+

from the cell and thus regenerates ∆ψ [39]. Deletion of the TOK1 gene results in the depolarization of
plasma membrane, and conversely, its overexpression leads to hyperpolarization of the yeast plasma
membrane [40,41]. In our investigations, the C. albicans ∆ψwas measured with diS-C3(3) dye in real
time for 60 min. The ∆ψ grew more slowly after using KCl (λmax at ~50 min) than in cells not treated
with KCl (λmax at ~30 min), but it finally achieved similar λmax values (Figure 2A). By using the
di-4-ANEPPS dye and observing the blue shift of fluorescence intensity (control EM: 582 nm; KCl
treated EM: 576 nm) we have shown that the plasma membrane of C. albicans’ cells is depolarized
(Figure 2B). However, the intensity of this depolarization is lower than after treatment of cells with
DM-11 (EM: 574 nm), which is a known H+-ATPase inhibitor in yeast (Figure 2B) [42,43]. We observed
reduced staining of cells with diS-C3(3) after 10 min. incubation with DM-11 and no ∆ψ recovery
(Figure 2). DM-11 is a lysosomotropic agent whose deprotonated form penetrates membranes and
protonated form accumulates in acidic yeast compartments (e.g., vacuoles). If this compound is used
in high concentrations it can cause membrane disruption [44]. Zahumensky et al. [45] have observed
the increase of Tok1p activity in S. cerevisiae cells treated with DM-11 and a gradually more extensive
Tok1 channel activity with deeper depolarization of the membrane.

Our results indicate a weaker role of Tok1p in ∆ψ recovery after treatment of cells with DM-11
and deeper membrane depolarization than when using KCl (Figure 2A,B). According to the sequence
alignment (Section 2.7), the CaTOK1 gene sequence is identical to the ScTOK1 gene in 48.6% and
CaTok1p with ScTok1p in 31.4%, which can indicate partially different functions of these transporters.
The staining of C. albicans strains by diS-C3(3) is approximately twice as slow as that of S. cerevisiae [15].
The reason for this difference in the rate of staining could be a lower ∆ψ in C. albicans cells relative to
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S. cerevisiae cells. Probably for these reasons, the ∆ψ reduction and membrane depolarization following
the blockage of H+-ATPase by DM-11 in C. albicans are not recovered by Tok1p activity.

Calcium channels in S. cerevisiae have been identified as high-affinity and low-affinity calcium
uptake systems (HACS and LACS). The voltage-gated Cch1p [46] and the stretch-activated Mid1p [47]
form a complex that defines the HACS, whereas Fig1p is a component of LACS [48]. The homologs of
these genes in C. albicans were found by Brandt et al. [49]. CaCCH1 has a 38.4% identity to its S. cerevisiae
homolog while the CaMID1 gene sequence had 36.9% identity to ScMID1 [49]. In S. cerevisiae, HACS
is activated by low Ca2+, whereas LACS activity was only revealed under conditions when HACS
was inhibited by rich media and its affinity for Ca2+ is 16-fold lower [50]. Brandt et al. [49] observed a
similar dependence in C. albicans. The perturbation of calcium homeostasis by the influx of Ca2+ into
C. albicans cells leads to their death. This finding has allowed amiodarone (AMD) to be used as an
antifungal drug. Maresova et al. [41] and Pena et al. [51] suggested that AMD elicits plasma membrane
hyperpolarization by inducing K+ efflux from the cells followed by depolarization resulting in the
Ca2+ influx and loss of cell viability.

We used a high concentration of CaCl2 (25 mM) to force the cells to take up Ca2+ through the
LACS system and to induce membrane hyperpolarization. The measurements with diS-C3(3) indicated
a ∆ψ increase (λmax = ~578–9 at ~40 min) almost with the same intensity as in the case of cells with
a low concentration of CaCl2 (λmax = ~577–8 at ~40 min) (Figure 3A). Di-4-ANEPPS fluorescence
showed only a slight red shift in cells with 25 mM CaCl2 (control EM: 575 nm; CaCl2 treated EM:
577 nm) (Figure 3B). Callahora et al. [52] pointed out that agents that did not produce an efflux of
K+ also did not produce increased Ca2+ uptake, and those that produced K+ efflux increased Ca2+

uptake. Transport across the plasma membrane in C. albicans cells appears to be reversible. A slight
red shift of the di-4-ANEPPS fluorescence indicating low hyperpolarization in our CaCl2 studies may
be due to compensation of the negative charge on the outside of membrane by K+ efflux from the
cells. On the other hand, when we used AMD we observed a fast ∆ψ build up (λmax = ~578–9 at
8 min) (Figure 3A) and a red shift of di-4-ANEPPS fluorescence (control EM: 575 nm; AMD treated EM:
580 nm) (Figure 3B) indicating membrane hyperpolarization according to studies on S. cerevisiae by
other researchers [41,51].
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Figure 3. ∆ψ increase and membrane hyperpolarization in C. albicans induced with calcium chloride
(CaCl2) (25 mM) and amiodarone (AMD) (2 µM) in early log phase (8 h) shown by: (A) diS-C3(3),
means ± SD (n = 4) and (B) di-4-ANEPPS (R-B values = 0.978 ± 0.011, 0.996 ± 0.006 and 1.033 ± 0.023
for control, CaCl2, AMD, respectively), each spectrum is averaged (n = 9).
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3.3. Di-4-ANEPPS Is a Suitable Tool for Fast Measuring of the Influence of Detergents on ∆ψ

