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In this work, a CdS/BiVO, step-scheme (S-scheme) heterojunction with self-photothermally enhanced photocatalytic effect was
synthesized and applied for efficient U(VI) photoextraction. Characterizations such as transient absorption spectroscopy and
Tafel test together confirmed the formation of S-scheme heterojunctions, which allows CdS/BiVO, to avoid photocorrosion
while retaining the strong reducing capacity of CdS and the oxidizing capacity of BiVO,. Experimental results such as radical
quenching experiments and electron spin resonance show that U(VI) is rapidly oxidized by photoholes/OH to insoluble
UO,(OH), after being reduced to U(IV) by photoelectrons/°O,’, which precisely avoids the depletion of electron sacrificial
agents. The rapid recombination of electron-hole pairs triggered by the S-scheme heterojunction is found to release large
amounts of heat and accelerate the photocatalysis. This work offers a new enhanced strategy for photocatalytic uranium

extraction and presents a direction for the design and development of new photocatalysts.

1. Introduction

Nuclear energy is receiving more and more attention and
development because of its high energy density, low carbon,
etc. [1]. Uranium, as the main material used in the nuclear
industry, is entrained in the wastewater and released in large
quantities (mainly in the form of soluble UO,*") during the
mining and utilization process, causing great pollution to the
environment. [2] Most importantly, U(VI) is highly suscep-
tible to mixing into drinking water, entering organisms, and
eventually accumulating in the human body along the food
chains. Its radioactivity and heavy metal toxicity can induce
a variety of fatal diseases and even death. [3] Therefore, it is
an urgent need to efficiently extract uranium from water
bodies, which would address both the shortage of uranium
resource and environmental pollution. Researchers have also

been trying to find strategies for the efficient extraction of
uranium from water bodies [4-7].

Photocatalytic extraction has attracted great attention
because it can directly use solar energy to degrade/remove
pollutants without additional energy supply and secondary
pollution. [8-10] However, many single photosensitive
semiconductors have suboptimal photo-oxidation/reduction
performance for contaminants due to various reasons,
including inappropriate band gaps, high photogenerated
charge recombination rates, and susceptibility to photocor-
rosion. What's more, the reduction/oxidation ability heavily
relies on the potentials of the conduction band minimum
(CBM) and valence band maximum (VBM) of a photocata-
lyst. For example, to reduce U(VI) efficiently, the CBM of
the photocatalyst needs to be negative to the reduction
potential of U(VI)/U(IV) (0.411V) to a certain extent
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(sufficient overpotential). CdS is an n-type semiconductor
with a strong light capture capability and a strong reducing
ability (Eygy=—0.75V vs. NHE), which is widely used in
water splitting andorganic matter degradation [11-13].
However, the photocorrosion of CdS has hindered its
large-scale application. Most current approaches to prevent
photocorrosion focus on the rapid elimination of photoholes
in CdS, such as adding a hole-trapping agent to the catalytic
system or constructing a heterojunction to facilitate the
transfer of the photoholes [14, 15]. The former increases
the cost of using CdS and leads to lowering the possibility
of real application, while the latter usually sacrifices its
strong oxidation ability. BiVO, as a bismuth-based semicon-
ductor has excellent light absorption properties due to the
valence band consisting of Bi 6s and O 2p hybridized
orbitals, resulting in a reduced band gap width, and its
low VBM position gives it strong photocatalytic oxidation
performance, thus it is widely used in photocatalysis [16].

Very recently, the discovery of step-scheme (S-scheme)
heterojunctions provides an efficient solution to the above
problems, for example, the production of H, and H,O,
could be significantly increased by inhibiting the photocor-
rosion of CdS by constructing the S-scheme heterojunctions
by Tang and Mirsadeghi, respectively. [17, 18] In simple
terms, an S-scheme heterojunction is a special type of
Z-scheme heterojunction, but with more severe conditions.
[19] It is well known that the Z-scheme heterojunction is
usually composed of a reduction-type photocatalyst (RP)
and an oxidation-type photocatalyst (OP) matching with a
stepped energy band structure. In detail, the CBM and
VBM of RP are more negative than those of OP, and the
VBM of RP is more positive than the CBM of OP. However,
for S-scheme heterojunctions, in addition to meeting the
above conditions, the positions of the Fermi energy levels
of RP and OP are also required, i.e., the position of the Fermi
energy level of RP should be higher than that of OP (in other
words, the work function of RP is lower than that of OP). In
this way, without light irradiation, driven by the potential
difference of the Fermi levels, the electrons in RP keep dif-
fusing to OP to form an electric field directed from RP to
OP, leaving holes in RP. [20] Once the light is applied,
the photoelectrons in the conduction band (CB) of OP
could be rapidly transferred to the valence band (VB) of
RP to recombine with holes under the action of the
built-in electric field. As a result, the photoelectrons in
the CB of RP with strong reduction potential over the
CB of OP and the holes with strong oxidation potential
over the VB of RP could be successfully retained. In this
way, the electron-hole complexation occurring inside the
component is reduced and a reduction-oxidation potential
superior to that of the conventional type II heterojunction
is obtained. In addition, it has been reported that the
recombination of photogenerated electron-hole pairs
releases energy outward in the form of heat [21]. The
released heat usually causes an elevation of the local tem-
perature, which in turn promotes charge separation and
accelerates the photocatalytic reaction. [22, 23] However,
the photothermal effect in S-scheme heterojunctions is sel-
dom reported.
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Inspired by the aforementioned advantages of S-scheme
heterojunction, in this work, an S-scheme heterojunction
based on BiVO, and CdS is constructed to achieve efficient
photocatalytic U(VI) extraction from water. The S-scheme
heterojunction brings two advantages: firstly, thanks to the
driving force generated by the built-in electric field, the pho-
toelectrons of BiVO, are rapidly transferred to CdS for fast
recombining with holes, accompanied by a large amount of
heat release. This thermal effect was found to increase the
local temperature and greatly enhance the catalytic activity
of the CdS/BiVO, and accelerate the photoextraction pro-
cess of U(VI); secondly, the S-scheme heterojunction enables
the photocatalyst to inhibit the photocorrosion of CdS while
retaining the strong reducing ability of CdS and the strong
oxidizing ability of BiVO,, which allows uranium to be rap-
idly oxidized to U(VI) again after being reduced to U(IV).
The present work demonstrates a new strategy for efficient
photocatalytic U(VI) extraction by an S-scheme heterojunc-
tion, which could be accelerated by a self-photothermal
effect.

