Review Article **RNF213 Variant Diversity Predisposes Distinct Populations to Dissimilar Cerebrovascular Diseases**

Jing Lin and Wenli Sheng 🗈

Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guanghzou, China

Correspondence should be addressed to Wenli Sheng; shengwl@mail.sysu.edu.cn

Received 30 October 2018; Accepted 2 December 2018; Published 20 December 2018

Guest Editor: Sajib Chakraborty

Copyright © 2018 Jing Lin and Wenli Sheng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, the ring finger protein 213 gene (RNF213) has gradually attracted attention, mainly because it has been found that RNF213 c.14429 G>A is associated with moyamoya disease (MMD) in East Asian populations. Recent studies have revealed that RFN213 is not only associated with MMD but is also connected with intracranial major artery stenosis/occlusion (ICASO) and intracranial aneurysm (IA). However, only the relationship between RNF213 c.14429 G>A and ICASO has been confirmed, and whether RNF213 has other mutations related to ICASO remains unclear. RNF213 and IA are currently only confirmed to be correlated in French-Canadian Population and no correlation has been found in the Japanese population. This review summarizes the advances in the associations between RNF213 and different cerebrovascular diseases and highlights that variant diversity of RNF213 may predispose distinct populations to dissimilar cerebrovascular diseases.

1. Introduction

The RNF213 gene is located on chromosome 17 and encodes a ring finger protein of 5207 amino acids. This gene has two important functional domains: a RING finger domain and an AAA+ATPase domain [1]. In recent years, RNF213 has attracted attention mainly because studies have found that RNF213 is a susceptibility gene for moyamoya disease (MMD) in East Asian populations, especially in Japanese populations [2]. Further studies have revealed that RNF213 is also connected with intracranial major artery stenosis/occlusion (ICASO) in Asian populations [3]. Zhou et al. found that different mutations of RNF213 are correlated with intracranial aneurysm (IA) in French-Canadian Population [4]. In translational medicine, partial angiogenesis was observed after knocking down rnf213 gene in zebrafish, similar to angiogenesis in MMD [5]. However, mice with Rnf213 gene knockout and mice with mutations corresponding to the human RNF213 c.14429 G>A point mutation do not present phenotypes mimicking those of MMD [6, 7]. More interestingly, the overexpression of p.R4810K in human umbilical vein endothelial cells (HUVECs) inhibits angiogenesis [8], which contradicts the phenotype of moyamoya

vessels partly due to angiogenesis. This review elaborates on the advances of the associations between RNF213 and different cerebrovascular diseases. RNF213 p.R4859K and RNF213 p.R4810K are amino acid variants of the same locus (rs112735431), with p.R4859K based on an in silico predicted open reading frame and p.R4810K based on the open reading frame verified by cDNA cloning. Similarly, RNF213 c.14429 G>A and RNF213 c.14576 G>A correspond to the same single nucleotide variation. RNF213 p.R4810K and RNF213 c.14429 G>A are used consistently in this review.

2. RNF213 and MMD

2.1. Genetic Factors Involved in MMD, Especially RNF213. MMD is a rare cerebrovascular disease and is one of the main causes of stroke in children. It is primarily characterized by the progressive stenosis of the internal carotid artery and an abnormal vascular network at the base of the brain [9]. Thickening of the tunica intima and thinning of the media is the main pathological feature of MMD [10], but the pathogenesis of MMD remains unclear. Some MMD patients present autosomal dominant inheritance, and MMD is more common in Asians than in Europeans, suggesting that genetic factors may be involved in the pathogenesis of MMD. It has been found that multiple loci are associated with MMD: 3p24-p26, 6q25, 8q23, and 17q25 [11–14]. Kamada et al. found that *RNF213* at 17q25 is a new susceptibility gene in East Asian MMD patients. The polymorphism c.14429 G>A of this gene is present in 95% of familial MMD and in 79% of sporadic MMD patients [2]. This suggests that genetic factors are involved in the pathogenesis of MMD, especially RNF213.

2.2. Clinical Studies

2.2.1. RNF213 p.R4810K and Distinct Populations. There is a significant racial difference in the correlation between RNF213 p.R4810K and MMD. This mutation is found in 90.1% of Japanese MMD patients, in 78.9% of Korean MMD patients, and in 23.1% of Chinese MMD patients. Normal populations also have this variation, which is found in 2.5% of Japanese, 2.7% of Korean, and 0.9% of Chinese populations [5]. Compared with Japanese and Korean patients, the rate of this mutation in Chinese Han MMD patients is lower [15]. The incidence of MMD in Europeans is about 1/10 of that found in Japanese [16], and RNF213 p.R4810K was not identified in Europeans [5], which may be one of the reasons for the low incidence of MMD in Europeans. In a study of RNF213 p.R4810K and MMD patients with different descent living in the similar environment, p.R4810K was found in 56% of Asian descent MMD patients and not found in non-Asian descent MMD patients [17]. Our previous meta-study found that p.R4810K is associated with MMD, and compared with China, the association was more prominent in Japan and Korea. Additionally, p.A4399T was not associated with Asian MMD patients, and p.A5021V was only related to Chinese Han MMD patients [18]. This suggests that RNF213 p.R4810K involved in the pathogenesis of MMD is ethnically diverse.

2.2.2. RNF213 R4810K Homozygote/Heterozygote and MMD. It has been found that the dose effect of RNF213 is correlated to the presence of MMD. Miyatake et al. found that the homozygous mutation of RNF213 p.R4810K was only present in patients with MMD and was not found in normal populations, and homozygous mutants showed earlier disease onset and more severe conditions than did heterozygous mutants [19]. However, later studies have confirmed that RNF213 p.R4810K homozygous mutations also exist in normal people [20], and twins with the same genetic background can present different phenotypes [5]. This suggests that the MMD phenotype cannot be explained solely by gene dose effects.

2.3. Basic Research

2.3.1. HUVECs E2488Q Mutants Corresponding to p.R4810K Inhibit Angiogenesis. RNF213 has two important functional domains: the RING finger domain and the AAA+ATPase domain. The AAA+ATPase domain has two AAA+ modules. The first module is essential for assembling RNF213 oligomers, whereas the second module contributes to disassemble RNF213 oligomers. The oligomeric state is initiated by ATP binding to the Walker A motif in the first AAA+ module and the Walker B motif in the second AAA+ module can hydrolyze ATP to disassemble oligomers [1]. Kobayashi et al. found that the point mutation in the Walker B motif of the first AAA+ module of RNF213 (E2488Q) similar to the RNF213 p.R4810K mutation decreases ATPase activity and stabilizes oligomers, thereby inhibiting angiogenesis. However, the deletion mutation of the first AAA+ module of RNF213 (RNF213 delAAA) does not inhibit angiogenesis, similar to the wild type. The Walker B motif point mutation (E2488Q) of the AAA+ module can maintain oligomers, and the AAA+ module deletion mutation (RNF213 delAAA) cannot maintain the oligomeric state [8]. This suggests that the RNF213 p.R4810K mutant inhibits ATP hydrolysis to maintain the oligomeric state, thereby inhibiting angiogenesis.