In Figures 1–3 we show the validation of the usage of di-4-ANEPPS in ∆ψ measurements in
comparison to already known diS-C3(3) dye. The di-4-ANEPPS assay is more rapid and reliable due
to lack of toxicity towards C. albicans cells (Figure 1D) and unlike diS-C3(3), the di-4-ANEPPS ∆ψ
measurements are not interfered with by ABC transporters activity (Figure 1E). Here, we wanted to
show the vast potential of the di-4-ANEPPS dye for rapid screening of ∆ψ in C. albicans as a result of cell
physiology changes. We selected the influence of amphipathic compounds on C. albicans’ membranes
using three detergents: cationic benzalkonium chloride (BAC), anionic sodium dodecyl sulfate (SDS)
and non-ionic Triton X-100. Additionally, for more clear presentation of di-4-ANEPPS fluorescence
shifts we used an R-B ratio formula, described in Section 2.5.

The mechanism of antifungal action of commonly used detergents is often not well understood.
Kodedova et al. [53] showed that detergents at high concentrations cause membrane permeabilization
in S. cerevisiae and outflow of cations from the inside of the cell. Permeabilized cells cannot maintain
∆ψ and there is a massive outflow of cations from the inside of the cell. Gaskova et al. [37] noted that
this outflow of cations enhances diS-C3(3) binding capacity of the cytosolic components and this leads
to a fast increase of λmax.

SDS is an efficient solubilizer of integral membrane proteins [54]. At low concentrations,
SDS increased the permeability of the S. cerevisiae plasma membrane, as demonstrated by
Kodedova et al. [53], using diS-C3(3), whereas at a higher concentration (1.44 mg/mL), SDS caused a
very rapid red shift of diS-C3(3) indicating fully permeabilized membranes. The intensity of antifungal
activity of SDS depends on the time of incubation with cells and the concentration used. After a
30 min treatment with SDS, we observed hyperpolarization of the plasma membrane in a range of
80–320 µg/mL SDS (R-B ratio increase of up to ~1.15 at 320 µg/mL) (Figure 4). PI measurements indicate
a 25% permeabilization at a concentration of 80 µg/mL SDS and fully permeabilized cells in higher
concentrations (Figure 5).
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signal ratio (R-B ratio) was calculated as described in Section 2.5, means ± SD (n = 9).

BAC is a quaternary ammonium compound which has been used in clinical applications since
1935 [55]. Kodedova et al. [53] found that 18 µg/mL BAC caused a red shift in S. cerevisiae cells stained
with diS-C3(3), which indicated partial permeabilization of cells while others have been depolarized. At
0.36 µg/mL BAC the cells were depolarized [53]. Our results with di-4-ANEPPS show a similar trend in
BAC interaction with C. albicans cells. We observed depolarization of cells in the range of 10–40 µg/mL
BAC (R-B ratio drop of up to 0.9 at 40 µg/mL) and hyperpolarization when the concentrations of
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80–320 µg/mL BAC were used (R-B ratio increase of up to ~1.25 at 320 µg/mL) (Figure 4). As we
show in Figure 5, BAC induced the highest permeability of membranes among the used detergents in
the concentration of 20 µg/mL (>90% permeabilized cells) and from a concentration of 40 µg/mL we
observed a full permeabilization of cells.Microorganisms 2019, 7, 110 9 of 12 
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Figure 5. C. albicans CAF2-1 strain staining with propidium iodide (PI) after treatment with detergents:
SDS, BAC and Triton X-100, presented as: (A) microscopic observations, scale bar = 10 µm and
(B) histograms of the counted % of permeabilized cells, means ± SD (n = 3), statistical analysis at each
concentration was performed relative to control experiment without detergent (* p < 0.05; ** p < 0.01;
*** p < 0.001).

The nonionic detergent Triton X-100 was previously used for permeabilization as a tool for the
assay of yeast intracellular enzymes in whole cells [56], but the information on the Triton X-100 effect
of yeast plasma membrane is scarce. Using di-4-ANEPPS and PI, we observed the weakest effect of
Triton X-100 among the detergents used. Triton X-100 induced a blue shift of di-4-ANEPPS (R-B = 0.95
and 0.9 at 160 and 320 µg/mL, respectively), which means depolarization of the C. albicans plasma
membrane only at the highest concentrations used (Figure 4). We also observed approximately 50%
permeabilization of C. albicans cells at 320 µg/mL Triton X-100 (Figure 5).
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4. Conclusions

In this study, we reported the use of di-4-ANEPPS dye on ∆ψmeasurements of C. albicans. For
the development of the method, we tested different conditions disturbing ion homeostasis, such as cell
aging or de- and hyperpolarising agents (KCl and DM-11; CaCl2 and AMD) and compared results
with the known diS-C3(3) assay. We provided new information on the response of C. albicans under
those conditions and discussed our data based on the findings reported by other research groups using
non-pathogenic S. cerevisiae. Due to the advantages of di-4-ANEPPS over diS-C3(3), we developed an
R-B ratio formula for rapid ∆ψ calculations and proposed it as a method for detection of C. albicans
physiology disturbances on the example of the influence of commonly used detergents (SDS, BAC and
Triton X-100).
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