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Abstract

Populations inhabiting the bioclimatic edges of a species’ geographic range face an increasing

amount of stress from alterations to their environment associated with climate change. Moose Alces

alces are large-bodied ungulates that are sensitive to heat stress and have exhibited population de-

clines and range contractions along their southern geographic extent. Using a hidden Markov model

to analyze movement and accelerometer data, we assigned behaviors (rest, forage, or travel) to all lo-

cations of global positioning system-collared moose (n¼13, moose-years¼ 19) living near the south-

ern edge of the species’ range in and around Voyageurs National Park, MN, USA. We assessed how

moose behavior changed relative to weather, landscape, and the presence of predators. Moose sig-

nificantly reduced travel and increased resting behaviors at ambient temperatures as low as 15 �C

and 24 �C during the spring and summer, respectively. In general, moose behavior changed season-

ally in association with distance to lakes and ponds. Moose used wetlands for travel throughout the

year, rested in conifer forests, and foraged in shrublands. The influence of wolves Canis lupus varied

among individual moose and season, but the largest influence was a reduction in travel during

spring when near a wolf home range core, primarily by pregnant females. Our analysis goes beyond

habitat selection to capture how moose alter their activities based on their environment. Our find-

ings, along with climate change forecasts, suggest that moose in this area will be required to further

alter their activity patterns and space use in order to find sufficient forage and avoid heat stress.
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Climate change is forecast to drive dramatic changes to the distri-

bution (Parmesan 2006; Chen et al. 2011) and abundance of spe-

cies worldwide (Dirzo et al. 2014; Ripple et al. 2016). Species will

face temperatures that more frequently exceed their thermal

thresholds (Pörtner 2001), and vegetative communities will shift in

potentially rapid and unpredictable ways, thus altering ecological

communities (Parmesan and Yohe 2003). Ecosystem shifts can

lead to greater abundance of competitors and predators (Huey

et al. 2009; Gilman et al. 2010), or changes in predator behavior

that modify competition or predator–prey dynamics (Post et al.

1999). Animals inhabiting areas at the bioclimatic edges of their

range will encounter the most dramatic and earliest effects of
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climate change. Understanding how individual animals respond to

existing variation in those environmental conditions predicted to

sustain the greatest changes will provide the best indication of the

future persistence (Franco et al. 2006), abundance trends

(Forchhammer et al. 2001), and range shifts (Hampe and Petit

2005; Hickling et al. 2006) of a population.

For mammals, it may take years for the effects of climate change

to result in detectable population declines (Forchhammer et al.

2001; Parmesan 2006; Mason et al. 2014). Studies that attempt to

understand changes in mammal behavior using traditional

approaches that lack direct observation, such as habitat selection

studies, may not fully capture the altered behaviors of individuals

coping with novel climatic and ecological conditions. For example,

animals may select for multiple habitats, but this simple association

may not capture how an animal uses each (e.g., one habitat may

provide thermal refuge and the other foraging opportunities; Street

et al. 2016). Likewise, these models may not identify whether an

animal is only using a habitat at certain times to reduce its risk of

predation (Latombe et al. 2014). Fortunately, improved methodolo-

gies of analyzing animal movement can help us discern what types

of behaviors occur in different habitats, and how these behaviors

may change based on current ecological conditions (Edelhoff et al.

2016; Gurarie et al. 2016).

Hidden Markov models (HMMs) and similar approaches

(e.g., state–space models) can classify animal behavior based on

movement characteristics derived from the locations of individual

animals (Morales et al. 2004; Forester et al. 2007; Patterson et al.

2008; McClintock et al. 2012a; Beyer et al. 2013). These models as-

sign an unobservable behavioral state, assumed to be the true behav-

ior of the individual, to each location of the animal. Aside from

movement characteristics, HMMs can incorporate ancillary data,

such as physiology measurements from biologgers and activity

counts from accelerometers (McClintock et al. 2012b; Fehlmann

et al. 2017; Leos-Barajas et al. 2017) to more accurately assign be-

havioral states or define additional states (Nams 2014). Behaviors

linked with each relocation can be associated with outside biotic

and abiotic factors to gain inference on how animals respond or ac-

tivity levels change when encountering different conditions and

habitats (e.g., Russell et al. 2015).

Moose Alces alces are keystone herbivores and are a particularly

good candidate species to examine how a changing environment

may affect the behavior of a mammal at the edge of its bioclimatic

threshold. Moose are physiologically sensitive to heat (Renecker and

Hudson 1986, 1989; McCann et al. 2013) and dramatically alter

their habitat selection when ambient temperatures rise (Schwab and

Pitt 1991; van Beest et al. 2012; Street et al. 2015, 2016) by selecting

for habitats that act as thermal refuges (Dussault et al. 2004;

McCann et al. 2016). Energetic costs are tied to higher ambient tem-

peratures primarily in two ways: 1) direct costs of dissipating heat

through increased metabolic rates, including in extreme cases, pant-

ing to reduce excess heat (Renecker and Hudson 1986; Renecker

and Schwartz 1998), and 2) indirect costs of forgoing foraging

opportunities while resting to avoid overheating (Street et al. 2016).

These costs may lead to a reduction in physical condition and thus

an increased risk of mortality (Renecker and Hudson 1992; Joly and

Messier 2004; van Beest and Milner 2013).

Throughout the southern extent of their range, moose show signs

of poorer health (Ruprecht et al. 2016), reduced fecundity

(Monteith et al. 2015; Ruprecht et al. 2016), lower calf survival

(Grøtan et al. 2009; Severud et al. 2015), or range contractions

(Dou et al. 2013). Summer heat stress was found to be one of several

potential factors in nearly extirpating a moose population in north-

western Minnesota, USA (Murray et al. 2006). Similarly, moose

populations in the northeastern part of Minnesota have experienced

population declines of more than 50% between 2005 and 2016

(DelGiudice 2016). Factors such as warmer year-round tempera-

tures increased parasite loads and diseases from the northward ad-

vance of white-tailed deer Odocoileus virginianus, and an increasing

wolf Canis lupus population are thought to all play an increasing

role in declining moose populations (Murray et al. 2006; Lenarz

et al. 2009, 2010, DelGiudice et al. 2011; Mech and Fieberg 2014).

In addition to the current threats facing moose, the boreal forests of

northern Minnesota that moose inhabit are predicted to shift dra-

matically to drier and more open cover types in the coming decades

(Galatowitsch et al. 2009), thus reducing the ability of moose to

find habitats typically used for foraging (Street et al. 2015) and ther-

mal refuges (McCann et al. 2016).

Here, we utilize HMMs to examine how moose living in a pro-

tected area along the southern extent of the species’ range alter their

behaviors when responding to variability in weather (including am-

bient temperature), and the presence of wolves, along with encoun-

tering multiple habitats and landscape features. Our HMM

characterized all moose global positioning system (GPS) locations as

one of three behavioral states: traveling, resting, or foraging. We

incorporated activity levels from accelerometers in the GPS collars

to better differentiate foraging versus resting behaviors that may be

indistinguishable based on movement data alone. Our approach

enabled us to ask three important questions about moose behavior

across seasons: 1) can we capture the thermal thresholds at which

moose alter their behavior, 2) does moose behavior change in areas

regularly used by wolves, and 3) how do moose change their behav-

ior in different primary habitats and relative to landscape features

such as lakes? Many studies have attempted to determine the

thermal thresholds of moose, but they were often conducted in la-

boratory or captive settings. Here we develop a fuller understanding

of moose behavior by analyzing behavioral changes at a fine scale

as moose encounter different stressors and habitats in the wild. We

expand on our findings in the context of long-term climate

forecasts of the region and discuss how the southern extent of

the geographic distribution of moose is expected to change in the

future.