2.3.2. Mouse Rnf213 Knockout or p.R4828K Mutant Does Not Completely Mimic the Phenotype of MMD. Clinical studies suggest that RNF213 is associated with MMD. Since there is no suitable animal model for MMD, many studies have attempted to establish MMD models based on RNF213 gene knockout or point mutations. Sonobe et al. used the cre-lox system to knockout exon 32 of mouse Rnf213, but the resulting mice did not show intracranial artery stenosis and smoglike vascular phenotypes. They also did not show phenotypes mimicking those related to MMD even when superimposed with hypoxic environmental factors (by occluding the carotid artery); however, the common carotid artery showed transient intimal and medial thinning [6]. Kanoke et al. used the cre-lox system to generate the mouse Rnf213 p.R4828K point mutation (corresponding to the human p.R4810K point mutation), which does not show phenotypes mimicking those related to MMD even when superimposed with hypoxia [7]. In addition, Kanoke et al. gave Rnf213 exon 32 knockout mice a strong dose of immunoadjuvant, which did not mimic the phenotype of MMD [21]. Ito et al. found that the Rnf213 exon 32 knockout mice showed significantly enhanced angiogenesis after long-term ischemia [22]. Studies on a variety of mice specifically overexpressing RNF213 p.R4757K (corresponding to the human p.R4810K locus) revealed that a hypoxic environment promoted angiogenesis, but angiogenesis in mice in which endothelial cells overexpressed RNF213 p.R4757K was significantly inhibited [8]. This suggests that Rnf213 gene knockout promotes angiogenesis, but p.R4810K point mutation inhibits angiogenesis. After transient occlusion of the middle cerebral artery in rats, Sato-Maeda et al. found a significant increase in RNF213 expression in the ischemic penumbra, which showed association with apoptotic neurons [23]. This group later briefly clamped the rat common carotid artery to cause general cerebral ischemia and found that neuronal apoptosis in hippocampal CA1 region was associated with elevated Rnf213 mRNA [24], suggesting that RNF213 mediates apoptosis of hypoxicischemic neurons.

2.3.3. Zebrafish rnf213 Knockdown or Knockout Partly Mimics the Phenotype of MMD. The entire cerebral blood vessels of

zebrafish can be clearly observed after inhibiting the formation of melanin. Therefore, Liu et al. used zebrafish as an animal model and found that knockdown of rnf213 expression by morpholino could promote angiogenesis and partially mimic smog-like blood vessels [5]. However, the phenotypes produced through morpholino-mediated knockdown of rnf213 expression in zebrafish may have been affected by off-target effects, and recent studies have found that morpholinos have a high probability of off-target effects [25, 26]. Therefore, we knocked out zebrafish rnf213 via a transcription activatorlike effector nuclease and found significant angiogenesis of the intersegmental blood vessels and cerebral blood vessels and small blood vessel stenosis in the F0 generation [27]. By similarly knocking out RNF213, the zebrafish model can partially mimic the MMD phenotype, but mouse models failed to mimic the MMD phenotype, even if the mice were superimposed with hypoxia or immunoadjuvant, suggesting that RNF213 may play different roles in MMD in different species.

3. RNF213 and ICASO

Recent studies found that RNF213 p.R4810K is not only related to MMD but is also related to non-MMD ICASO. Miyawaki et al. found that the RNF213 p.R4810K point mutation was present in 9 of 41 ICASO patients [3]. To confirm this finding, Miyawaki et al. conducted an expanded sample size study and found the RNF213 p.R4810K point mutation in 20/84 ICASO patients [28]. Bang et al. found that 176/352 ICASO patients had RNF213 p.R4810K point mutations [29]. Shinya et al. found that RNF213 p.R4810K is associated with anterior circulation ICASO and is not associated with posterior circulation ICASO or extracranial carotid atherosclerosis [30]. Yeung et al. found a significant association between RNF213 p.R4810K and the ICASO phenotype in CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) patients [31]. Liao et al. conducted a meta-analysis, summarizing 11 studies of p.R4810K and ICASO (including 1778 ICASO patients and 3140 normal controls) and found that p.R4810K was significantly associated with ICASO (OR 13.89, 95% CI 8.01-24.09, and p < 0.0001 [32]. The above studies suggest that RNF213 p.R4810K is correlated with ICASO. However, studies on the correlation between RNF213 and ICASO have only reported one locus of p.R4810K, and correlations between RNF213 other variant and ICASO have not been found up to now.

4. RNF213 and IA

It has been found that French-Canadian population has a higher incidence of IA, and IA patients are often found in families, especially large families. Zhou et al. found that two RNF213 point mutations (p.R2438C and p.A2826T) were associated with intracranial aneurysms in French-Canadian Population, both of which are located in the AAA+ATPase domain, and ATPase activity was increased in IA patients. It is thus speculated that RNF213 p.R2438C and RNF213 p.A2826T cause an increase in ATPase activity to promote angiogenesis and participate in the formation of IA [4]. However, Miyawaki et al. found that RNF213 p.R4810K was not significantly associated with IA patients of Japanese descent, but no other site mutations were examined [3, 28]. This suggests that different mutation sites may be involved in the pathogenesis of IA.

5. RNF213 Variant Diversity Is Associated with Different Phenotypes

Various RNF213 genetic mutations related to cerebrovascular disease have been reported (Table 1). These mutations are predominantly missense mutations, and most of the point mutation sites are located at the C-terminus (Figure 1). Mutations in different sites of RNF213 may have different effects on blood vessels. The RNF213 p.R4810K mutation may be the main cause of MMD intracranial artery stenosis [3, 33]. It has been found that the RNF213 p.A4399T mutation is more related to the MMD bleeding phenotype, while RNF213 p.R4810K is more related to the MMD ischemic phenotype [15]. Two reported mutation sites in the AAA+ATPase domain (c.7312 C>T and c.8476 G>A) are related to IA [4], and four reported mutation sites in the RING finger domain (c. 11990 G>A, c.12020 C>G, c.12037 G>A, and c.12055 C>T) are all related to MMD [15, 17, 34]. This suggests that the AAA+ATPase domain may be more related to IA, and the RING finger domain may be more relevant to MMD. In addition to point mutations, it has been found that four frameshift mutations in RNF213 are also associated with cerebrovascular disease, with c.1214_1216delGAG and c.11415delC associated with aneurysms [4] and c.1587_1589delCGC and c.12343_12345delAAA associated with MMD [17]. Frameshift mutations often cause loss function of the entire protein, but the three reported frameshift mutations of RNF213 (c.1214_1216delGAG, c.1587_1589delCGC, c.12343_12345delAAA) all cause the missing of 3bp, which may have little effect on the whole protein function. The c.11415delC frameshift mutation only deletes 1bp and is located in front of the RING finger domain, which may result in loss of the RING finger domain function.

6. Conclusion

There are significant racial differences in the correlations of *RNF213* with MMD and IA. The correlation between RNF213 p.R4810K and MMD is reported in Asian populations but not identified in Europeans and non-Asian descent Americans. Similarly, the correlation between RNF213 and IA was confirmed only in French-Canadian Population, and no correlation was found in the Japanese population. Different site mutations in RNF213 may be involved in different cerebrovascular diseases. Current ICASO studies report that only RNF213 p.R4810K is associated with ICASO, and other mutation sites have not been reported. In addition to RNF213 p.R4810K, many RNF213 sites have been reported to be associated with MMD, and RNF213 p.R4810K is more related to MMD patients in East Asia. In terms of RNF213 sites associated with IA, only two mutations (p.R2438C and

TABLE 1: RNF213 variants diversity in cerebrovascular diseases (Italic represents variant associated with hemorrhagic type MMD; bold represents variant related to ischemic type MMD).