2. Results and Discussions

2.1. Materials and Characterizations. X-ray diffraction spec-
tra are firstly used to investigate the crystal structures of the
obtained samples. Figure 1(a) shows that the synthesized
BiVO, belongs to the monoclinic system (JCPDS card No.
83-1699). As for CdS, its characteristic peaks are found at
26.55°, 44.04°, and, 52.16°, corresponding to the (111),
(220), and (311) crystal planes of the cubic CdS (JCPDS card
No. 80-0019), respectively. For the composites of BC-n, all
the diffraction peaks could be well indexed to BiVO, and
CdS, indicating a successful combination. Given the impor-
tance of uranium, U(VI) is used as a target to test the photo-
catalytic performance of six samples. As can be seen from
Figure 1(b) U(VI) adsorption-desorption equilibrium could
be reached for all the six as-synthesized samples in 2h in
dark. The adsorbed capacities of the six samples for U(VI)
are very weak (Figure S1), which may be because it is
difficult to form a chemical bond with U(VI) and only a
small amount of U(VI) can be absorbed by the negatively
charged surface (Figure S2). It should be noted that the
removal abilities of CdS, BC-2, BC-1, and BiVO, for U(VI)
are still not obvious even as the light is turned on, while
BC-3 and BC-4 exhibit a superior removal ability in 60 min
(Figure 1(b)). Especially for the BC-3, over 85% of U(VI) is
removed under visible light irradiation after 1h. However,
the U(VI) concentration decreased slowly in the first
10min of light irradiation and then decreased rapidly (the
black line in Figure 1(b)), showing an inverted “S” shaped
curve. This phenomenon has also been observed in our
previous work and some other works, [24, 25] which is
different from the normal photocatalytic experiments that
usually reach the maximum reaction rate at the beginning
of light irradiation and then gradually decrease with
prolonging the catalytic time. [2, 26] The inverted “S”
shaped curve usually corresponds complicated reaction
mechanism, which will be carefully investigated later. To
observe the photocatalytic ability, a pseudo-first-order
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Figure 1: XRD patterns of as-synthesized samples (a); Photocatalytic experiment of U(VI) with different materials (Cyyy)inisa = 70 PPm,

T=25C, pH5.0) (b) and the corresponding k value of the first-order kinetic fitting (c); FTIR spectra (d) and Raman spectra (e) of the

as-synthesized materials.

model is utilized to simulate the photocatalytic process by
plotting the -In(C/C;) vs. time curve (C, 70ppm, the
initial U(VI) concentration; C.: U(VI) concentration at
time ¢t (min)) (Figure S3) and the plots of first-order rate
constant (k) is calculated and presented in Figure 1(c).
There is no doubt that the BC-3 has the highest rate
constant of 0.052 min™". Based on the above results, BC-3 is
selected to perform the subsequent experiments. FTIR
spectra are used to give an understanding of the vibration
modes of BC-3. By comparing the FTIR spectra of BC-3,
BiVO, and CdS (Figure 1(d)), all the characteristic
absorption bands of BiVO, and CdS are found in the FTIR
spectrum of BC-3. An obvious absorption band at 748 cm™
is ascribed to the antisymmetric stretching vibration of the
VO, group, and the absorption bands of O-H
corresponding to the adsorbed water molecules on BC-3
are found at 3433 and 1622cm™. [27, 28] However, the
stretching vibration absorption band of the S-Cd bond at
659cm™ in the infrared spectrum of BC-3 is weak and
cannot be discriminated because it is obscured in the
absorption band at 748cm™ of BiVO,. [29] The Raman
spectrum of BiVO, (Figure 1(e)) shows four peaks at 212,
326, 365, and 830cm’™, and the peaks of BC-3 are almost
identical to that of BiVO,, which also has four peaks.
However, the two peaks at around 300 and 410 cm! of
CdS are too weak to be observed in the Raman spectrum
of BC-3. Thermogravimetry curve (Figure S4) shows that
BC-3 has good thermal stability in the temperature range

of 20~500°C. Figure S5 shows a type IV N, ad-desorption
isotherm of BC-3, and the BET surface area is evaluated to
be 76.88 m*/g. The pore size distribution curve (the inset in
Figure S5) shows there are lots of mesopores.