Materials and Methods

Study area
All GPS-collared moose inhabited the Kabetogama Peninsula of

Voyageurs National Park (VNP; 48�300N, 92�500W; n¼11; moose-

years¼17) and the adjacent Rat Root Lake area (n¼2; moose-

years¼2). The combined study area is located in north-central

Minnesota, USA along the southern edge of the geographic distribu-

tion of moose. The Kabetogama Peninsula (305 km2) is a roadless

protected area, but maintains hiking trails in the summer and snow-

mobile trails during the winter months. The Rat Root Lake area

(�12 km2), which is located near the western edge of VNP, is pri-

marily state forest land with a low road density. Area summers,

while relatively short in duration, are humid and reach average daily

July temperatures of 18.8 �C (10-year average: 2003�2012).

Winters are typically dry and cold with an average daily temperature

of �13.7 �C (10-year average: 2003�2012) during January. The

10-year averages are based on the National Oceanic Atmosphere

Administration’s National Climatic Data Center [cited August, 10th
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2016 (https://www.ncdc.noaa.gov/)] Global Climate Station

Summary for International Falls, MN, USA. Lakes and ponds

throughout the park are generally ice-covered from late November

until late April or early May (Kallemeyn et al. 2003).

The landscape of the VNP ecosystem contains numerous lakes

and ponds (23.3% open water, based on % areal coverage) with is-

lands containing rocky outcrops and shoreline bluffs and a mosaic

of beaver-influenced wetlands (Johnston and Windels 2015a).

Vegetation is primarily forest (36.4%), dominated by aspen

(Populus spp.), white birch Betula papyrifera, balsam fir Abies bal-

samea, spruce (Picea spp.), pine (Pinus spp.), and red maple (Acer

rubrum; Faber-Langendoen et al. 2007). Shrublands (1.2%), typic-

ally alder (Alnus spp.) and willow (Salix spp.), along with both

woody (30.5%; largely tamarack Larix laricina and black ash

Fraxinus nigra) and herbaceous wetlands (7.8%) are pervasive

throughout the VNP ecosystem. These habitat classes represent sig-

nificant variability in thermal properties (i.e., operative tempera-

tures) at various times of day and year (Olson et al. 2014).

Wolves, the main predator of moose, are abundant inside and

outside of VNP with �16–22 individuals in two to three packs in-

habiting the centrally located Kabetogama Peninsula of the park

alone (Olson and Windels 2014). However, wolves regularly make

use of other prey (Gogan et al. 2004; Chenaux-Ibrahim 2015; Gable

et al. 2016) such as white-tailed deer (�3.8 deer/km2) and beaver

(�5.0 beaver/km2) that are present at much higher densities relative

to moose (0.13 moose/km2; Windels and Olson 2016), albeit with

much smaller body mass per individual.

Capture and handling of moose
From 2010 to 2012, we captured adult moose (males: n¼4, moose-

years¼5; females: n¼9, moose-years¼14) during February and

March using helicopters to dart individuals (Quicksilver Air, Inc.,

Fairbanks, AK, USA). We immobilized and anesthetized moose with

1.2 mL (4.0 mg/mL) carfentanil citrate and 1.2 mL (100 mg/mL)

xylazine HCl, and used 7.2 mL (50 mg/mL) naltrexone HCl. We

used 3 mL (5 mg/mL) yohimbine HCl as antagonist. During each

moose capture, we extracted a blood sample for progesterone ana-

lysis. We classified individuals with progesterone values larger than

2 ng/mL as pregnant in a given year (see Schwartz et al. 1995;

Schwartz 1998). We outfitted each moose with a GPS collar

(Sirtrack Limited, Hawkes Bay, New Zealand). Fix attempts were

scheduled at 15-min intervals during 2010 and 20-min intervals dur-

ing 2011–2012. We estimated the average GPS error of locations

from stationary Sirtrack collars at �7 m for a 50% circular error

probable (McCann et al. 2016). Each GPS collar contained an accel-

erometer that provided an activity count on a 1-min average basis.

All animal capture and handling protocols were approved by the

University of Minnesota and National Park Service Animal Care

and Use committees.

We removed any GPS locations associated with a mortality

event, any fix with a horizontal dilution of precision (HDOP)>15,

and checked that the final rate of movement was biologically feas-

ible (fastest rate¼52.6 m per min). Additionally, we removed moose

that did not have an accelerometer in the collar, and GPS locations

collected after an accelerometer had become faulty or failed to re-

cord activity entirely.

HMMs require temporal regularization of the data (i.e., no

missed GPS fixes), so we used the package waddle (Gurarie and

Bracis 2013) in program R (R Core Team 2016) to linearly interpol-

ate missing locations in the moose data for both the 15- and 20-min

interval data independently. For our moose locations, we

interpolated �6% of all locations for an average of 4.9% per

moose-year. The waddle package also calculates the movement rate

and relative turning angle for all movement steps. We refer to this as

the full movement dataset.

We associated activity level with each movement step by binning

accelerometry data based on the beginning and end timestamps

from each movement step in the full movement dataset and averag-

ing the corresponding activity values.

Spatial covariates
For covariates relying on the locations of moose, we used the coord-

inates at the end of each step from the full movement dataset. We

determined habitat type by overlaying moose locations on a raster

of the 2011 National Land Cover Database (Homer et al. 2015) and

extracting the habitat classification of each raster cell using the

package raster (Hijmans 2015) in program R (R Core Team 2016).

Lakes and beaver-influenced wetlands within VNP were provided as

ESRI Shapefiles of polygons (Johnston and Windels 2015b). We cre-

ated a raster in ArcMap 10.3.1 (Redwoods, CA), which expanded

beyond the boundaries of all moose locations, where each

30 m�30 m cell contained the distance from the center of each cell

to the nearest edge of a lake or pond. We overlaid all moose loca-

tions onto the distance-to-water raster in program R and extracted

the distance value.

Weather covariates
We used weather conditions from a weather station located at the

International Falls airport located �18 km from the eastern edge of

VNP (weather station: 48.561, �93.398). The data, collected ap-

proximately once per hour, were available through the National

Oceanic Atmosphere Administration’s National Centers for

Environmental Information [March 1, 2016 (https://www.ncdc.

noaa.gov/isd/data-access)]. For our weather variables of interest—

ambient temperature (�C), wind speed (km per hour), and liquid pre-

cipitation (previous hour in centimeter)—we interpolated the values,

using package zoo (Zeileis and Grothendieck 2005) in program R

(R Core Team 2016), to create a timestamp match with our moose

location data.

Temporal covariates
Using the timestamps associated with each moose location in the full

dataset, we calculated the altitude of the sun in the sky at VNP using

the package maptools (Bivand and Lewin-Koh 2017) in program R

(R Core Team 2016). Values less than zero represent times of day

where the sun was below the horizon, and positive values represent

times where the sun was above the horizon.

The presence of snow cover, activities associated with calving,

and the availability and quality of forage may strongly influence

movement. Accordingly, our analyses considered three seasons that

corresponded with declining snow cover and calving (spring, 1

April–30 June), the snow free period (summer/fall, 1 July–31

October; hereafter, “summer”), and full snow cover (winter, 1

November–31 March). Within season variation was considered by

assigning a unique day number to each date within a season, starting

with 1 on the first day of each season then increasing by one every

day until the last day of the season.

Capture and handling of wolves
We captured adult wolves in VNP using padded-foothold traps

(Livestock Protection Company, Alpine, TX, USA) from 2012 to
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2014 during June–October. We fit each individual with either an

Argos GPS (Telonics, Inc., Mesa, AZ, USA) or an Iridium GPS collar

(Lotek Wireless, Inc., Newmarket, Ontario, Canada; Vectronic

Aerospace GmbH, Berlin, Germany). The collars attempted a fix

once every 20 min–6 h, but most were for every 4–6 h, for up to

2 years. We removed any location with a HDOP value >15.