MMD c.1407G>T p.Q469H Schilter (2017) Am J Med Genet A 173, 2557 c.1587GSA p.G517R Shoemaker (2015) G3 (Bethesda) 6, 41 c.1587_L589delCGC Cacch (2014) Stroke 45, 3200 c.2986G>A p.1999K Akagawa (2018) Hum Genome Var 5, 17060 c.442CST p.M474F Shoemaker (2015) G3 (Bethesda) 6, 41 c.4865CST p.A1622V Lee (2015) J Neurosurg 126, 1106 c.10997D>C p.M3666T Shoemaker (2015) G3 (Bethesda) 6, 41 c.11671A>G p.M3991V Kamada (2011) J Hum Genet 56, 34 c.11997D>A p.N3992D Liu (2011) PLoS One 6, e22542 c.11996A>A p.C3997Y Cacchi (2014) Stroke 45, 3200 c.12020C>G p.P4007R Wu (2012) PLoS One 7, e48179 c.12037G>A p.D4013N Cachi (2014) Stroke 45, 3200 c.12037G>A p.E4042K Kobayashi (2016) PLoS One 11, e0164759 c.12037G>A p.E4042K Kobayashi (2016) PLoS One 11, e0164759 c.12173A>C p.H4058P Akagawa (2018) Hum Genome Var 5, 17060 c.12185G>A p.14005V Cechi (2014) Stroke 45, 3200 c.12234A>C p.K41062 <th>Diseases</th> <th>Nucleotide</th> <th>Amino acid</th> <th>Reference</th>	Diseases	Nucleotide	Amino acid	Reference
c.1549G:A p.G517R Shoemaker (2015) G3 (8 therbsda) 6, 4! Cccbri (2014) Stroke 45, 3200 c.2986G:SA p.E996K Akaguwa (2018) Hum Genome Var 5, 17060 c.4421C:ST p.S1474F Shoemaker (2015) G3 (8 therbsda) 6, 4! c.4466G:ST p.A1622V Lee (2015) Neurol Sci 333, 16! c.5180G:ST p.T1727M Zhang (2017) Neurosurg 126, 106 c.10997D>C p.M3666T Shoemaker (2015) G3 (8 therbeda) 6, 4! c.11671A>G p.M3891V Kamada (2011) J Hum Genet 56, 34 c.1184A>G p.N3982D Lut (2015) I Sterrol Sci 333, 16! c.1184A>G p.N3982D Lut (2011) PLoS One 6, c22542 c.1199G:SA p.C3997Y Ccchi (2014) Stroke 45, 3200 c.120207:GA p.P40107R Wu (2012) PLoS One 1!: e0164759 c.12037G:A p.P40107R Wu (2012) PLoS One 1!: e0164759 c.12037G:A p.P40107K Kobayashi (2016) PLoS One 1!: e0164759 c.12037G:A p.P40107K Kobayashi (2016) PLoS One 1!: e0164759 c.12037G:A p.P4019X Kobayashi (2016) PLoS One 1!: e0164759 c.12124G:A p.E4042K Kobayashi (2016) PLoS One 1!: e0164759	MMD	c.1407G>T	p.Q469H	Schilter (2017) Am J Med Genet A 173, 2557
c.1587_J589delCGC Cecchi (2014) Stroke 45, 3200 c.2986G-SA p.51474F Akagawa (2018) Hum Genome Var 5, 17060 c.4421C>T p.51474F Shoemaker (2015) G3 (Bethesda) 6, 41 c.6865C>T p.1622V Lec (2015) I Neurol Sci 353, 161 c.5180C>T p.17727M Zhang (2017) I Neurosurg 124, 1106 c.10997T>C p.M3666T Shoemaker (2015) G3 (Bethesda) 6, 41 c.11671A>G p.N3982N Kamada (2011) I Hum Genet 56, 34 c.11884A>G p.N3962D Liu (2011) PLoS One 6, e22542 c.11945A>G p.N3962R Shoemaker (2015) G3 (Bethesda) 6, 41 c.12020C>G p.F4007R Wu (2012) PLoS One 7, e48179 c.12020C>G p.P4007R Wu (2012) PLOS One 7, e48179 c.12020C>G p.F40402K Kobayashi (2016) PLoS One 1, e0164759 c.12026C>T p.F40402K Kobayashi (2016) PLOS One 1, e0164759 c.12126A> p.F40402K Kobayashi (2016) PLOS One 1, e0164759 c.12226A>G p.14076V Cechi (2014) Stroke 45, 3200 c.12236A>G p.14076V Cechi (2014) Stroke 45, 3200 c.12236A>G p.44197E Lec (2015) N m Heart Assoc 4: e001862 c.12237A>C p		c.1549G>A	p.G517R	Shoemaker (2015) G3 (Bethesda) 6, 41
c.2986G>A p.E996K Akagawa (2018) Hum Genome Var 5, 17060 c.4421C>T p.M1627 Boemaker (2015) G3 (Bethesda) 6, 41 c.4865C>T p.T1727M Zhang (2017) J Neurol Sci 353, 161 c.10997T>C p.M3866T Shoemaker (2015) G3 (Bethesda) 6, 41 c.11671A>G p.M3991W Kamada (2011) J Hum Genet 56, 34 c.1197G>A p.V3933M Lee (2015) J Neurol Sci 353, 161 c.1184A>G p.N3962D Liu (2011) PLoS One 6, e22542 c.11945A>G p.K3982R Shoemaker (2015) G3 (Bethesda) 6, 41 c.11990G>A p.G3997Y Cecht (2014) Stroke 45, 3200 c.12020C>G p.P4007R Wu (2012) PLoS One 7, e44179 c.12037G>A p.P4019N Kobayashi (2016) PLoS One 1, e0164759 c.12173A>C p.R4019C Kobayashi (2016) PLoS One 1, e0164759 c.12173A>C p.R4062Q Moteki (2015) J Am Heart Assoc 4: e01862 c.12343.12345delAAA Cechi (2014) Stroke 45, 3200 C.12343.12345delAAA c.12353C>T p.S4118C Lee (2015) J Neurol Sci 353, 161 c.12343.12345delAAA Cechi (2014) Stroke 45, 3200 C.12343.12345delAAA c.12		c.1587_1589delCGC		Cecchi (2014) Stroke 45, 3200
c.4421C>T p.51474F Shoemaker (2015) G3 (Bethesda) 6, 41 c.4865C>T p.11727W Zhang (2017) Neurosung 126, 106 c.5180C>T p.17172W Zhang (2017) Neurosung 126, 106 c.10997T>C p.M3666T Shoemaker (2015) G3 (Bethesda) 6, 41 c.11671A>G p.M3891V Kanada (2011) Hum Geret 56, 34 c.1197G>A p.V3933M Lee (2015) Neurol Sci 335, 161 c.11884A>G p.N3962D Liu (2011) PLoS One 6, e22542 c.11990G>A p.C3997Y Cechci (2014) Stroke 45, 3200 c.12020C>G p.P4007R Wu (2012) PLoS One 7, e48179 c.12037G>A p.D4013N Cechci (2014) Stroke 45, 3200 c.12037G>A p.E4042K Kobayashi (2016) PLoS One 11, e0164759 c.12124G>A p.E4042K Kobayashi (2016) PLoS One 11, e0164759 c.12143A>C p.H4058P Akagawa (2018) Hum Genome Var 5, 17060 c.12145G>A p.84185 Harel (2015) Am Heart Asoc 4: e01862 c.12145G>A p.441076V Cechci (2014) Stroke 45, 3200 c.12145G>A p.441076V Cechci (2014) Stroke 45, 3200 c.12145G>A p.441076V Cechci (2014) Stroke 45, 3200 c.1214373C		c.2986G>A	p.E996K	Akagawa (2018) Hum Genome Var 5, 17060
c.4865C>T p.A1622V Lee (2015) J Neurol Sci 333, 161 c.5180C>T p.T1727M Zhang (2017) J Neurosurg 126, 106 c.10997T>C p.M3666T Shoemaker (2015) G3 (Bethesda) 6, 41 c.11671A>G p.M3891V Kamada (2011) J Hum Genet 56, 34 c.11797G>A p.N3962D Liu (2011) PLoS One 6, e22542 c.11945A>G p.K3982R Shoemaker (2015) G3 (Bethesda) 6, 41 c.11990C>A p.C3997Y Cecchi (2014) Stroke 45, 3200 c.12020C>G p.P4007R Wu (2012) PLoS One 7, e48179 c.12037G>A p.P4007R Wu (2012) PLoS One 11; e0164759 c.12037G>A p.P40013N Cecchi (2014) Stroke 45, 3200 c.12173A>C p.H4019C Kobayashi (2016) PLoS One 11; e0164759 c.12173A>C p.H4058P Akagawa (2018) Hum Geneme Var5, 70760 c.12185G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4: e001862 c.12235C>T p.K4118F Harel (2015) Am J Med Genet A 167, 2742 c.12337C> p.K4116Q Louly Stroke 45, 3200 c.12478A>C p.K4186 Kobayashi (2016) PLoS One 11, e0164759 c.12305C>T p.K4186		c.4421C>T	p.S1474F	Shoemaker (2015) G3 (Bethesda) 6, 41
c.5180C>T p.T1727M Zhang (2017) J Neurosurg 126, 1106 c.10997T>C p.M3666T Shoemaker (2015) G3 (Bethsda) 6, 41 c.11671A>G p.M3981V Kamada (2011) J Hum Genet 56, 34 c.1197G>A p.V3933M Lec (2015) J Neurol Sci 353, 161 c.1184A>G p.N3962D Liu (2011) PLoS One 6, e22542 c.11945A>G p.K3982R Shoemaker (2015) G3 (Bethsda) 6, 41 c.11990G>A p.C3997Y Cccchi (2014) Stroke 45, 5200 c.12020C>G p.P4007R Wu (2012) PLoS One 7, e48179 c.12037G>A p.D4013N Cecchi (2014) Stroke 45, 5200 c.12035C>T p.R4019C Kobayashi (2016) PLoS One 11, e0164779 c.12124G>A p.E4042K Kobayashi (2016) PLoS One 11, e0164779 c.12125G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4: e001862 c.12226A>G p.1405V Cccchi (2014) Stroke 45, 3200 c.12343_J2345delAAA Cecchi (2014) Stroke 45, 3200 C124371>C c.1235G>T p.S4118F Harel (2015) Am J Med Genet A 167, 2742 c.12343_J2345delAAA Cecchi (2014) Stroke 45, 3200 C12351 <c< td=""> c.12351C> p.V4146A Kobayashi (2016) PLoS One 1, e0164759</c<>		c.4865C>T	p.A1622V	Lee (2015) J Neurol Sci 353, 161
c.10997T>C p.M3666T Shoemaker (2015) G3 (Bethesda) 6, 41 c.1167TA>G p.M389IV Kamada (2011) Hum Genet 56, 34 c.11797G>A p.V3933M Lee (2015) Neurol Sci 353, 161 c.11884A>G p.N3962D Liu (2011) PLoS One 6, e22542 c.11990G>A p.C3997Y Cecchi (2014) Stroke 45, 3200 c.12020C>G p.P4007R Wu (2012) PLoS One 7, e48179 c.12037G>A p.D4013N Cecchi (2014) Stroke 45; 3200 c.12037G>A p.P4007R Wu (2012) PLoS One 7, e48179 c.12037G>A p.P4013N Cecchi (2014) Stroke 45; 3200 c.12124G>A p.F4042X Kobayashi (2016) PLoS One 11, e0164759 c.12153A>C p.H4058P Akagawa (2018) Hum Genome Var 5, 17060 c.12124G>A p.F4042X Kobayashi (2016) PLoS One 11, e0164759 c.12124G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4: e01082 c.122343_12345delAAA Cecchi (2014) Stroke 45, 3200 Ci214371-C c.12237D p.S4118F Harel (2015) J Nuerol Sci 333, 161 c.12247T>C p.V4146A Kobayashi (2016) PLoS One 11, e0164759 c.12478A>C p.K4185T Smith (2014) J LoS One 6, e2254 c.1247		c.5180C>T	p.T1727M	Zhang (2017) J Neurosurg 126, 1106
c.11671A>G p.M3891V Kamada (2011) J Hum Genet 56, 34 c.11797G>A p.V3933M Lee (2015) J Neurol Sci 353, 161 c.11844A>G p.N3962D Liu (2011) PLoS One 6, e22542 c.11945A>G p.K3982R Shoemaker (2015) G3 (Bethesda) 6, 41 c.11990G>A p.C3997Y Cecchi (2014) Stroke 45, 3200 c.12020C>G p.P4007R Wu (2012) PLoS One 7, e48179 c.12037G>A p.D4013N Cecchi (2014) Stroke 45, 3200 c.1204G>A p.E4042K Kobayashi (2016) PLoS One 11, e0164759 c.12124G>A p.E4042K Kobayashi (2016) PLoS One 11, e0164759 c.12124G>A p.E4042K Kobayashi (2016) PLoS One 11, e0164759 c.12124G>A p.E4042K Kobayashi (2016) PLoS One 1, e0164759 c.121845GA p.R4062Q Moteki (2015) J Am Heart Assoc 4: e001862 c.1224A>L2345delAAA Cecchi (2014) Stroke 45, 3200 Cel2391C>T c.12345L2345delAAA Cecchi (2014) Stroke 45, 3200 Cel2391C>T c.12345L2345delAAA Cel2391C>T P.4113C Lee (2015) J Neurol Sci 353, 161 c.12437L2C p.54118F Smith (2014) Int J Stroke 9, E26 C.12711C>G p.14431C Lee (2015) J Neurol Sci 353, 161		c.10997T>C	p.M3666T	Shoemaker (2015) G3 (Bethesda) 6, 41
c.11797G>A pN3933M Lee (2015) J Neurol Sci 353, 161 c.11884A>G p.N3962D Liu (2011) PLoS One 6, e22542 c.11945A>G p.K3982R Shoemaker (2015) G3 (Bethesda) 6, 41 c.11990G>A p.C3997Y Cecchi (2014) Stroke 45, 3200 c.12020C>G p.P4007R Wu (2012) PLoS One 7, e48179 c.12037G>A p.D4013N Cecchi (2014) Stroke 45, 3200 c.12037G>A p.B4042K Kobayashi (2016) PLoS One 11, e0164759 c.12124G>A p.E4042K Kobayashi (2016) PLoS One 11, e0164759 c.12173A>C p.H4058P Akagawa (2018) Hum Genome Var 5, 17060 c.12184G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4; e001862 c.12256A>G p.14076V Cecchi (2014) Stroke 45, 3200 c.12343_L2345delAAA Cecchi (2014) Stroke 45, 3200 c.12343_L2345delAAA Cecchi (2014) Stroke 45, 3200 c.12478A>C p.K41131C Lee (2015) J N Leurosurg 126, 1106 c.12353C>T p.R4131C Lee (2015) J Neurosurg 126, 1106 c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12554A>C p.K4185T		c.11671A>G	p.M3891V	Kamada (2011) J Hum Genet 56, 34