The morphology of the as-synthesized samples is inves-
tigated by FESEM. Figure S6 shows that CdS is in the form
of small nanoparticles, while BiVO, exhibits a surface
roughed rod-like microstructure (Figure S7) with a length
of 6~10um and a width of ~0.8 ym. The rough surface of
BiVO, makes it easy to adhere to CdS nanoparticles and
facilitate photocatalysis, yet it also makes it difficult to
distinguish the attached CdS nanoparticles at the same
time (Figure S8A). However, in the TEM images of BC-3
(Figure S8B), it can be seen that there are a large number
of small particles attached to the edge of the rod. What is
more, the 0.33nm crystal plane spacing attributed to CdS
was observed in the HRTEM image (Figure S8C).
Therefore, it can be proved that the small CdS particles are
attached to the BiVO, micron rods. Moreover, the SAED
pattern (the inset in Figure S8B) also confirms the presence
of polycrystalline CdS (bright white circle) and single-
crystal BiVO, (bright dots). The energy dispersive spectra
(EDS) mappings are utilized to investigate the elemental
distribution. From Figure S8D-I, five elements of O, V, Bi,
S, and Cd can be observed, and all the elements exhibit a
uniform distribution. After photocatalysis, the morphology
of Half-used BC-3 (BC-3 for photocatalysis for 10 min) does
not change much compared to BC-3 (Figure S9A and B).
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FIGURE 2: Raman spectra (a), FTIR spectra (b), and XRD patterns (c) of BC-3 at different stages in the photocatalytic reaction. Comparison
of the high-resolution XPS spectrum of U 4f (d) and XPS survey spectra (e) in Half-used BC-3 and Used BC-3. The photocatalytic

experiments with adding different trapping agents (f).

However, the surface of Used-BC-3 was found to be covered
by a large number of nanosheets (Figure S9C). Moreover, by
comparing the EDS mapping of Used BC-3 (Figure S10,
Used BC-3 refers to BC-3 for photocatalysis for 60 min) and
BC-3 (Figure S8D-I), it was found that the surface of Used
BC-3 contains a large number of uranium elements, which
confirms the successful extraction of U(VI) by BC-3.

2.2. Discussion of Photocatalysis Mechanism. It is well known
that CdS is prone to photocorrosion when it is used as a

photocatalyst, resulting in the formation of a zero-valent S
element with the release of Cd**. [30-32] However, in this
work, no characteristic peaks of zero-valent sulfur are
founded in Raman spectra of the Half-used/Used BC-3
(Figure 2(a)), indicating that CdS does not undergo photo-
corrosion during the photocatalytic process. In addition,
the ICP-MS shows that the concentration of Cd*" in the separ-
atd filtrate is 2.764 mg/L, which was tens of times less than the
68.086 mg/L reported in the work where photocorrosion
occurred, [33] further confirming that photocorrosion was
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inhibited. In the FTIR spectra (Figure 2(b)), the spectrum of
Half-used BC-3 is almost unchanged compared to that of
BC-3. But the absorption band corresponding to O-H at
3436cm™ for Used BC-3 is stronger than that for BC-3,
and a new absorption band corresponding to the U-O bond
is also found at 893 cm™, which implies an increase in the
amount of O-H in Used BC-3 and the incorporation of ura-
nium. [34] The small and sharp absorption band at 1550 cm™
should be assigned to the N=O stretching mode of NO;,
which derives from the uranium source-UO, (NO,),-6H,0.
[35] As for the XRD patterns (Figure 2(c)), no obvious differ-
ence is observed between BC-3 and Half-used BC-3. How-
ever, there is a new diffraction peak that appeared at 22.9°
in the XRD pattern of the Used BC-3, the peak is classified
as the diffraction peak on the (111) crystal plane in uranyl
hydroxide (UO,(OH),, JCPDS card No. 72-0517). To dem-
onstrate the photocatalytic process, XPS characterizations
on the samples at different reaction stages are performed.
As shown in Figure 2(d), the characteristic peaks at 380.3
and 391.1eV demonstrate the presence of U(IV) in Half-
used BC-3, [33] suggesting that the reduction of U(VI)
occurred (The survey spectra and high-resolution spectra
are shown in Figure 2(e), S11, and S12, respectively.). How-
ever, for the Used BC-3, although the U(IV) could still be
observed, the ratio of it decreased greatly (according to the
ratio of the area of the subpeaks), and almost could not be
observed in a repeated experiment (Figure S13). It should
be noted that the Half-used BC-3 was taken after 10 min
reaction corresponding to the slow reaction process, and
the Used BC-3 was taken after 60min reaction
corresponding to the fast reaction process. Considering the
decrease tendency of the photocatalytic curve, the decrease/
dismiss of U(IV) means the reoxidization to solid U(VTI).