We collected GPS data from 26 individual wolves between 9

October 2012 and 17 November 2015. We removed any locations

that occurred more frequently than �4 h (3 h, 57 min) of the last

included location to reduce the bias in home range delineation

among packs. We pooled data among individuals that we visually

determined to be in the same pack based on proximity in time and

space of GPS locations. We assumed the GPS locations of the collars

represented the pack’s location for the duration of the study. We

split all pack data into seasons (same seasonal delineations as the

moose) and only included pack-seasons that had a minimum of 30

fixes that met all of our criteria. We retained 18,367 total fixes from

20 distinct packs or individuals inhabiting unique areas of study for

at least one full season. Seasonal home ranges contained 6,093 loca-

tions from 17 pack-seasons in winter, 1,704 locations from 6 pack-

seasons in spring, and 7,087 locations from 17 pack-seasons during

summer. Areal coverage of combined annual wolf home ranges con-

tained most of the VNP ecosystem and overlapped the home ranges

of GPS-collared moose.

We calculated seasonal home ranges for wolf packs with

Program R (R Core Team 2016) using package adehabitat (Calenge

2006). We used the function kernelUD to create a bivariate normal

kernel for each seasonal home range and used the ad hoc method for

the smoothing parameter. We created a utilization distribution ras-

ter for each wolf pack’s seasonal home range where each raster cell

contained the value of the smallest isopleth of the home range cover-

ing the cell. For each moose location in the full dataset, we extracted

the values of all wolf pack utilization distributions calculated at that

location and season. We binned the extracted values into 0–19, 20–

39, 40–59, 60–79, 80–99, and >99 categories of the isopleth values

of wolf home ranges (i.e., a value of 100 indicates that the moose lo-

cation was not overlapped by a wolf home range, a value between 0

and 19 is within the very core of a pack’s home range). We assigned

each bin a value of 0–5 with larger values corresponding with

smaller utilization distribution values from the wolf pack home

ranges. The largest bin value for each moose location across all wolf

packs was retained for modeling. We refer to this value as “wolf

home range” going forward.

Calibration of collar activity
We combined direct human observations of moose behavior with

data from SirTrack GPS collars outfitted with accelerometers (the

same make and model as the wild moose in VNP area) to determine

what metric of activity count best corresponded to an observed

moose’s behavior. From 30 July to 2 August 2009 an observer fol-

lowed a single human-habituated moose inside a �2.6 km2 pen at

the Kenai Moose Research Center (KMRC) near Soldotna, Alaska.

The KMRC research facility is owned by the Alaska Department of

Game and Fish and houses three to six moose per 2.6 km2 holding

pen. Within each pen, the moose forage on naturally occurring vege-

tation and habitat primarily consists of a mix of mature white (Picea

glauca) and black (Picea mariana) spruce along with deciduous trees

such as aspen Populus tremuloides, willow (Salix sp.), and cotton-

wood Populus trichocarpa. Moose also had access to ponds, small

lakes, and sedge meadows.

The observer classified the behaviors of the focal moose from a

distance of 3–10 m. The time and a classification of behavior (walk-

ing, feeding, drinking, standing, standing and ruminating, bedded,

or bedded and ruminating) that occurred for a minimum of 3 s were

recorded. The moose was observed for a total of 2,315 observation

minutes over four 7–11-h observation periods (see Ness [2010] for

additional details).

The mean, maximum, and standard deviation of activity levels

from the accelerometer, and the mode of the behavior classification

were compared based on 10,000 sets of sub-sampled data. Activity

data were sub-sampled in both 15- and 20-min time spans to corres-

pond with the length of GPS fix intervals from wild moose in VNP

using random starting points with replacement. All consecutive data

following the randomized starting point for the given time span (i.e.,

the next 15 or 20 min of data for both activity counts and direct ob-

servational data) were then included in the analysis. We performed

an ANOVA with a post-hoc Tukey’s Honest Significant Difference

(HSD) test to determine significant differences in the accelerometer

activity levels between the three behaviors resulting from the mode

calculation of the direct observational data: feeding, ruminating,

and moving. We considered these three mode behaviors to corres-

pond to our three behavioral states in our HMM model. We tested

which metric of activity levels (mean, median, max, or sd) provided

the most significant differences among the three behaviors.

Activity levels from the accelerometer data of the captive moose

were significantly different among the four summary metrics (mean,

median, max, and sd) for the observed mode behavioral state of ei-

ther feeding, ruminating, or moving (adjusted P<0.001 and 95%

confidence intervals of the Tukey’s HSD did not overlap zero for all

metrics for both 15 and 20 minute intervals). Based on the

ANOVAs, mean activity had the largest differences among the

observed behaviors for both 15-min intervals (mean: F2,9998¼4387,

SD: F2,9998¼2096, median: F2,9998¼1676, max: F2,9998¼552) and

20-min intervals (mean: F2,9998¼6390, SD: F2,9998¼2894, median:

F2,9998¼1978, max: F2,9998¼765). Mean activity counts for the

15-min intervals were 13.9, 4.8, 0.67, and 13.1, 4.7, 0.75 for the

20-min intervals corresponding to movement, ruminating, and rest,

respectively.

We used the mean activity counts from the captive moose behav-

iors as informative priors for the true mean activity level in our

HMM model for the 20-min interval data. For the data correspond-

ing to the 15-min location moose, we re-ran the same procedure on

the same captive moose activity data using a minimum activity level

of 0.01, and adding a random variance of 0.001 for each observa-

tion as was done with the VNP data to better fit the assumption of a

normal distribution (there were a large number of low activity

counts from the VNP moose). The resulting values were used for the

informative priors in the HMM models for moose with 15-min GPS

interval data.

Statistical analysis
Our approach to understanding moose behavior involved two distinct

steps. First, we assigned each moose location from the full dataset a

behavioral state, using a Bayesian three-state switching HMM. This

HMM utilized step lengths and turning angles derived from sequential

GPS locations, and activity counts from accelerometers within the

same GPS collars to classify each location into one of three behavioral

states. We did not use our HMM to test how weather conditions, spa-

tial attributes of the landscape and habitat, and wolf home range areas

affected moose behaviors because the large increase in number of par-

ameters would have made processing times and synthesis prohibitive.
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Instead, we utilized a frequentist approach, generalized additive mod-

els (GAMs) with a multinomial distribution (categorical behavior clas-

sification was the response), to model the influence of these covariates

on moose behavior (e.g., Russell et al. 2015).

HMM: state assignment
We expanded on code provided in the Supplementary Material in

Gurarie et al. (2016) for an HMM three-state switching model. Our

aim was to classify each moose location as one of three categorical

latent behavioral states: 1) traveling, 2) foraging, or 3) resting.

Following the assumptions of Gurarie et al. (2016), we used a

wrapped Cauchy distribution to describe turning angles and a

Weibull distribution to describe step lengths (Kareiva and Shigesada

1983). We assumed that traveling would be associated with larger

travel distances and directional persistence (i.e., turn angles close to

0, straight-line movements). We assumed resting would be associ-

ated with the smallest travel distances and turning angles that were

more evenly distributed compared with those of the travel state, but

with a higher probability of being toward 180� (this is because all lo-

cations have some GPS error and stationary collars will yield “steps”

with a tendency to have a tight turning angle back toward the actual

location of the collar). The foraging state should be characterized by

step-length distances commonly larger than the resting state, but

smaller than the traveling state, and a generally uniform distribution

of turning angles as the moose meanders through its habitat search-

ing for and consuming forage or standing still while browsing during

the 15- or 20-min period. To increase our ability to differentiate

among the three latent behavioral states, we incorporated a third

data source: activity data from the GPS accelerometer. We used a

log-normal distribution for the activity parameter, and assumed that

activity levels would increase from resting to foraging to traveling.