c.11884A>G p.N3962D Liu (2011) PLoS One 6, e22542 c.119945A>G p.K3982R Shoemaker (2015) G3 (Bethesda) 6, 41 c.11990G>A p.C3997Y Cecchi (2014) Stroke 45, 3200 c.12020C>G p.P4007R Wu (2012) PLoS One 7, e48179 c.12037G>A p.D4013N Cecchi (2014) Stroke 45; 3200 c.12037G>A p.P4019C Kobayashi (2016) PLoS One 11; e0164759 c.12173A>C p.H4058P Akagawa (2018) Hum Genome Var 5, 17060 c.12185G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4: e001862 c.12234.3L2345delAAA Cecchi (2014) Stroke 45, 3200 Eclassic>T c.12343.12345delAAA Cecchi (2014) Stroke 45, 3200 Eclassic>T c.123343.12345delAAA Cecchi (2014) Stroke 45, 3200 Eclassic>T c.12347D>C p.K4108T Moteki (2015) J Neurol Sci 353, 161 c.12343.12345delAAA Ece (2015) J Neurol Sci 353, 161 Eclassic>T c.12391C>T p.K4185T Smith (2014) Int J Stroke 45, 3200 c.12478A>C p.K4188T Smith (2014) Int J Stroke 45, 3200 c.12478A>C p.K4188T Smith (2014) Int J Stroke 45, 3200		c.11797G>A	p.V3933M	Lee (2015) J Neurol Sci 353, 161
c.11945A>G p.K3982R Shoemaker (2015) G3 (Bethesda) 6, 41 c.11990G>A p.C3997Y Cecchi (2014) Stroke 45, 3200 c.12020C>G p.P4007R Wu (2012) PLoS One 7, e48179 c.12035G>A p.D4013N Cecchi (2014) Stroke 45, 3200 c.12055C>T p.R4019C Kobayashi (2016) PLoS One 11: e0164759 c.12124G>A p.E4042K Kobayashi (2016) PLoS One 11: e0164759 c.12185G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4: e001862 c.1226A>G p.14076V Cecchi (2014) Stroke 45, 3200 c.12343_J12345delAAA Cecchi (2014) Stroke 45, 3200 Cecchi (2014) Stroke 45, 3200 c.12343_J12345delAAA Cecchi (2014) Stroke 45, 3200 Cechi (2014) Stroke 45, 3200 c.12345J_27T p.84118F Harel (2015) J M Ind ef Genet A 167, 2742 c.12391C>T p.84181C Lee (2015) J Neurosurg 126, 1106 c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12478A>C p.K4183T Smith (2014) Int J Stroke 45, 3200 c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12571C>G p.74487T Smith (2014) Int J Stroke 45, 3200		c.11884A>G	p.N3962D	Liu (2011) PLoS One 6, e22542
c.11990G>A p.C3997Y Cecchi (2014) Stroke 45, 3200 c.12020C>G p.P4007R Wu (2012) PLoS One 7, e48179 c.12037G>A p.D4013N Cecchi (2014) Stroke 45; 3200 c.12055C>T p.R4019C Kobayashi (2016) PLoS One 11: e0164759 c.12124G>A p.E4042K Kobayashi (2016) PLoS One 11: e0164759 c.12173A>C p.H4058P Akagawa (2018) Hum Genome Var 5, 17060 c.12185G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4: e001862 c.12226A>G p.14076V Cecchi (2014) Stroke 45, 3200 c.122353C>T p.S4118F Harel (2015) Am J Med Genet A 167, 2742 c.12391C>T p.R4131C Lee (2015) J Neurol Sci 353, 161 c.12478A>C p.K4160Q Zhang (2017) J Neurosung 126, 1106 c.12554A>C p.K4185T Smith (2014) Int J Stroke 9, E26 c.1271IC>G p.D4237E Cecchi (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13100A>T p.Q4367L		c.11945A>G	p.K3982R	Shoemaker (2015) G3 (Bethesda) 6, 41
c.12020C>G p.P4007R Wu (2012) PLoS One 7, e48179 c.12037G>A p.D4013N Cecchi (2014) Stroke 45; 3200 c.12055C>T p.R4019C Kobayashi (2016) PLoS One 11: e0164759 c.1214G>A p.E4042X Kobayashi (2016) PLoS One 11: e0164759 c.12173A>C p.H4058P Akagawa (2018) Hum Genome Var 5, 17060 c.12135G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4: e001862 c.12226A>G p.14076V Cecchi (2014) Stroke 45, 3200 c.12333L2345delAAA Cecchi (2015) J Neurol Sci 353, 161 Cill (2014) Stroke 45, 3200 c.12339IC>T p.K4181C Lee (2015) J Neurol Sci 353, 161 c.12478A>C p.K416Q Zhang (2017) J Neurosurg 126, 1106 c.1254A>C p.K416Q Zhang (2017) J Neurosurg 126, 1106 c.1254A>C p.K416Q Zhang (2017) J Neurosurg 126, 1106 c.1254A>C p.K416Q Zhang (2017) J Neurosurg 126, 1106 c.1210C>G p.D4237E Cechi (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.1309G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C		c.11990G>A	p.C3997Y	Cecchi (2014) Stroke 45, 3200
c.12037G>A p.D4013N Cecchi (2014) Stroke 45: 3200 c.12055C>T p.R4019C Kobayashi (2016) PLoS One 11: e0164759 c.12124G>A p.E4042K Kobayashi (2016) PLoS One 11: e0164759 c.12173A>C p.H4058P Akagawa (2018) Hum Genome Var 5, 17060 c.12185G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4: e01862 c.1226A>G p.14076V Cecchi (2014) Stroke 45, 3200 c.12343.12345delAAA Cecchi (2014) Stroke 45, 3200 c.12353C>T p.S4118F Harel (2015) Am J Med Genet A 167, 2742 c.12391C>T p.R4131C Lee (2015) J Neurol Sci 353, 161 c.12437T>C p.V4146A Kobayashi (2016) PLoS One 11, e0164759 c.1247RA>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12554A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12554A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13105A p.A4399T Wu (2012) PLoS One 7, e48179 c.13195G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C p.T4586P		c.12020C>G	p.P4007R	Wu (2012) PLoS One 7, e48179
c.12055C>T p.R4019C Kobayashi (2016) PLoS One 11: e0164759 c.12124G>A p.E4042K Kobayashi (2016) PLoS One 11, e0164759 c.12173A>C p.H4058P Akagawa (2018) Hum Genome Var 5, 17060 c.12185G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4: e001862 c.12226A>G p.14076V Cecchi (2014) Stroke 45, 3200 c.12333_12345delAAA Cecchi (2014) Stroke 45, 3200 c.12334_1_2345delAAA Cecchi (2014) Stroke 45, 3200 c.12347T>C p.R4131C Lee (2015) J Neurol Sci 353, 161 c.12437T>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12554A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12574Ra>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12554A>C p.K4185T Smith (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13195G>A p.A4399T Wu (2012) PLoS One 7, e48179 c.13195G>A p.A4397T Wu (2012) PLoS One 7, e48179 c.13890C>G p.14631V Wu (2012) PLoS One 7, e48179<		c.12037G>A	p.D4013N	Cecchi (2014) Stroke 45: 3200
c.12124G>A p.E4042K Kobayashi (2016) PLoS One 11, e0164759 c.12173A>C p.H4058P Akagawa (2018) Hum Genome Var 5, 17060 c.12185G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4: e001862 c.12226A>G p.14076V Cecchi (2014) Stroke 45, 3200 c.12343_12345delAAA Cecchi (2014) Stroke 45, 3200 Cecchi (2014) Stroke 45, 3200 c.12353C>T p.S4118F Harel (2015) Am J Med Genet A 167, 2742 c.12391C>T p.R4131C Lee (2015) J Neurol Sci 353, 161 c.12477A>C p.V4146A Kobayashi (2016) PLoS One 11, e0164759 c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.1271L>G p.D4237E Cecchi (2014) Stroke 45, 3200 c.13100A>T p.O42367L Wu (2012) PLoS One 7, e48179 c.13195G>A p.A4399T Wu (2012) PLoS One 7, e48179 c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C p.T4586P Wu (2012) PLoS One 7, e48179 c.13891C>G p.14631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.P4608S Liu (2011) PLoS One 6, e2542 <t< td=""><td>c.12055C>T</td><td>p.R4019C</td><td>Kobayashi (2016) PLoS One 11: e0164759</td></t<>		c.12055C>T	p.R4019C	Kobayashi (2016) PLoS One 11: e0164759
c.12173A>C p.H4058P Akagava (2018) Hum Genome Var 5, 17060 c.12185G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4: e001862 c.12226A>G p.I4076V Cecchi (2014) Stroke 45, 3200 c.12343_L12345delAAA Cecchi (2014) Stroke 45, 3200 c.12353C>T p.S4118F Harel (2015) J Med Genet A 167, 2742 c.12391C>T p.R4131C Lee (2015) J Neurol Sci 353, 161 c.12437T>C p.V4146A Kobayashi (2016) PLoS One 11, e0164759 c.12478A>C p.K4185T Smith (2014) Int J Stroke 9, E26 c.12711C>G p.D4237E Cecchi (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13195G>A p.A4399T Wu (2012) PLoS One 7, e48179 c.13195G>A p.A4399T Wu (2012) PLoS One 6, e22542 c.1389G p.I4631V Wu (2012) PLoS One 7, e48179 c.1389G>G p.L4631V Wu (2012) PLoS One 7, e48179 c.13891C>G p.H4068S Liu (2011) PLoS One 6, e22542 c.13891C>G p.I4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A		c.12124G>A	p.E4042K	Kobayashi (2016) PLoS One 11, e0164759
c.12185G>A p.R4062Q Moteki (2015) J Am Heart Assoc 4: e001862 c.12226A>G p.I4076V Cecchi (2014) Stroke 45, 3200 c.12343_12345delAAA Cecchi (2014) Stroke 45, 3200 c.12353C>T p.S4118F Harel (2015) J Mm J Med Genet A 167, 2742 c.12391C>T p.R4131C Lee (2015) J Neurol Sci 353, 161 c.12437T>C p.V4146A Kobayashi (2016) PLoS One 11, e0164759 c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12554A>C p.K4185T Smith (2014) Int J Stroke 9, E26 c.12711C>G p.D4237E Cecchi (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.1300A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.1395G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13891C>G p.I4631V Wu (2012) PLoS One 7, e48179 c.13891C>G p.I4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W46677L Schilter (2017) Am J Med Genet A 173, 2557 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.1428G>A <td< td=""><td>c.12173A>C</td><td>p.H4058P</td><td>Akagawa (2018) Hum Genome Var 5, 17060</td></td<>		c.12173A>C	p.H4058P	Akagawa (2018) Hum Genome Var 5, 17060
c.1226A>G p.14076V Cecchi (2014) Stroke 45, 3200 c.12343_L2345delAAA Cecchi (2014) Stroke 45, 3200 c.12353C>T p.S4118F Harel (2015) Am J Med Genet A 167, 2742 c.12391C>T p.R4131C Lee (2015) J Neurol Sci 353, 161 c.12437T>C p.V4146A Kobayashi (2016) PLoS One 11, e0164759 c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12554A>C p.K4185T Smith (2014) Int J Stroke 9, 526 c.1271IC>G p.D4237E Cecchi (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13569SA p.A4399T Wu (2012) PLoS One 7, e48179 c.13569G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C p.T4586P Wu (2012) PLoS One 7, e48179 c.13822C>T p.P4608S Liu (2011) PLoS One 6, e22542 c.13891C>G p.L4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248C>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.V4765M		c.12185G>A	p.R4062Q	Moteki (2015) J Am Heart Assoc 4: e001862
c.12343_12345delAAA Cecchi (2014) Stroke 45, 3200 c.12335C>T p.S4118F Harel (2015) Am J Med Genet A 167, 2742 c.12391C>T p.R4131C Lee (2015) J Neurol Sci 353, 161 c.12437T>C p.V4146A Kobayashi (2016) PLoS One 11, e0164759 c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12554A>C p.K4185T Smith (2014) Int J Stroke 9, E26 c.12711C>G p.D4237E Cecchi (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.1369G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13891C>G p.14631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.1429G>A p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.1428A>G <		c.12226A>G	p.I4076V	Cecchi (2014) Stroke 45, 3200