To figure out the deep mechanism of the transform of
U(VI) (1) = UdvV) (s) = U(VI) (s), quenching experiments
are performed. As can be seen in Figure 2(f), the addition
of FC (for e capture) and P-BQ (for O, capture) inhibits
the photocatalytic reactions, while Me (for h* capture),
IPA (for *OH capture), and DMSO (for *OH capture) accel-
erate the catalytic rate to varying degrees. The ability of FC
to capture photoelectrons is stronger than that of U(VI), so
the existence of FC completely inhibits the reduction of
U(VI). Me is an ideal hole trapping agent, and its addition
enhances the utilization of photogenerated electrons. For
‘0, it is usually formed from the combination of electrons
and dissolved O, in water (O,+e — °0,’), [36] The result
that "0, trapping inhibits U(VI) removal proves that it
plays a positive role in U(VI) reduction. The mechanism of
the *OH radical trapping agent promoting the reaction is
inferred from the following two aspects: on the one hand,
the removal of *OH creates a favorable environment for
the reduction reaction; on the other hand, “OH comes from
the combination of water and photoholes (H,0O +h" — "OH
+H"), so the decrease of "OH promotes more photoholes to
oxidize water, thus reducing the recombination rate of
photogenerated charges and improving the utilization rate
of the photoelectrons. [37] In addition, the ESR spin-trap
technique was implemented to more visually confirm the
generation of *O,” and "OH in the photocatalytic process.

As shown in Figures 3(a) and 3(b), under dark conditions,
the signals of DMPO-"0,” and DMPO-"OH could not be
detected, but after light irradiation for 5min, they are both
detected. The high-intensity DMPO-"0," signal implies a
large production of O, , which is very favorable for the
reduction of U(VI). The weak DMPO-"OH signal implies
less *OH production, but the quantification of *OH by fluo-
rescence method (Figure S14A and B) revealed that its
amount increased rapidly with the increase of irradiation
time. Based on the above evidence, the photocatalytic
process is reasonably inferred as follows: a large number of
photoelectrons and photoholes are generated by BC-3
under light irradiation (Eq. (1)), and then the
photoelectrons could reduce U(VI) to U(IV) (Eq. (2)) or
generate ‘O,  with dissolved oxygen which could also
reduce U(VI) (Eq. (3) and (4)). At the same time, partial
photoholes directly oxidize the reduced U(IV) to insoluble
U(VID) (in the form of UO,(OH),); the remaining
photoholes oxidize U(IV) through the *OH generated by
their reaction with water (Eq. (5) and (6)). [38] Also, the
reduction may dominate in the slow reaction stage, and the
reoxidization dominates in the fast reaction stage.

BC-3+hv—epc 3 +hpc 3", (1)
U(VI) + ege_y~ — U(IV), (2)
0,+e —'0,, (3)

'0,” + U(VI) — U(IV) + O,, (4)
H,O + hy. ;- —> H*+OH, (5)
U(IV)+OH/h* — U(VI). (6)

The generation and transfer —mechanism of
photogenerated charges play a crucial role in the
photocatalytic process, therefore, their optoelectronic
properties are intensively studied. The UV-Vis DRS spectra
(Figure 3(c)) show that the absorption edges of BiVO, and
CdS are at approximately 530 nm and 580 nm, respectively,
and~560 nm for BC-3. The inset in Figure 3(c) is the data
calculated using the Kubelka-Munk formula, indicating the
forbidden bandwidths (Eg) of CdS and BiVO, are 2.16eV
(~574nm) and 2.38 eV (~520 nm), respectively. [39]. In the
Mott-Schottky (M-S) test, the slopes of the M-S curves of
BiVO, and CdS (Figure 3(d)) are both positive, which
means that they both are n-type semiconductors. In
addition, the data show that the flat band potential (Eg) of
BiVO, and CdS are 0.15V and -0.85V (vs. Ag/AgCl),
respectively. Thus, the CB of BiVO, and CdS are estimated
to be 0.25V and -0.75V (vs. NHE at pH?7), and the
valence band (VB) potentials of BiVO, and CdS are
calculated to be 2.63V and 1.41V, respectively. [33] This
means that CdS and BiVO, form a type II heterojunction
(Figure S15A), in which the CB of CdS is higher than the
reduction potential of U(VI)/U(IV) (0.41V) by 1.16V,
while the CB of BiVO, is only higher than that by 0.15V.
In general, a sufficiently large overpotential is necessary to
ensure the generation of chemical reactions. [40, 41] The
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small overpotential of BiVO, could not lead to the
photoreduction of U(VI), as evidenced by the results of the
photocatalytic experiments in this work. Therefore, the
photocatalytic mechanism could not be explained by the
conventional photoelectron transfer path in a type II
heterojunction, because the photoelectrons of CdS
transferred to the CB of BiVO, cannot initiate the
photocatalytic reaction. The fact that photocatalysis of pure
CdS to U(VI) is poor even if the overpotential is enough,
indicates the photogenerated electrons suffer a serious
recombination rate with photoholes. However, after
complexation with BiVO,, the photocatalysis is greatly
enhanced, indicating the recombination of photoelectrons
with photoholes becomes less, or in other words, the
photoholes generated in CdS are consumed by BiVO,.
Such electron/hole transfer route has been uncovered in
some other systems recently and named Z-scheme
heterojunction. [42] This could be indirectly proved by the
anodic photocurrent of CdS and the cathodic photocurrent
of BiVO, (Figure 3(e), see the SI for more). [43, 44] Also,
from Figure 3(e), BC-3 exhibits its excellent charge
separation efficiency due to the strongest photocurrent
response, which may thus induce superior optoelectronic
performance, as demonstrated by the surface photovoltage
(SPV) measurements (Figure 3(f)) where the strongest SPV
signal shown by BC-3 implying the highest charge
separation rate. [45] In the EIS spectrum (Figure S16), the
smallest radius exhibited by BC-3 indicates that it has the
smallest charge transfer resistance among the three
samples. [46] In the Z-scheme configuration (Figure S15B),
the photoelectrons of BiVO, recombine with the
photoholes of CdS retaining the strongly reducing
electrons in the CB of CdS and the strongly oxidizing holes
in the VB of BiVO,. This could be intuitively confirmed by
the time-resolved fluorescence and TA spectra.