We used vague priors for all parameters except those of move-

ment scale and activity. Specifying slightly informative priors (based

on an exploratory analysis of a few individual moose and data from

captive animals) helped to keep the parameters aligned for all of our

MCMC chains (without specifying the mean prior values, the order

of the behavior vectors would flip activity and travel). Other priors,

such as those for movement shape, turn angles, and transition

probabilities between states were unchanged from those of Gurarie

et al. (2016). For the zero-truncated Gaussian priors of the move-

ment scale parameters (one for each behavioral state: travel, forage,

and rest), we provided mean values of 100, 40, and 10 for the 20-

min data and 75% of these values for the 15-min data (75, 30, and

7.5); all of these priors had precisions set to 0.001. The informative

priors for the mean of activity were derived from the captive moose

data at both the 15- and 20-min intervals with a large variance term

(variance¼1,000, JAGs precision value of 0.001). The prior for the

variance of activity was uniform from 0 to 30 for all three states.

We added a maximum step length to be considered in the rest state

of 50 m. This value is larger than our GPS error estimates of �7 m

for the 50% error, but given a time step of 15–20 min, we believed

this would allow for a small amount of movement (e.g., moving to a

nearby bedding site) along with GPS error. All step lengths and ac-

tivity measurements less than 0.001 were set to 0.001. Because large

gaps in the GPS data can cause model fitting issues when using the

interpolated values to fill in missing locations (e.g., all turn angles

are 0 and the step lengths are constant), we removed all data inter-

polated over large gaps. This removal was necessary for three

moose-years of data where the collar had stopped acquiring fixes

and re-started later in the year.

We fit the models using a Bayesian MCMC framework with

JAGs through the RJAGS (Plummer 2016) and R2jags (Yu-Sung and

Yajima 2015) packages. We ran three chains of 5,000 iterations

with a burn in of 1,000 and we thinned the chains by eight resulting

in 500 samples from each chain. We checked the Gelman–Rubin

statistic, making sure it was close to a value of 1, and visually as-

sessed the three chains of each parameter to judge convergence. If a

model did not converge, we then ran additional iterations in inter-

vals of 1,000. Typically, the initial 5,000 iterations were enough for

convergence when proper initial values were provided for the initial

movement and activity values. We used the mode latent state associ-

ated with the samples as the behavioral state assigned for each

movement step. We report the mean and its associated variation for

our parameters by randomly sampling, with replacement, 1,000 pos-

terior point estimates from each moose-year’s HMM posterior dis-

tribution, calculating the mean of these samples (i.e., 1 random

sample from each moose-year) and estimating the 95% credible

interval of the distribution of means by parameter, behavior, and fix

rate (i.e., separate for 15 and 20 min fix data).

To ensure the assigned behavioral states from the HMM-

provided reasonable classifications, we utilized a suite of diag-

nostic plots to visually inspect that behaviors were assigned with

expectations based on movement distance (i.e., the largest dis-

tances for travel and the smallest for rest), turning angles (i.e.,

most directional persistence for travel and the least for rest), and

activity counts (i.e., largest activity counts for travel and the

least for rest). A moose may exhibit multiple behaviors in the 15

or 20 min time of our GPS fix intervals, but the HMM approach

allows us to assign a single behavior associated with each GPS

fix interval that is the most likely primary behavior based on the

distributions for movement rate, turning angle, and activity

level. We determined the mean proportions of moose locations

assigned each behavior by season and used a bootstrap to esti-

mate the uncertainty among moose-years. The bootstrap esti-

mated 95% confidence intervals (using package boot; Canty and

Ripley 2016) based on the adjusted bootstrap percentile method

(Davison and Hinkley 1997) using 10,000 bootstrap samples of

the proportions of behaviors assigned to individual moose-years

by season. Additionally, we calculated the average bout length

(in minutes; a bout is defined by consecutive moose locations as-

signed the same behavior) per individual by behavior type, and

generated bootstrap estimates of the predictive distribution.

Modeling behavioral states and covariates
Moose behavioral states were analyzed using a GAM with a multi-

nomial distribution using package mgcv (Wood 2011) in program R

(R Core Team 2016). The multinomial distribution allowed us to es-

timate how each covariate influenced the likelihood of moose being

in either the resting or traveling states relative to the foraging state

(i.e., changes in the likelihood of foraging are contingent upon

changes in non-foraging behavior [traveling or resting]; e.g., a

reduced likelihood of traveling with a constant likelihood of resting

must result in more foraging activity). This estimated value is called

the log odds ratio and it measures the change in the log odds of the

probability of being found in one state against the baseline. Because

the coefficient values are relative to the baseline state of foraging, a

negative coefficient value for the rest state and a positive for the

travel state suggest that as the covariate increases, moose are more

likely to be found in the travel state and less likely to be found in the

rest state relative to foraging. Additionally, GAMs enabled us to in-

corporate smoothers for covariates we believed to have non-linear
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relationships within the behavioral state of the moose. Smoothers

offer a greater flexibility relative to regression splines, allowing us to

estimate at what temperature moose reduce travel and increase rest,

and estimate a general daily activity budget by including a smoother

for the altitude of the sun.

We modeled each moose’s behavior on a seasonal level using

GAMs. We standardized and centered covariates to compare the ef-

fect size of each covariate to one another and interpret how strong

of an effect each covariate has on the likelihood of being in either of

the rest or travel states. We modeled the behavioral state of each

moose location reported from the HMMs as a function of smoothers

for (1) ambient temperature and (2) altitude of the sun, and linear

predictors based on the (3) categorical habitat classification (decidu-

ous forest, mixed forest, conifer forest, shrub/scrub, emergent herb-

aceous wetland, woody wetland, and open water), (4) distance to

lake or ponds, (5, 6) weather conditions (precipitation and wind

speed), (7) day number of the season, and (8) wolf home range. In a

few instances we removed the wolf home range covariate or a given

habitat class from a seasonal individual moose GAM model if an in-

dividual did not have enough variation in either overlap in a known

wolf pack’s range (e.g., a moose could not be found exclusively

within the 40–60% isopleth level for a pack or the model could not

run; locations were required within multiple isopleth values), or

habitat type (e.g., for moose-years with relatively few locations in a

season, a less common habitat type such as shrub, may have three

locations that were all classified the same) because of the multi-

nomial distribution of the model.

To summarize the results of the individual moose GAMs, as a

way of providing a “population-level” result and to provide a meas-

ure of variability among individuals, we report a mean, based on the

estimates of individual moose-year model coefficients and boot-

strapped 95% confidence interval using the same bootstrapping

method previously described. Relative effect sizes can be determined

by comparing coefficient values among categorical and continuous

variables because they are scaled and centered. These effects high-

light trends in the associations between covariates values and behav-

iors from the HMM. We considered P-values at or below an alpha

level of 0.05 to be significant for linear predictors and smoothers.

To summarize the effects of the smoothed covariates (ambient tem-

perature and sun altitude) across all individual moose models, we re-

ported on the significance of the smoothed terms in the same

manner as the linear predictors (i.e., based on the number of individ-

ual moose models out of the total). The predicted mean response

and 95% confidence interval were then plotted by behavioral state.

We calculated the mean and confidence interval with the same boot-

strapping method previously described using the predicted values of

the response at a given grouped level of the independent variable

(e.g., increments of 3 �C).

Because we hypothesized that wolf home range might have a

larger influence on the behavior of pregnant moose during the

spring, when moose in VNP give birth, we re-ran our GAMs based

on moose-year instead of individual moose. This enabled us to link

the coefficient values for wolf home range of the resulting moose-

year GAMs with classifications for: 1) pregnant moose, and 2) non-

pregnant females and males. We performed an ANOVA with a post-

hoc Tukey’s HSD test to determine differences between the groups.