c.12353C>T p.\$4118F Harel (2015) Am J Med Genet A 167, 2742 c.12391C>T p.R4131C Lee (2015) J Neurol Sci 353, 161 c.12437T>C p.V4146A Kobayashi (2016) PLoS One 11, e0164759 c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12554A>C p.K4185T Smith (2014) Int J Stroke 9, E26 c.1271IC>G p.D4237E Cecchi (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C p.T4586P Wu (2012) PLoS One 7, e48179 c.13891C>G p.14631V Wu (2012) PLoS One 7, e48179 c.13891C>G p.14631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.P4608S Liu (2011) PLoS One 6, e22542 c.13891C>G p.14631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.1495A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14248G>A p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248A>G <td< td=""><td>c.12343_12345delAAA</td><td>L.</td><td>Cecchi (2014) Stroke 45, 3200</td></td<>		c.12343_12345delAAA	L.	Cecchi (2014) Stroke 45, 3200
c.12391C>T p.R4131C Lee (2015) J Neurol Sci 353, 161 c.12437T>C p.V4146A Kobayashi (2016) PLoS One 11, e0164759 c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12554A>C p.K4185T Smith (2014) Int J Stroke 9, E26 c.12711C>G p.D4237E Cecchi (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13195G>A p.A4399T Wu (2012) PLoS One 7, e48179 c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C p.T4586P Wu (2012) PLoS One 7, e48179 c.13891C>G p.L4608S Liu (2011) PLoS One 6, e22542 c.13891C>G p.L4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.1428G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.V4675M Kamada (2011) J Hum Genet 56, 34 c.14293G>A p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.1428G p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14587G>A		c.12353C>T	p.S4118F	Harel (2015) Am J Med Genet A 167, 2742
c.12437T>C p.V4146A Kobayashi (2016) PLoS One 11, e0164759 c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12554A>C p.K4185T Smith (2014) Int J Stroke 9, E26 c.12711C>G p.D4237E Cecchi (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13195G>A p.A4399T Wu (2012) PLoS One 7, e48179 c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C p.T4586P Wu (2012) PLoS One 7, e48179 c.13822C>T p.P4608S Liu (2011) PLoS One 6, e22542 c.13891C>G p.L4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.1429G>A p.V4765M Kamada (2011) J Hum Genet 56, 34 c.1429G>A p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14587G>A p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A		c.12391C>T	p.R4131C	Lee (2015) J Neurol Sci 353, 161
c.12478A>C p.K4160Q Zhang (2017) J Neurosurg 126, 1106 c.12554A>C p.K4185T Smith (2014) Int J Stroke 9, E26 c.12711C>G p.D4237E Cecchi (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13195G>A p.A4399T Wu (2012) PLoS One 7, e48179 c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C p.T4586P Wu (2012) PLoS One 7, e48179 c.13822C>T p.P4608S Liu (2011) PLoS One 6, e22542 c.13891C>G p.L4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.1495A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.V4765M Kamada (2011) J Hum Genet 56, 34 c.14428A>G p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14280G>A p.R4810K Kamada (2011) J Hum Genet 56, 34 c.14280G>A p.R4810K Kamada (2011) J Hum Genet 56, 34 c.14780G>A p.P4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.P4		c.12437T>C	p.V4146A	Kobayashi (2016) PLoS One 11, e0164759
c.12554A>C p.K4185T Smith (2014) Int J Stroke 9, E26 c.1271IC>G p.D4237E Cecchi (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13195G>A p.A4399T Wu (2012) PLoS One 7, e48179 c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C p.T4586P Wu (2012) PLoS One 7, e48179 c.13891C>G p.I.4631V Wu (2012) PLoS One 7, e48179 c.13891C>G p.L4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.W4675M Kamada (2011) J Hum Genet 56, 34 c.14293G>A p.W4765M Kamada (2011) J Hum Genet 56, 34 c.14293G>A p.W4765M Kamada (2011) J Hum Genet 56, 34 c.14293G>A p.W4765M Kamada (2011) J Hum Genet 56, 34 c.14293G>A p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14293G>A p.R4810K Kamada (2011) J Hum Genet 56, 34 c.14587G>A p.		c.12478A>C	p.K4160Q	Zhang (2017) J Neurosurg 126, 1106
c.12711C>G p.D4237E Cecchi (2014) Stroke 45, 3200 c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13195G>A p.A4399T Wu (2012) PLoS One 7, e48179 c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C p.T4586P Wu (2012) PLoS One 7, e48179 c.13822C>T p.P4608S Liu (2011) PLoS One 6, e22542 c.13891C>G p.L4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.1429G>A p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.1428G>A p.R4810K Kamada (2011) J Hum Genet 56, 34 c.1428G>A p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.1429G>A p.R4810K Kamada (2011) J Hum Genet 56, 34 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4810K Kamada (2011) J Hum Genet 56, 34		c.12554A>C	p.K4185T	Smith (2014) Int J Stroke 9, E26
c.13100A>T p.Q4367L Wu (2012) PLoS One 7, e48179 c.13195G>A p.A4399T Wu (2012) PLoS One 7, e48179 c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C p.T4586P Wu (2012) PLoS One 7, e48179 c.13822C>T p.P4608S Liu (2011) PLoS One 6, e22542 c.13891C>G p.L4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.V4765M Kamada (2011) J Hum Genet 56, 34 c.14428A>G p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.1429G>A p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.12711C>G	p.D4237E	Cecchi (2014) Stroke 45, 3200
c.13195G>A p.A4399T Wu (2012) PLoS One 7, e48179 c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C p.T4586P Wu (2012) PLoS One 7, e48179 c.13822C>T p.P4608S Liu (2011) PLoS One 6, e22542 c.13891C>G p.L4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.V4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.V4765M Kamada (2011) J Hum Genet 56, 34 c.14428A>G p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.1429G>A p.R4810K Kamada (2011) J Hum Genet 56, 34 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.13100A>T	p.Q4367L	Wu (2012) PLoS One 7, e48179
c.13699G>A p.V4567M Kamada (2011) J Hum Genet 56, 34 c.13756A>C p.T4586P Wu (2012) PLoS One 7, e48179 c.1382C>T p.P4608S Liu (2011) PLoS One 6, e22542 c.13891C>G p.L4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14030G>T p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.W4765M Kamada (2011) J Hum Genet 56, 34 c.14428A>G p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.13195G>A	p.A4399T	Wu (2012) PLoS One 7, e48179
c.13756A>C p.T4586P Wu (2012) PLoS One 7, e48179 c.13822C>T p.P4608S Liu (2011) PLoS One 6, e22542 c.13891C>G p.L4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.W4675M Kamada (2011) J Hum Genet 56, 34 c.14428A>G p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.13699G>A	p.V4567M	Kamada (2011) J Hum Genet 56, 34
c.13822C>T p.P4608S Liu (2011) PLoS One 6, e22542 c.13891C>G p.L4631V Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.V4765M Kamada (2011) J Hum Genet 56, 34 c.14428A>G p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.1429G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.13756A>C	p.T4586P	Wu (2012) PLoS One 7, e48179
c.1389IC>G p.L463IV Wu (2012) PLoS One 7, e48179 c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.V4765M Kamada (2011) J Hum Genet 56, 34 c.1429G>A p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.13822C>T	p.P4608S	Liu (2011) PLoS One 6, e22542
c.14030G>T p.W4677L Schilter (2017) Am J Med Genet A 173, 2557 c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.V4765M Kamada (2011) J Hum Genet 56, 34 c.14428A>G p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.1429G>A p.R4810K Kamada (2011) J Hum Genet 56, 34 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.13891C>G	p.L4631V	Wu (2012) PLoS One 7, e48179
c.14195A>C p.K4732T Cecchi (2014) Stroke 45, 3200 c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.V4765M Kamada (2011) J Hum Genet 56, 34 c.14428A>G p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14429G>A p.R4810K Kamada (2011) J Hum Genet 56, 34 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.14030G>T	p.W4677L	Schilter (2017) Am J Med Genet A 173, 2557
c.14248G>A p.E4750K Moteki (2015) J Am Heart Assoc 4, e001862 c.14293G>A p.V4765M Kamada (2011) J Hum Genet 56, 34 c.14428A>G p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14429G>A p.R4810K Kamada (2011) J Hum Genet 56, 34 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.14195A>C	p.K4732T	Cecchi (2014) Stroke 45, 3200
c.14293G>A p.V4765M Kamada (2011) J Hum Genet 56, 34 c.1428A>G p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14429G>A p.R4810K Kamada (2011) J Hum Genet 56, 34 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.14248G>A	p.E4750K	Moteki (2015) J Am Heart Assoc 4, e001862
c.14428A>G p.R4810G Shoemaker (2015) G3 (Bethesda) 6, 41 c.14429G>A p.R4810K Kamada (2011) J Hum Genet 56, 34 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.14293G>A	p.V4765M	Kamada (2011) J Hum Genet 56, 34
c.14429G>A p.R4810K Kamada (2011) J Hum Genet 56, 34 c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.14428A>G	p.R4810G	Shoemaker (2015) G3 (Bethesda) 6, 41
c.14587G>A p.D4863N Liu (2011) PLoS One 6, e22542 c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.14429G>A	p.R4810K	Kamada (2011) J Hum Genet 56, 34
c.14780G>A p.R4927Q Moteki (2015) J Am Heart Assoc 4, e001862		c.14587G>A	p.D4863N	Liu (2011) PLoS One 6, e22542
		c.14780G>A	p.R4927Q	Moteki (2015) J Am Heart Assoc 4, e001862
c.14850G>C p.E4950D Liao (2017) Environ Health Prev Med 22: 75		c.14850G>C	p.E4950D	Liao (2017) Environ Health Prev Med 22: 75
c.15062C>T p.A5021V Liu (2011) PLoS One 6, e22542		c.15062C>T	p.A5021V	Liu (2011) PLoS One 6, e22542
c.15408G>A p.M5136I Wu (2012) PLoS One 7, e48179		c.15408G>A	p.M5136I	Wu (2012) PLoS One 7, e48179
c.15480C>G p.D5160E Liu (2011) PLoS One 6, e22542		c.15480C>G	p.D5160E	Liu (2011) PLoS One 6, e22542
c.15487G>A p.V5163I Cecchi (2014) Stroke 45, 3200		c.15487G>A	p.V5163I	Cecchi (2014) Stroke 45, 3200
c.15527A>G p.E5176G Liu (2011) PLoS One 6, e22542		c.15527A>G	p.E5176G	Liu (2011) PLoS One 6, e22542
IA c.1214_1216delGAG Zhou (2016) Am J Hum Genet 99. 1072	IA	c.1214_1216delGAG	1 ⁻	Zhou (2016) Am I Hum Genet 99, 1072
c.1699A>G p.M567V Zhou (2016) Am J Hum Genet 99, 1072		c.1699A>G	p.M567V	Zhou (2016) Am I Hum Genet 99. 1072
c.2017C>T p.R673W Zhou (2016) Am J Hum Genet 99. 1072		c.2017C>T	p.R673W	Zhou (2016) Am J Hum Genet 99, 1072
c.3674A>G p.D1225G Zhou (2016) Am J Hum Genet 99, 1072		c.3674A>G	p.D1225G	Zhou (2016) Am J Hum Genet 99, 1072