As shown in Figure 4(a) and 4(b), the transient absorp-
tion (TA) spectra were obtained under the excitation of
375nm light for CdS and BC-3. The absorption in the visible
light region (400-700 nm) in the TA spectra is usually attrib-
uted to the surface-trapped holes. [47, 48] As the trapped
holes on the surface are transferred or extinguished, the
absorption intensity at the corresponding position in the
transient absorption spectrum will gradually weaken until
the absorption intensity is 0. Therefore, the lifetime of the
cavity can be obtained by analyzing the variation of the
absorption intensity with time at specific locations in the vis-
ible light region of the TA spectrum. [49] Thus, the time
profiles of TA spectra probed at 434 nm were fitted with a
biexponential function (Figure 4(c)) to further evaluate the
decay kinetics of photoholes. The average lifetime of
surface-trapped holes of CdS is shortened from 85ps to
71 ps after loading onto BiVO,, indicating that the holes in
CdS are rapidly trapped by electrons from BiVO,. This
result solidly validates the Z-scheme transfer of electrons
from BiVO, to CdS. Also, from the time-resolved fluores-
cence (Figure 4(d), See SI for relevant fitting data), the elec-
tron proportion for the radiative process of BC-3 is the
lowest (59.88%), which represents the recombination of
photogenerated electron-hole pairs in BC-3 is greatly sup-

pressed. [20] Correspondingly, the electron proportion
(40.12%) with a long lifetime (7,, corresponding to the
non-radiation process) of BC-3 is significantly higher than
those of CdS and BiVO,, implying that large quantities of
photoelectrons undergo the nonradiation process.

The Tafel curves are recorded to discern the flow direc-
tion of charges at the interface of CdS and BiVO,. As shown
in Figure 4(e), the redox equilibrium potential of CdS is
more negative compared to that of BiVO,, and the open-
circuit voltage of CdS/BiVO4 (0.53V vs. Ag/AgCl) lies
between the redox equilibrium potentials of CdS and BiVO,
from the Tafel results. Based on Liu’s results, [50] it can be
inferred that once CdS and BiVO, come into contact,
electrons will flow from CdS to BiVO,, i.e., the Fermi level
(E¢) of CdS is higher than that of BiVO,. Moreover, our test
results are also supported by previous reports that the work
functions of CdS and BiVO, are measured to be 4.04 eV and
5.3eV, respectively [51, 52]. Such charge flow has been
called an S-scheme in the context of the Z-scheme by Yu
in 2019 [53]. Consequently, the charges transfer path could
be proposed as demonstrated in Figure 5. Before contact,
BiVO, and CdS each maintain their intrinsic energy level
scheme (Figure 5(a)). When the two semiconductors are in
close contact (Figure 5(b)), the electrons in CdS are sponta-
neously transferred to BiVO, through the interface, given
that the Fermi energy of CdS is higher than that of BiVO,,
resulting in an upward bending for CdS and downward
bending for BiVO, of the energy band. Most importantly,
an electric field was built directed from CdS to BiVO,. After
light irradiation (Figure 5(c)), both CdS and BiVO, could
generate photoelectrons and photoholes. However, driven
by the built-in electric field and benifit from the band bend-
ing at the interface, the photoelectrons in the CB of BiVO,
could combine with the holes in the VB of CdS. In such
manner, the photoelectrons in CdS and the photoholes in
BiVO, were maintained, with the strong reducing and oxi-
dizing abilities.

It should also be noted that there is strong recombina-
tion of photoelectrons in BiVO, and the photoholes in
CdS, while the fluorescence intensity of BC-3 is the lowest
among the three samples (Figure S17), therefore, the energy
released by the recombination should be the other form
than light, for example, heat, i.e. photothermal effect. [21,
54] The released heat usually leads to an increase in the
local temperature of the catalyst, which promotes charge
separation and accelerates the photocatalytic reaction. [22,
23, 55] To indicate the photothermal effect, the infrared
image of the samples under the light irradiation was shown
in Figure 6(a). The temperature of BC-3 rapidly increased
to ~100°C in 50s, while CdS, BiVO, and TiO, can only
reach 43, 43, and 31°C, respectively. With further being
irradiated for 240s, the temperature of BC-3 stabilizes at
approximately 113.5°C, CdS, and BiVO, stabilize at 46.2°C,
and TiO, stabilizes at 32.3°C, respectively (See Figure S18
for more details). The above experimental results show that
the photothermal conversion ability of BC-3 is much better
than that of CdS and BiVO,, which is caused by the
exothermic recombination of photoelectrons from BiVO,
and photoholes from CdS. In addition, the good
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FIGURE 4: TA spectra of CdS (a) and BC-3 (b). Time profiles of normalized transient absorption at 434 nm (c), time-resolved fluorescence

(d), and Tafel curves (e) of the as-synthesized samples.