Results

We classified 348,226 observations of moose movement and activity

from 13 individuals (males¼4; females¼9) and 19 moose-years

(males¼5; females¼14; parameter point estimates for HMM

models in Online Appendix Table 1). Our spring (observa-

tions¼120,603, n¼11, moose-years¼17), and summer HMM

models (observations¼87,847, n¼8, moose-years¼9) resulted

in similar proportions of assigned behaviors; proportions of each

behavior had overlapping confidence intervals, and within sea-

sons, travel was assigned to significantly fewer moose locations

than forage and rest (�x [95% CI]; spring: forage¼0.44 [0.39–0.47],

rest¼0.38 [0.33–0.42], travel¼0.19 [0.13–0.27]; summer: for-

age¼0.40 [0.39–0.42], rest¼0.42 [0.32–0.48], travel¼0.18

[0.12–0.29]). During winter (observations¼139,756, n¼13 indi-

viduals, moose-years¼19), moose were less active (0.45 forage or

travel) relative to spring and summer (0.62 and 0.58 forage or

travel, respectively) due to decreased travel (�x ¼0.07, 95%

CI¼0.05–0.11) and increased rest (�x ¼0.55, 95% CI¼0.51–0.57).

Across seasons, length of continuous behaviors (minutes per bout)

was least for traveling (�x ¼66.8, 95% CI¼58.6–75.0), intermediate

for foraging (�x ¼75.8, 95% CI¼62.9–88.8), and greatest for rest-

ing (�x ¼98.8, 95% CI¼79–118.6).

Weather conditions and temporal effects
Nearly all moose altered their behavior based on the altitude of the

sun (i.e., amount of daylight; smoother P<0.05) for both the travel

(96.9% of moose) and rest states (96.9% of moose) across all sea-

sons (32 moose-seasons total). During spring, but especially during

summer, moose were more likely to rest near-midday and the middle

of the night, and were more likely to travel and forage during cre-

puscular times (Figure 1). Moose activity patterns were nearly re-

versed during winter when rest occurred much more frequently in

the dark, and moose foraged and traveled during daylight hours

(Figure 1). Within seasons, moose exhibited changes in behavior re-

sulting in large effect sizes, by foraging more (less rest and travel) as

winter turned into spring, traveling and resting more (less foraging)

as spring progressed, and reducing travel between the start and end

of summer (see Day # of season; Table 1; summaries of coefficient

direction [6] and significance in Online Appendix Table 2).

Figure 1. Predicted values of the relative-risk ratios from smoothers modeling

the influence of solar elevation (i.e., amount of daylight; �2¼dark/nightime

and 2¼brightest/noon) on the resting behavior of GPS-collared moose in

VNP, Minnesota, USA. Each moose’s behavioral state, classified using a

HMM, was modeled individually on a seasonal basis using a GAM with a

smoother for solar elevation for the behavior of rest relative to foraging.

Here, the predicted log odds ratio represents the likelihood of choosing one

outcome category (rest) relative to the baseline category (forage).

Standardized and centered values of solar elevation were pooled by incre-

ments of 0.2 to predict the mean and 95% confidence interval for all pooled

individual moose estimates using bootstrapping.
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Beyond the influence of the sun’s altitude, moose behavior

changed in association with variation in ambient temperature

(Figure 2). Nearly all moose altered their behavior in association

with changing ambient temperature throughout the seasons

(smoother based on temperature: % of moose for which P<0.05;

winter: travel¼84.6%, rest¼92.3%; spring: travel¼100%, rest-

¼100%; summer: travel¼85.7%, rest¼85.7%). The one individ-

ual who did not significantly respond to temperature during summer

had considerably less data relative to other moose (1,741 fixes or

�24.2 days of fixes; mean fixes per moose during summer for all

moose¼10,980). In response to warm temperatures, moose reduced

their travel in both spring and summer (Figure 2) and correspond-

ingly increased resting behavior. The change from a positive associ-

ation between travel and ambient temperature to a significantly

negative one occurred at a higher ambient temperature during sum-

mer (24–27 �C) relative to spring (12–15 �C; Figure 2).

Precipitation and wind speed did not have strong effects on

moose behavior, but moose consistently responded to changes in

both (Table 1; Figure 3). Moose generally increased resting behavior

with increased wind speed, especially during spring, and increased

foraging when wind speed increased during summer (Table 1; Figure

3). In contrast, moose were more likely to be active (i.e., traveling or

foraging) during precipitation events especially during spring and

summer (Table 1; Figure 3).

Habitat and landscape effects
Based on the effect sizes of the cover types, moose behavior was

strongly influenced by habitat cover types and landscape features

throughout the seasons, albeit with a large degree of variability

among individuals (Figure 4). Moose used wetland habitats for

travel and rest more than for foraging throughout the year (Table 1;

Figure 4). Moose were rarely located in open water (% of locations

per moose; spring: �x ¼0.1, range�0.1–2.6; summer: �x ¼1.7,

range¼0–5.5; winter: �x �0.1, range¼0–0.1). But when they did

use these areas—which likely consist of open areas along the frozen

shoreline in winter and spring—it was consistently for travel (Table

1, Figure 4). Distance to the nearest lake or pond had relatively large

effects on moose, but the behaviors associated with these areas

changed throughout the year (Figure 3). In the spring, most moose

reduced travel and reduced rest (Table 1, Figure 3A,D) in areas fur-

ther from lakes and ponds, which suggests these areas are primarily

Table 1. Mean (695% bootstrapped confidence intervals) of estimated coefficients from generalized additive model (GAM) results of indi-

vidual moose-year data by covariate and season

Variable Season n Rest Travel

Day number of season Spr 11 0.16 (0.06–0.39)* 0.25 (0.07–0.46)*

Sum 7 0.03 (�0.15–0.12) �0.24 (�0.37–0.08)*

Win 13 �0.11 (�0.31–0.02)* �0.39 (�0.91–0.08)*

Lake/pond distance Spr 11 0.03 (�0.01–0.07) �0.14 (�0.18–0.09)*

Sum 7 0.09 (0.02–0.22)* 0.03 (�0.09–0.16)

Win 13 �0.01 (�0.07–0.03) �0.23 (�0.81–0.06)*

Precipitation Spr 11 �0.02 (�0.06–0.02) 0.05 (0.01–0.1)*

Sum 7 0.01 (�0.07–0.22) 0.06 (�0.02–0.28)

Win 13 �0.03 (�0.06–0.01)* 0.03 (0–0.06)*

Wind speed Spr 10 0.07 (0.04–0.14)* �0.02 (�0.07–0.07)

Sum 7 �0.03 (�0.06–0.01)* �0.08 (�0.17–0.01)*

Win 13 0.02 (0.00–0.04)* �0.02 (�0.15–0.05)

Wolf home range Spr 8 0.04 (�0.02–0.11) �0.12 (�0.22–0.03)*

Sum 7 �0.03 (�0.05–0.01)* �0.03 (�0.1–0.03)

Win 12 �0.01 (�0.04–0.02) �0.10 (�0.68–0.11)

Emergent herb. wetland Spr 11 0.09 (�0.16–0.21) 0.35 (0.06–0.61)*

Sum 7 0.32 (0.14–0.55)* 0.13 (�0.45–0.38)

Win 13 �0.14 (�0.62–0.07) 0.65 (0.19–1)*

Open water Spr 9 �0.25 (�0.94–0.03) 0.74 (0.33–1.38)*

Sum 7 �0.24 (�1.07–0.1) 0.12 (�0.19–0.42)