FIGURE 1: **RNF213 Nucleotide Variants Found In MMD, IA, and ICASO.** Variants associated with MMD are marked in red; variants associated with IA are marked in blue; variants associated with ICASO are marked in green; red box represent variants in RING finger domain related to MMD; blue box represent variants in AAA+ATPases domain related to IA. Two special variants (c.13195G>A and c.14429G>A) are associated with different type MMD, respectively.

p.A2826T) have been reported. Different mutation sites of RNF213 are associated with different cerebrovascular diseases, possibly because different mutations affect different functional domains of RNF213. Therefore, RNF213 variant diversity predisposes distinct populations to dissimilar cerebrovascular diseases. Unfortunately, mice with *Rnf213* knockout or point mutations similar to those of humans do not fully mimic the MMD phenotype. Environmental aspects may also be important factors in MMD pathogenesis. More studies are required to confirm the correlation of RNF213 with various cerebrovascular diseases, thus providing a new target for the prevention and treatment of cerebrovascular diseases.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- D. Morito, K. Nishikawa, J. Hoseki et al., "Moyamoya diseaseassociated protein mysterin/RNF213 is a novel AAA+ ATPase, which dynamically changes its oligomeric state," *Scientific Reports*, vol. 4, p. 4442, 2014.
- [2] F. Kamada, Y. Aoki, A. Narisawa et al., "A genome-wide association study identifies RNF213 as the first Moyamoya