photothermal effect of BC-3 is also supported by the
nonradiative transitions of a large number of electrons in
BC-3 observing by transient fluorescence measurements. In
order to confirm the influence of photothermal effect on
photocatalysis, the temperature-dependent photocatalytic
experiments were performed. It can be seen from
Figure 6(b) that the change of temperature has little effect
on the photocatalytic performance of CdS, BiVO, and
TiO,. However, for BC-3 (Figure 6(c)), the increase in
temperature decreases the time of the slow reaction stage. It
is known that water has better thermal conductivity than
air, which results in a long time for the local temperature of
the catalyst in solution to a temperature that significantly
accelerates the rate of catalysis. As the initial temperature of
the reaction system increases, the heat loss decreases and

the required temperature rise decreases, so the slow
reaction phase is gradually shortened. Therefore, it is
believed that the photothermal effect accelerates the
photocatalytic process.

Based on all the above characterization and experimental
results, the photocatalytic extraction mechanism of U(VI) by
BC-3 can be further confirmed and supplemented. As shown
in Figure 6(d), the unique energy level structure of CdS and
BiVO, makes them form an S-scheme heterojunction after
compounding, which avoids photocorrosion of CdS while
giving BC-3 the strong reduction ability of CdS and the
strong oxidation ability of BiVO,. In this way, the reduction
reaction (the aforementioned Eq. (2), (3), and (4)) can pro-
ceed smoothly thanks to the sufficiently negative CBM
potential of CdS. At the same time, the strong oxidation
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ability of BiVO, drives the oxidation reaction (the aforemen-
tioned Eq. (5) and (6)) due to the sufficiently positive VBM
potential of BiVO,. This leads to the result that there is
U(IV) in the intermediate products but all U(VI)
(UO,(OH),) in the final product. In particular, the electrons
from BiVO, and holes from CdS in the S-scheme hetero-
junction undergo a rapid exothermic complexation driven
by the internal electric field, band edge bending, and Cou-
lomb interaction, which elevates the local reaction tempera-
ture and leads to an accelerated photocatalytic rate.

2.3. Influence of External Environment on Photocatalysis. As
we know, the amount of catalyst plays a decisive role in the
catalytic reaction rate. Therefore, experiments with different
amounts of photocatalyst are carried out. It can be seen from
Figure S19 that when the initial photocatalyst amount is
10 mg, the reaction rate is very slow, which is unfavorable
for the investigation. On the contrary, when the initial
photocatalyst amount is 30 mg, the reaction rate is too fast
to explore the catalytic process. When the photocatalyst
was added at 20mg (0.4g/L), it exhibited a suitable
reaction rate to study the reaction mechanism, which also
happens to be the concentration used in this work.

Figure S20A shows the photocatalysis of U(VI) by BC-3
at different pH values (The corresponding first-order kinetic
fitting curves and k values are presented in Figure S21 and
S22). At pH=2.0 and pH=4.0, the concentration of
U(VI) is nearly unchanged, indicating that no
photocatalysis occurred. At pH>6.0, U(VI) is almost
completely removed in the dark stage. To find out the
reason, the existing forms of U(VI) under different pH
values are calculated by Visual MINTEQ 3.1 (Figure S23).
The zero potential point of BC-3 is around pH=2.5
(Figure S2), and the dominant U(VI) species is U022+.
Therefore, U(VI) is hard to adsorb on the surface of BC-3
at pH2.0 because of the electrostatic repulsion effect
between the positively charged surface of BC-3 and UO,>".
When pH>2.5, the surface of the photocatalyst is

negatively charged, which may lead to the weak interaction
between U(VI) and BC-3, and a large number of H,O" in
the solution may compete with the adsorption of UO,*" on
the surface of BC-3. [56] When pH > 6.0, the U(VI) at a
concentration of 70ppm may self-precipitate to be
(U0,)¢0,(0OH)4-6H,0, which explains the phenomenon
that the residual U(VI) concentration is too low in the
dark (Figure S20A). At pH5.0, BC-3 shows excellent
photocatalytic performance. Therefore, a pH value of 5.0 is
selected in the follow-up experiments. The effect of foreign
ions on photocatalysis is also investigated and shown in
Figure S20B and C. It is found that the presence of CO,*
may completely impair the photocatalytic performance of
BC-3 due to the formation of numerous soluble and stable
complexes ((UO,CO;, UO,(CO,),”, UO,(CO,),", etc).
[57] The inhibition of SO,> on photocatalysis may be due
to the formation of Bi,(SO,); precipitation on the surface
of BC-3. [58] However, for CI' CH;COO" (AcO’), and
NO;’, they indicate the promotion of the photocatalysis of
U(VI). CI' can capture photoholes to form CI°, which
reduces the recombination rate of photogenerated electron-
hole pairs and promotes the reaction. [59] The hydrolysis
of AcO™ increases the pH value of the system to a certain
extent, making the BC-3 surface more negative and
resulting in promoted adsorption and photocatalytic
performance. As for the cations, only Na* has an obvious
accelerating effect on the photocatalysis of U(VI), while the
rest have a certain inhibitory effect and could be gradually
strengthened with the increase of cationic valence and ion
radius. This phenomenon may be caused by the
competitive adsorption effect of positively charged ions
with UO,>" on the BC-3 surface.