Win 7 �0.2 (�0.63–0.14) 1.61 (0.97–2.28)*

Woody wetland Spr 11 0.12 (0.04–0.21)* 0.04 (�0.22–0.22)

Sum 7 0.25 (�0.01–0.63) �0.07 (�0.58–0.18)

Win 13 0.13 (0.05–0.2)* 0.47 (0.3–0.67)*

Shrub/scrub Spr 9 0.10 (�0.06–0.3) 0.15 (�0.14–0.59)

Sum 6 �0.18 (�0.33–0.03)* �0.15 (�0.33–0.11)

Win 9 �0.22 (�0.30–0.08)* �0.36 (�0.85–0.00)*

Mixed forest Spr 11 0.03 (�0.03–0.1) �0.09 (�0.25–0.07)

Sum 7 0.07 (�0.05–0.19) 0.08 (�0.1–0.36)

Win 12 0.07 (0.02–0.13)* 0.12 (�0.05–0.26)

Evergreen forest Spr 11 �0.11 (�0.6–0.16) �0.14 (�0.36–0.09)

Sum 7 0.06 (�0.49–0.49) 0.19 (�0.04–0.48)

Win 11 0.13 (0.06–0.21)* 0.00 (�0.46–0.46)

Notes: Behaviors (travel, forage, and rest) of GPS-collared moose in VNP, Minnesota, USA, were classified using a three-state HMM with switching. These behav-

iors were analyzed using GAMs with a multinomial distribution by season. Habitat cover types (last six covariates listed) were categorical and relative to the cover

type for deciduous forest. Results for the behavioral states of rest and travel are relative to the foraging state (log odds ratio). Sample size was based on unique

moose-year., *95% bootstrapped confidence interval did not overlap zero.
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used for foraging. The opposite was true for summer as moose sig-

nificantly increased resting and traveling further from shore (travel

not significant [Table 1] but most moose had positive coefficients

[71%; Figure 3B,E; Online Appendix Table 2]). During winter,

moose decreased travel when closer to shore (Table 1; Figure 3F).

Moose used evergreen/conifer forests primarily for rest during

winter, and while there was a large degree of variability among indi-

vidual moose-years, 43% of moose-years had a significant positive

association between rest and evergreen/conifer forests during sum-

mer (Table 1, Figure 4; Online Appendix Table 2). Mixed forests

were also primarily associated with resting behavior of moose dur-

ing winter and summer and generally with reduced travel during

spring (Table 1; Figure 4). However, while the influence of mixed

forests was consistent across seasons, the influence relative to de-

ciduous forests was not large (Figure 4). Moose used shrub/scrub

habitats primarily for foraging during summer and winter (i.e.,

moose consistently reduced travel and rest in scrub/shrub; Table 1;

Figure 4).

Wolf home ranges and their effects on moose
Wolves used the smallest area during the spring (n¼6; �x 50%

Isopleth¼25.3 km2, 95% CI: 11.9–38.7 km2; �x 95%

Isopleth¼130.4 km2, 95% CI: 87.3–173.5 km2) resulting in the

lowest percentages of moose locations within known wolf home

ranges (25.3% of all locations, 72.7% of moose with any spatial

overlap). A high percentage of moose locations that did overlap

with wolf home ranges was primarily in the outermost area of wolf

home ranges (80–99% isopleth; 47.5% of locations with overlap)

and no moose was located within the 40% isopleth value of any

wolf pack’s home range. A majority of moose (n¼8, moose years;

63%) located in these outer areas of wolf pack home ranges

Figure 2. Predicted values of the relative-risk ratios of smoothers modeling

the influence of ambient temperature (�C) on the travel behavior of GPS col-

lared in VNP, Minnesota, USA, during spring and summer. Each moose’s be-

havioral state (rest, forage, or travel) was classified using a HMM. The

behavioral states were modeled individually on a seasonal basis using GAM

with a smoother for ambient temperature. The log odds ratio represents the

likelihood of choosing one outcome category (travel) relative to the probabil-

ity of choosing the baseline category (forage). The predicted log odds ratio

predictions were pooled by increments of 3 �C, and the mean and 95% confi-

dence interval were calculated for all pooled individual moose estimates

using bootstrapping.

Figure 3. Coefficient values from GAMs showing the influence of variables on the behavior of GPS-collared moose in VNP, MN, USA. Moose behaviors, as classi-

fied by a HMMs, were modeled by individual moose and season using GAMs with multinomial distributions that provide the log odds ratio estimate. The log

odds ratio estimates the likelihood of choosing one outcome category (rest or travel) relative to the probability of choosing the baseline category (forage). Each

point represents an estimate from a single moose GAM for each given behavior. The model coefficients for the resting behavioral state response during the A)

spring, B) summer, and C) winter, and the traveling behavioral state response during the D) spring, E) summer, and F) winter are shown. Covariate coefficients of

log odds ratio estimates were classified as significant if the P-value was �0.05.
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increased resting behavior closer to wolf pack cores (Online

Appendix Table 2) and the same percentage of moose reduced trav-

eling in these areas substantially (Table 1; Figure 3D). During the

spring, females that were pregnant at the time of capture (n¼5

moose-years) reduced their travel more than non-pregnant females

and males (n¼7 moose years) in areas closer to wolf pack cores

(pregnant vs. other coefficient for wolf home range¼�0.16). The

largest reductions in travel were associated with three of the five

moose-years for which the female was pregnant that year

(b¼�0.25, �0.26, �0.35). However, the small sample size did not

result in a significant difference between the two groups

(Padj.¼0.08, 95% CI pregnant vs. other¼�0.35–0.02). Females

that tested pregnant were only slightly less likely to rest when

located closer to wolf home range cores (difference pregnant vs. oth-

er¼�0.07, Padj.¼0.26, 95% CI pregnant vs. other¼�0.19–0.06)

suggesting an increase in foraging or another behavior with similar

behavioral characteristics.

During summer, wolves expanded their home ranges (n¼17; �x

50% Isopleth¼42.1 km2, 95% CI: 28.2–56.0 km2; �x 95%

Isopleth¼170.6 km2, 95% CI: 112.7–228.5 km2) resulting in all moose

locations overlapping at least one wolf pack’s home range, and nearly

half of locations falling in the inner <40% isopleth core (48.2% of lo-

cations). Moose in close proximity to the core of wolf home ranges

reduced rest (Table 1), but the effect was small (Figure 3B).

Wolf home ranges were largest on average during winter months

(n¼17; �x 50% Isopleth¼83.6 km2, 95% CI: 83.6–145.6 km2; �x

95% Isopleth¼345.1 km2, 95% CI: 71.1–619.1 km2). Wolf packs

overlapped all moose locations again, and the majority of moose

(76.9% of individuals) were located in areas closest to the core of

the wolf home ranges (<40% isopleth) during at least some portion

of the winter. Most moose, with adequate variation in wolf home

range, responded to the closer proximity to wolf home range cores

by altering their amount of travel (58% of individuals with signifi-

cant coefficients; Online Appendix Table 2). While some moose had

exhibited large effects in travel behavior from wolf home range

cores (Figure 3C,F) the response was not consistent (50% increased

travel and 50% decreased travel).

Discussion

Our approach, utilizing HMMs to classify the behavior of moose,

provides additional insights about moose living along the southern

extent of their bioclimatic range beyond that of traditional habitat

selection studies. By incorporating movement characteristics and ac-

tivity counts from accelerometers (validated by direct observations

on captive moose), we were able to distinguish between three behav-

iors of moose remotely, at fine temporal and spatial scales, and asso-

ciate the changes in behavior with different environmental variables.