disease gene," Journal of Human Genetics, vol. 56, no. 1, pp. 34-40, 2011.

- [3] S. Miyawaki, H. Imai, S. Takayanagi, A. Mukasa, H. Nakatomi, and N. Saito, "Identification of a genetic variant common to moyamoya disease and intracranial major artery stenosis/occlusion," *Stroke*, vol. 43, no. 12, pp. 3371–3374, 2012.
- [4] S. Zhou, A. Ambalavanan, D. Rochefort et al., "RNF213 Is Associated with Intracranial Aneurysms in the French-Canadian Population," *American Journal of Human Genetics*, vol. 99, no. 5, pp. 1072–1085, 2016.
- [5] W. Liu, D. Morito, S. Takashima et al., "Identification of RNF213 as a Susceptibility Gene for Moyamoya Disease and Its Possible Role in Vascular Development," *PLoS ONE*, vol. 6, no. 7, p. e22542, 2011.
- [6] S. Sonobe, M. Fujimura, K. Niizuma et al., "Temporal profile of the vascular anatomy evaluated by 9.4-T magnetic resonance angiography and histopathological analysis in mice lacking RNF213: A susceptibility gene for moyamoya disease," *Brain Research*, vol. 1552, pp. 64–71, 2014.
- [7] A. Kanoke, M. Fujimura, K. Niizuma et al., "Temporal profile of the vascular anatomy evaluated by 9.4-tesla magnetic resonance angiography and histological analysis in mice with the R4859K mutation of RNF213, the susceptibility gene for moyamoya disease," *Brain Research*, vol. 1624, pp. 497–505, 2015.
- [8] H. Kobayashi, Y. Matsuda, T. Hitomi et al., "Biochemical and Functional Characterization of RNF213 (Mysterin) R4810K, a Susceptibility Mutation of Moyamoya Disease, in Angiogenesis In Vitro and In Vivo," *Journal of the American Heart Association*, vol. 4, no. 7, 2015.
- [9] J. Suzuki and A. Takaku, "Cerebrovascular "Moyamoya" Disease. Disease Showing Abnormal Net-Like Vessels in Base of Brain," *JAMA Neurology*, vol. 20, no. 3, pp. 288–299, 1969.
- [10] K. Oka, M. Yamashita, S. Sadoshima, and K. Tanaka, "Cerebral haemorrhage in Moyamoya disease at autopsy," *Virchows Archiv A: Pathological Anatomy and Histology*, vol. 392, no. 3, pp. 247– 261, 1981.
- [11] H. Ikeda, T. Sasaki, T. Yoshimoto, M. Fukui, and T. Arinami, "Mapping of a familial moyamoya disease gene to chromosome 3p24.2-p26," *American Journal of Human Genetics*, vol. 64, no. 2, pp. 533–537, 1999.
- [12] T. K. Inoue, K. Ikezaki, T. Sasazuki, T. Matsushima, and M. Fukui, "Linkage analysis of moyamoya disease on chromosome 6," *Journal of Child Neurology*, vol. 15, no. 3, pp. 179–182, 2000.
- [13] K. Sakurai, Y. Horiuchi, H. Ikeda et al., "A novel susceptibility locus for moyamoya disease on chromosome 8q23," *Journal of Human Genetics*, vol. 49, no. 5, pp. 278–281, 2004.
- [14] T. Yamauchi, M. Tada, K. Houkin et al., "Linkage of familial moyamoya disease (spontaneous occlusion of the circle of Willis) to chromosome 17q25," *Stroke*, vol. 31, pp. 930–935, 2000.
- [15] Z. Wu, H. Jiang, L. Zhang et al., "Molecular Analysis of RNF213 Gene for Moyamoya Disease in the Chinese Han Population," *PLoS ONE*, vol. 7, no. 10, p. e48179, 2012.
- [16] Y. Yonekawa, N. Ogata, Y. Kaku, E. Taub, and H.-G. Imhof, "Moyamoya disease in Europe, past and present status," *Clinical Neurology and Neurosurgery*, vol. 99, no. 2, pp. S58–S60, 1997.