The effect of the light wavelength on the photocatalysis
of U(VI) is also being investigated. According to the mono-
chromatic photocatalytic experiments (Figure S20D), the
best performance of the photoreduction of U(VI) is
achieved under the irradiation of 460 nm wavelength light.
When the light wavelength is longer than 590 nm, no clear
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FIGURE 6: The infrared photothermal images of the four samples exposed to xenon lamp (350 W, >420 nm) at different times. The samples
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activity of BC-3 (b) and CdS, BiVO,, TiO, (c) for U(VI) at different temperatures. The mechanism of photocatalytic extraction of U(VI)

by BC-3 (D).

change of the U(VI) concentration is observed as light is on,
and a very weak decrease in the U(VI) concentration could
be observed under 520nm light irradiation. However,
although BC-3 has good light absorption at 365nm and
405nm, it does not have a good photocatalytic effect on
U(VI) photoreduction under these light irradiations, which
could be because photoelectrons are not completely
allowed to be generated under these conditions.

2.4. Recycling Performance. As an important performance
indicator of catalysts, the recyclability of BC-3 is tested in
this work. In the test, the conditions of each experiment
are the same as in the first photocatalytic experiment. After
each photocatalytic experiment, the BC-3 is washed with
0.1 M Na,CO, to elute uranium. As shown in Figure S24,
the removal of U(VI) by BC-3 decayed from 85% to 78%
after five cycles, which is satisfactory.

3. Conclusions

In conclusion, an S-scheme heterojunction CdS/BiVO,
photocatalyst is successfully synthesized and used to
photothermal-assisted photocatalyze U(VI) efficiently. Sys-
tematic analysis and studies have shown the construction
of S-scheme heterojunctions, which is confirmed by charac-
terizations such as transient absorption spectroscopy, Tafel
curves, etc. The photocatalysis of U(VI) is divided into two
processes: reduction by electrons/°O,” to U(IV) and subse-
quent reoxidation by holes/°OH to insoluble UO,(OH),.
This extraction process makes full use of photoelectrons
and photoholes without scavengers, which is a major inspi-
ration for the development of catalysts with lower cost and
wider conditions. In addition, the photoelectrons in the CB
of BiVO, are found to transfer to the VB of CdS by releasing
a mass of heat which accelerate the photocatalytic rate
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greatly, allowing BC-3 to maintain the maximum reduction
and oxidation capacity and avoiding photocorrosion of
CdS. This work discloses for the first time the photocatalytic
extraction of U(VI) enhanced by the photothermal effect,
widening the way for the development of new photocatalytic
materials and strategies.

4. Materials and Methods
4.1. Reagents and Synthesis

4.1.1. Reagents. All chemicals used in this work, including
TiO, (P25) used in the comparative experiments, are pur-
chased from Macklin Biochemical Co. Ltd. (Shanghai,
China) and are of analytical purity without any further
purification.

4.1.2. Preparation of BiVO,,. In this experiment, a hydrother-
mal method was used to prepare BiVO,: 0.02mol of Bi
(NO,);-5H,0 and 0.02mol of NH,VO; were dissolved in
20 mL of 65% HNO; and 20 mL of 6 mol/L NaOH solution,
respectively. The above two solutions were mixed drop by
drop under magnetic stirring for 0.5h and then continued
stirring for 1h to get a stable and uniform yellow solution.
After adjusting the pH of the solution to 7 using dilute
NaOH and HCI solutions, the solution was sealed in a
50 mL high-pressure reaction kettle lined with polytetraflu-
oroethylene (PTFE) and heated to 180°C for 6h in a blast
drying oven. Then, the reactor was naturally cooled to room
temperature, and yellow precipitation was obtained after fil-
tration and washed with ethanol and ultrapure water several
times. After being dried in a freezing drying oven for 12h, a
yellow BiVO, powder was finally obtained.

4.1.3. Preparation of CdS. CdS was prepared by a simple pre-
cipitation method: 0.02mol of CdCl,-2.5H,0 and 0.02 mol
of Na,S were dissolved in 20 mL of ultrapure water, respec-
tively. After magnetic stirring for 0.5 h, the latter was poured
into the former and stirred for another 2h. The resulting
orange suspension was centrifuged and the precipitation
was retained. The orange-red precipitates were washed with
ultrapure water and ethanol several times, respectively, then
placed in a freezing drying oven for 12 h. Finally, the mate-
rial is taken out and ground into powder.