While individual moose exhibited variable behavior associated with

changes in weather, landscape, and the presence of predators, we

were able to identify several consistent behavioral responses, espe-

cially regarding time of day and ambient temperature. Our findings

highlight the difficult situation facing thermally sensitive species

coping with climate change; rising temperatures will require individ-

uals to reduce heat production and heat exposure by resting more

frequently or shifting activity to nighttime when temperatures abate,

thus reducing opportunities to seek out new food sources and for-

age, especially when predators are present.

Figure 4. Coefficient values from GAMs showing the influence of habitat types on the behavior of GPS-collared moose in VNP, MN, USA. Moose behaviors, as

classified by a HMMs, were modeled by individual moose and season using GAMs with multinomial distributions that provide the log odds ratio estimate. The

log odds ratio estimates the likelihood of choosing one outcome category (rest or travel) relative to the probability of choosing the baseline category (forage).

Each point represents an estimate from a single moose GAM for each given behavior. The model coefficients for the resting behavioral state response during the

A) spring, B) summer, and C) winter, and the traveling behavioral state response during the D) spring, E) summer, and F) winter are shown. Covariate coefficients

of log odds ratio estimates were classified as significant if the P-value was �0.05.
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Assessing thermal thresholds for moose can be difficult outside

of laboratory or captive settings, but our approach, which ac-

counted for the influence of solar elevation, time of year, and habi-

tat, characterized moose behavior at a fine scale and captured the

ambient temperatures when moose became less active (i.e., travel)

and more likely to rest. The thermal thresholds of moose found by

Renecker and Hudson (1986), who studied captive moose living in

enclosed pens, were accepted as the best estimates of heat stress for

many years. They found that moose increased respiration rates at

14 �C and started open-mouth panting at 20 �C during the summer.

Recently, McCann et al. (2013) found that heat stress thresholds

vary for moose housed in an outdoor enclosure and that shade and

wind speed influenced the thresholds. With no wind, moose

increased respiration rates for evaporative cooling at 17 �C, while

with wind respiration rates did not increase until 24 �C. Similarly,

free-ranging moose in VNP began resting more frequently in sum-

mer when temperature reached 21 �C and reduced travel when they

reached 24 �C. While we were able to capture strong behavioral

changes at these ambient temperatures, without the ability to dir-

ectly observe the moose or take physiological measurements, we can

only state that we estimated behavioral-related changes in activity

and not necessarily heat stress. A 24 �C threshold was also corrobo-

rated by Broders et al. (2012), who found that moose in Nova

Scotia sought thermal shelter when daytime temperatures reached

24 �C. However, it is also important to recognize that the thermal

thresholds for moose are likely to vary from region to region, and in-

dividuals with poorer health, as a result of disease or parasite loads,

may exhibit a lower threshold of thermal tolerance, as was indicated

for populations near VNP (Murray et al. 2006; Lenarz et al. 2009)

and for captive moose in Minnesota (McCann et al. 2013).

Spring thermal behavioral thresholds affecting moose were much

lower than summer thresholds. Despite the rapid increases in spring

temperatures observed globally, especially in the Midwestern United

States (Schwartz et al. 2006), they often do not receive as much at-

tention as the more extreme values of ambient temperature fore-

casted for summer months. We expected moose to exhibit a lower

spring behavioral thresholds because seasonally shifting thermal tol-

erance is well established across many taxa of animals (Pörtner

2002). Our findings, which suggest a spring thermal behavioral

threshold around 15 �C, may be a result of natural acclimation to

cold winter temperatures and the rapid transitions in weather and

phenology that occur during spring, exacerbated by remnant winter

coats. It could also reflect a lack of canopy and horizontal cover

within deciduous vegetation at this time. Research by Lenarz et al.

(2009) highlighted the importance of spring temperatures by associ-

ating warmer spring ambient temperatures with lower adult survival

in Minnesota (although see Mech and Fieberg [2014] which ques-

tions this association). However, earlier and warmer spring tem-

peratures can also benefit moose by making spring forage more

abundant and available earlier in the year. Grøtan et al. (2009)

linked these potential benefits of warmer spring time temperatures

experienced by moose in Norway to subsequent increases in calf sur-

vival, while Monteith et al. (2015) found a negative effect on recruit-

ment associated with warmer spring temperatures due to a

mismatch in phenology of early season forage and nutrition. While

the overall impacts of a warmer and earlier spring season are still

debated, other environmental conditions, such as more frequent pre-

cipitation events, may help counteract times of heat stress more so

during spring than summer.

Temperatures are forecasted to increase further in the coming

decades, which means that moose will likely need to rest more

frequently and thereby forego travel and foraging to avoid heat

stress. Galatowitsch et al. (2009) forecasts that the VNP area will

experience an increase in the average daily minimum and maximum

summer (June–August) temperatures of around 1.6 �C by 2030 and

3.3 �C by the year 2060. Studies by Dussault et al. (2004) and Street

et al. (2015) found that moose coped with warm summer daytime

temperatures by reducing daytime activity and switching to noctur-

nal activity. Our findings show that moose in VNP follow a similar

seasonal pattern of resting during the heat of the mid-day in summer

months, and decreasing rest at night. Moose responded in a similar,

but weaker pattern during the spring, and reversed this pattern dur-

ing the winter by becoming active during daylight hours. This be-

havioral plasticity may help moose cope with rising temperatures

for years to come; however, it is clear that moose will be faced with

a difficult tradeoff between energy acquisition and resting to deal

with higher ambient temperatures. Street et al. (2016) examined this

inherent tradeoff and found that a more northerly population in

Ontario, Canada strongly selected for areas of better forage while

the more southerly population in Minnesota, USA selected for a bal-

ance between habitats associated with better thermal cooling prop-

erties and those with better forage. Average wind speeds are also

forecasted to be reduced under some climate change scenarios (e.g.,

Pryor et al. 2009), thus also impacting another primary source of

cooling for moose (McCann et al. 2013).

Climate change in the region is already shifting vegetative com-

munities in boreal ecosystems (Soja et al. 2007) and the pace of this

change is expected to accelerate (Galatowitsch et al. 2009). This

shift may eliminate the ability of moose to cope with heat by select-

ing for habitats with the best thermal properties. Numerous studies

have found that moose select for habitats that provide better shade

and cooling when ambient temperatures increase (Renecker and

Hudson 1989; Schwab and Pitt 1991; Demarchi and Bunnell 1995;

van Beest et al. 2012; Street et al. 2015, 2016; McCann et al. 2016).

These studies generally agree that lowland forests with dense cano-

pies are the most preferred by moose during times of high ambient

temperatures.

Although some studies have found little difference in the abilities of

different habitats to provide thermal shelter (Lowe et al. 2010), Olson

et al. (2014) found large differences in thermal properties among habi-

tats in the VNP ecosystem that drive the operative temperatures experi-

enced by moose in the various habitat types. Open habitat types, such

as scrub/shrub and wetlands had an average difference in afternoon

temperatures during the summer of 3.38 �C (and a maximum of

8.10 �C) relative to forested habitats. These findings support the pat-

terns found in our results that moose forage in mixed forests and

shrublands, and travel through wetlands—both active behaviors—but

likely only when temperatures fall below the maximum thermal thresh-

olds of a given season. Moose select for better thermal cover in conifer

and deciduous forests with dense canopies when the thresholds are ex-

ceeded—a finding that was supported by Street et al. (2016) using step-

selection functions to analyze fine-scale habitat selection elsewhere in

Minnesota, and an analysis of moose bed site selection by McCann et

al (2016). We did not include an interaction between ambient tempera-

ture and habitat type in our models due to the large increase in the size

and complexity of the results of our models, especially while incorpo-

rating the effects of smoothers.