- [17] A. C. Cecchi, D. Guo, Z. Ren et al., "RNF213 rare variants in an ethnically diverse population with moyamoya disease," *Stroke*, vol. 45, no. 11, pp. 3200–3207, 2014.
- [18] X.-S. Sun, J. Wen, J.-X. Li et al., "The association between the ring finger protein 213 (RNF213) polymorphisms and moyamoya disease susceptibility: a meta-analysis based on case-control studies," *Molecular Genetics and Genomics*, vol. 291, no. 3, pp. 1193–1203, 2016.
- [19] S. Miyatake, N. Miyake, H. Touho et al., "Homozygous c.14576G>A variant of RNF213 predicts early-onset and severe form of moyamoya disease," *Neurology*, vol. 78, no. 11, pp. 803– 810, 2012.
- [20] A. Koizumi, H. Kobayashi, W. Liu et al., "P.R4810K, a polymorphism of RNF213, the susceptibility gene for moyamoya disease, is associated with blood pressure," *Environmental Health and Preventive Medicine*, vol. 18, no. 2, pp. 121–129, 2013.
- [21] A. Kanoke, M. Fujimura, K. Niizuma et al., "Temporal profile of magnetic resonance angiography and decreased ratio of regulatory T cells after immunological adjuvant administration to mice lacking RNF213, a susceptibility gene for moyamoya disease," *Brain Research*, vol. 1642, pp. 1–9, 2016.
- [22] A. Ito, M. Fujimura, K. Niizuma et al., "Enhanced post-ischemic angiogenesis in mice lacking RNF213; A susceptibility gene for moyamoya disease," *Brain Research*, vol. 1594, pp. 310–320, 2015.
- [23] M. Sato-Maeda, M. Fujimura, A. Kanoke, Y. Morita-Fujimura, K. Niizuma, and T. Tominaga, "Transient middle cerebral artery occlusion in mice induces neuronal expression of RNF213, a susceptibility gene for moyamoya disease," *Brain Research*, vol. 1630, pp. 50–55, 2016.
- [24] M. Sato-Maeda, M. Fujimura, S. Rashad et al., "Transient Global Cerebral Ischemia Induces RNF213, a Moyamoya Disease Susceptibility Gene, in Vulnerable Neurons of the Rat Hippocampus CA1 Subregion and Ischemic Cortex," *Journal of Stroke and Cerebrovascular Diseases*, vol. 26, no. 9, pp. 1904–1911, 2017.
- [25] J. S. Eisen and J. C. Smith, "Controlling morpholino experiments: Don't stop making antisense," *Development*, vol. 135, no. 10, pp. 1735–1743, 2008.
- [26] M. Blum, E. M. De Robertis, J. B. Wallingford, and C. Niehrs, "Morpholinos: Antisense and Sensibility," *Developmental Cell*, vol. 35, no. 2, pp. 145–149, 2015.
- [27] J. Wen, X. Sun, H. Chen et al., "Mutation of rnf213a by TALEN causes abnormal angiogenesis and circulation defects in zebrafish," *Brain Research*, vol. 1644, pp. 70–78, 2016.
- [28] S. Miyawaki, H. Imai, M. Shimizu et al., "Genetic variant RNF213 c.14576G>A in various phenotypes of intracranial major artery stenosis/occlusion," *Stroke*, vol. 44, no. 10, pp. 2894–2897, 2013.
- [29] O. Y. Bang, J. Chung, J. Cha et al., "A Polymorphism in RNF213 Is a Susceptibility Gene for Intracranial Atherosclerosis," *PLoS ONE*, vol. 11, no. 6, p. e0156607, 2016.
- [30] Y. Shinya, S. Miyawaki, H. Imai et al., "Genetic Analysis of Ring Finger Protein 213 (RNF213) c.14576G>A in Intracranial Atherosclerosis of the Anterior and Posterior Circulations," *Journal of Stroke and Cerebrovascular Diseases*, vol. 26, no. 11, pp. 2638–2644, 2017.
- [31] W. T. E. Yeung, I. Mizuta, A. Watanabe-Hosomi et al., "RNF213related susceptibility of Japanese CADASIL patients to intracranial arterial stenosis," *Journal of Human Genetics*, vol. 63, no. 5, pp. 687–690, 2018.

- [32] X. Liao, J. Deng, W. Dai, T. Zhang, and J. Yan, "Rare variants of RNF213 and moyamoya/non-moyamoya intracranial artery stenosis/occlusion disease risk: A meta-analysis and systematic review," *Environmental Health and Preventive Medicine*, vol. 22, no. 1, 2017.
- [33] O. Y. Bang, S. Ryoo, S. J. Kim et al., "Adult Moyamoya Disease: A Burden of Intracranial Stenosis in East Asians?" *PLoS ONE*, vol. 10, no. 6, p. e0130663, 2015.
- [34] H. Kobayashi, M. Brozman, K. Kyselová et al., "RNF213 Rare Variants in Slovakian and Czech Moyamoya Disease Patients," *PLoS ONE*, vol. 11, no. 10, p. e0164759, 2016.