4.1.4. The Synthesis of CdS/BiVO, Composite. 0.1 mmol of
BiVO, was dispersed into 50mL of ultrapure water, and
then a certain amount (0.5 mmol, 0.3 mmol, 0.1 mmol, and
0.03 mmol) of CdCl,-2.5H,0 solid powder was added, and
stirred for 1h, followed by adding the corresponding
amount of 1 M of Na,S solution (nq4: ng=1: 1). After contin-
uous stirring for 2h, the liquid in the precipitation was
washed 3 times with ethanol and ultrapure water, respec-
tively. Then the product was dried in a freezing drying oven
for 12h. Finally, the sample was ground, and orange com-
posite products were obtained, which were named BC-n
(BC-1 (ng;yvos Degs=3: 1), BC-2 (ng;yo4 Degs=1: 1), BC-3
(Npivos: Degs =1: 3), and BC-4 (np;y04: Negs =1t 5)).
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4.2. Characterization Methods. The XRD patterns were got-
ten by SmartLab SE (Rigaku Corporation). Thermogravime-
try (TG) analysis was investigated by the Jupiter thermal
analyzer (NETZSCH STA 2500). Zetasizer Nano ZSE and
Micro metrics TriStarII 3020 were used to measure zeta
potentials and specific surface area, respectively. Energy-
dispersive X-ray spectroscopy (EDS) and surface morphology
were performed on a field-emission scanning electron micro-
scope (FESEM, Hitachi, SU8010). The transmission electron
microscope (TEM), high-resolution TEM (HRTEM), and
selected area electron diffraction (SAED) images were
obtained from a JEOL JEM 2100 instrument. The absorption
spectra and UV-Vis diffuse reflectance spectra (UV-Vis
DRS) were measured by UV-2700 (Shimadzu, UV-2700).
Fourier-transform infrared (FTIR) transmission spectra were
recorded by SHIMADZU-IRT racer-100 with KBr as pellet
support. The Cd ions concentration was tested with induc-
tively coupled plasma mass spectrometry (ICP-MS, Agilent
Technologies, USA). X-ray photoelectron spectroscopy
(XPS, Thermo Fischer, ESCALAB 250Xi, USA, Al K,
(hv =1486.7 eV)) was used to characterize the surface chem-
ical components and oxidation states. Fluorescence spectra
were recorded by using Perkin Elmer LS 55 Fluorometer.
The infrared photothermal images are taken by portable
infrared thermography (Hikmicro, P10B) connected to a
mobile phone. The time-resolved fluorescence spectra were
recorded with an Edinburgh fluorescence spectrometer
(FLS980). Information about transient absorption (TA) spec-
troscopy and surface photovoltage tests are detailed in the
Supporting Information (SI).

4.3. Photocatalysis Experiments. For photocatalysis experi-
ments, 20mg photocatalysts are added into 50mL UO,**
solution (70 ppm, obtained by dissolving UO, (NO,),-6H,0)
in a quartz tube. The negligible volume of HCI or NaOH solu-
tion is used to adjust the pH value. A 350 W xenon lamp fitted
with a 420 nm cut-off filter was used as the light source. Before
turning on the light, the solution was subjected to a dark reac-
tion (stirring under dark conditions) for 120 min to reach ad-
desorption equilibrium. The concentration of U(VI) in the fil-
trate is measured by UV-vis spectrophotometry at 650 nm
using Arsenazo III as the chromogenic agent. The reagent
added in the ion effect experiment is sodium salt (anion) or
chloride salt (cation) and the corresponding concentrations
are 0.1 M.

4.4. Quenching and Free Radical Detection Experiments. In
the quenching experiments with the trapping agent con-
centration of 0.01 M, isopropyl alcohol (IPA) and dimethyl
sulfoxide (DMSO) were used as OH trapping agents.
Methanol (Me), ferric chloride (FC), and p-benzoquinone
(P-BQ) are used to trap holes, electrons, and *O,”, respec-
tively. The detection of “OH concentration is based on the
method provided in the previous work. [60] In detail, for
the detection of “OH, except that the UO,*" solution was
changed to a 1 mM terephthalic acid solution, the rest of
the conditions were the same as in the photocatalytic
experiment.
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4.5. Electrochemical Experiments. The electrochemical work-
station model CHI660e (Shanghai Chenhua Instrument Co.,
Ltd) is used for the electrochemical experiments in this
work. In the transient photocurrent test (Vi;,, =0V), Tafel
tests (scanrate=0.01V/s), and Mott-Schottky (MS) plot
recording (f = 1000 Hz) the electrolyte was 0.2M, Na,SO,
solution is used as electrolyte and carbon electrode (GCE),
Ag/AgCl electrode and Pt sheet are selected as reference
electrode and counter electrode, respectively. A 500 W Xe
lamp equipped with a 420nm cut-off filter is used as the
light source in the transient photocurrent test. The electro-
chemical impedance spectra (EIS) test was recorded at a fre-
quency range of 0.1Hz - 100kHz with an amplitude of
5mV.

4.6. Electron Spin Resonance (ESR) Spectroscopy. Brucker
A300 ESR spectrometer was used to characterize the forma-
tion of O, and "OH at room temperature. The instrument
parameters are set as follows: frequency 9.853 GHz, micro-
wave power 10.8 mW, modulation amplitude 1G, sweep
range 3460-3560G, time constant 1.250ms, sweep time
19.456s. 5,5-dimethyl-1-pyrroline N-oxide (DMPO) at a
concentration of 50 mM was used to verify the ESR signal
of spin-trapping paramagnetic species. Methanol was used
as a dispersant for the identification of *O,", while ultrapure
water was used for *OH.

Data Availability

All data required to support this study are presented in the
paper and the supplementary materials. Additional data
are available from the authors upon reasonable request.

Additional Points

Highlights: (1) An S-scheme heterojunction CdS/BiVO, was
designed for the photoextraction of U(VI). (2) The S-scheme
heterojunction maintains the high redox potentials over the
traditional type II charges transfer paths. (3) The photocata-
Iytic reaction was accelerated by prominent photothermal
effect. (4) U(VI) extraction was found to involve both reduc-
tion and oxidation processes. (5) The photo corrosion of
CdS/BiVO, heterojunction and sacrificial agents in the
photoextraction of U(VI) are avoided
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