The overall lack of a strong, consistent response of moose to

wolves in VNP is not surprising for both methodological and biolo-

gical reasons. However, while the overall effect size of wolves on the

behavior of all moose was relatively small, we did find some evi-

dence that pregnant females close to the expected calving season
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(i.e., before and after presumed parturition) were less likely to be

traveling in areas more frequented by wolves relative to adult fe-

males without calves and males. This response is likely a way to re-

duce the exposure of calves to predation risk, but our results also

suggest that pregnant females increased foraging behavior in these

same areas. Increased foraging in areas with a higher likelihood of

attack seems counterintuitive, but our HMM classification scheme

was limited to three basic behaviors. By relying solely on movement

and activity data, we potentially misclassified some vigilance behav-

ior as foraging. These behaviors may appear relatively similar in

terms of movement and activity characteristics. Our inability to

identify vigilance behavior may be exacerbated because wolf GPS

data only temporally overlapped with the collection of moose GPS

locations for 1 year. Even with better temporal and spatial overlap,

it can be difficult to identify responses of prey species to predators

when relying on GPS data alone (e.g., Eriksen et al. 2011).

Biologically, studies in other parts of Minnesota have found the re-

cently recovered wolf population to play a major role in moose

population abundance (Mech and Fieberg 2014). However, studies

in VNP, where wolf and moose population levels have been fairly

constant over the last decade (Olson and Windels 2014), have found

that moose comprise a relatively small percentage of wolf diet

(�2–3%; Gogan et al. 2004; Chenaux-Ibrahim 2015; Gable 2016).

Wolves in VNP can avoid the task of predating moose because less-

risky prey alternatives such as white-tailed deer and beaver are pre-

sent at relatively higher densities than moose (Windels and Olson

2016) and consistently make up large portions of wolf diets within

VNP (Gogan et al. 2004; Chenaux-Ibrahim 2015; Gable 2016).

While the direct influences of wolves may have been muted due

to methodological hurdles, moose patterns of forage and rest in rela-

tion to lakes and ponds may be an indirect function of predator

avoidance and thermal cooling. Lakes in many regions of moose

range are typically frozen well into spring, and thus do not provide

forage opportunities until summer. Moose may utilize the cooling

properties of aquatic habitats during warmer months, and use the

often forage-rich shorelines, wetlands, or shallow lakes and ponds in

the region, while quickly dissipating heat (Schwab and Pitt 1991).

However, these same areas along the shore may be the riskiest areas

of the landscape during winter and early spring when wolves often

select for frozen surfaces and shorelines (Kuzyk et al. 2004) to travel

and hunt (Mech 1991). In a nearby study on Isle Royale, Michigan,

USA, Montgomery et al. (2014) found a strong negative association

between the distance to shore and successful predation events of

wolves on moose. Wolves in VNP forage near water bodies and wet-

land habitats to prey heavily on beavers in summer (Gable et al.

2016). Our findings of VNP moose potentially support the idea of a

tradeoff between forage intake, thermal cooling, and predator

avoidance whereby VNP moose may risk being around shorelines

where wolves frequent in order to access forage-rich habitat patches,

such as wetlands created by beavers (Johnston and Windels 2015a),

that also allows them to stay cool during the summer months, but

utilize areas further from lakes in the winter and spring when water

bodies are frozen. Morris (2014) reviewed studies that reported on

how moose used aquatic habitats and found little support for the hy-

pothesis of minimization of direct predation risk and heat stress

amelioration. Instead, the analysis found greater support for maxi-

mizing nutrition and avoidance of biting insects. More research,

possibly incorporating novel technologies and methodologies, may

help researchers better determine how and why moose use aquatic

habitats, beyond travel, forage, or rest, so that we may better under-

stand how or if moose can cope with future drier environments.

Methods that enable researchers to more fully utilize the data

from GPS units can offer new insights beyond habitat selection by

discerning how an animal responds behaviorally to their environ-

ment (Edelhoff et al. 2016; Gurarie et al. 2016). Activity data from

collar accelerometers are often unused or are analyzed in relative

isolation from animal movement. Our HMM enabled us to combine

activity and movement data to more accurately separate moose be-

havior among resting and foraging. Anecdotally, the HMM model

struggled to assign behavioral states to large numbers of moose loca-

tions in a way that made biological sense when utilizing only step

lengths and turn angles. Additionally, by utilizing a captive study of

moose wearing identical GPS collars (including accelerometers) to

most of the moose in our study, we were able to provide biologically

appropriate priors that helped the model converge more quickly and

give more sensible results. However, we caution that there are sev-

eral factors to consider when utilizing a three-state HMM model

with activity data: 1) several accelerometers failed or provided unre-

liable and infrequent measurements later in the lifespan of the collar

and thus reduced our sample size, 2) Moen et al. (1996) found the

association between directly observed behaviors and activity data

were no longer reliable at GPS fix rates of >1 h due to multiple be-

haviors occurring within that time frame (our fix attempts were 15 or

20 min), and 3) the relationship we observed in wild moose between

movement rate and activity had a large degree of variability among

moose and even between moose-years of the same individual. Our be-

havioral classification might have been improved if were able to dir-

ectly observe moose behavior in different habitats, and create unique

priors for the mean of activity dependent on the habitat associated with

the location of the moose. For instance, movements through thicker

vegetation associated with certain habitats may result in higher activity

counts than the same movement rate through a generally open habitat.

To further understand how moose along the southern edge of

their range will respond to climate change, additional research may

be needed to understand the effects of climate change on the quality

of browse available to moose. Moose make habitat selection deci-

sions by balancing the tradeoff between thermal cooling properties

and forage (Street et al. 2016), but finding this equilibrium may be-

come extremely difficult if climate change also reduces nutrition of

available forage. Findings by Dearing (2012) and Kurnath et al.

(2016) show that plant secondary compounds in herbivore forage

may have temperature-dependent toxicity properties; as tempera-

tures rise, these toxic properties may reduce the nutritional content

of forage currently assumed to be important for moose diets. As an

additional potential avenue of research, biologger technologies that

allow for the remote measurement of physiological changes (e.g., ab-

dominal and vaginal implant transmitters and cardiac biologgers)

offer the next step in understanding how moose respond to stressors.

When biologger technologies are combined with traditional GPS

units and accelerometers, HMMs could identify other unique behav-

ioral and physiological states that may not have been apparent with

GPS and activity data alone (e.g., Ditmer et al. 2015). Additional

states such as “resting and heat stressed” or “traveling and stressed”

potentially from a predator would greatly enhance our understand-

ing of both animal behavior and physiology.

Understanding how populations inhabiting areas along the geo-

graphic edges of their distribution mechanistically respond to

changes in their environment can help predict future range shifts,

and inform conservation or management needs. Analytical

approaches that provide insights into how and why species alter

their behavior in response to environmental change at fine spatial

and temporal scales are a critical first step to understanding the
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potential for a population to persist. Our findings suggest that in the

coming 50�100 years, the adaptability of moose inhabiting the

VNP ecosystem will be tested in the face of a shifting bioclimatic

range (Galatowitsch et al. 2009), whereby moose will either need to

find more or higher quality forage in habitats used for thermal ref-

uge, or risk the physiological impacts of heat stress. Our study high-

lights this predicament for moose in VNP and other southerly moose

populations by estimating the seasonal maximum behavioral ther-

mal thresholds and determining how moose altered their behavior

based on habitat, landscape features, and risk of predation.

However, moose are an adaptable species and have shown persist-

ence in other southern extents of their range with even less vegeta-

tive cover (e.g., southern Manitoba, Canada and North Dakota,

USA). While our study provides a closer look at the behavioral

response to many aspects of their changing environment, future re-

search should both expand upon new technologies and methodolo-

gies to better discern animal behavioral responses while more

holistically incorporating other critical factors that may influence

population persistence such as disease, parasite loads, and inter-

actions with new competitors and predators.
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