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Abstract

Background

Prognostication after cardiac arrest (CA) needs a multimodal approach, but the optimal

method is not known. We tested the hypothesis that the combination of neuron-specific eno-

lase (NSE) and neuroimaging could improve outcome prediction after CA treated with tar-

geted temperature management (TTM).

Methods

A retrospective observational cohort study was performed on patients who underwent at

least one NSE measurement between 48 and 72 hr; received both a brain computed tomog-

raphy (CT) scan within 24 hr and diffusion-weighted magnetic resonance imaging (DW-

MRI) within 7 days after return of spontaneous circulation (ROSC); and were treated with

TTM after out-of-hospital CA between 2009 and 2017 at the Seoul St. Mary’s Hospital in

Korea. The primary outcome was a poor neurological outcome at 6 months after CA, defined

as a cerebral performance category of 3–5.

Results

A total of 109 subjects underwent all three tests and were ultimately included in this study.

Thirty-four subjects (31.2%) experienced good neurological outcomes at 6 months after CA.

The gray matter to white matter attenuation ratio (GWR) was weakly correlated with the

mean apparent diffusion coefficient (ADC), PV400 and NSE (Spearman’s rho: 0.359, -0.362

and -0.263, respectively). NSE was strongly correlated with the mean ADC and PV400

(Spearman’s rho: -0.623 and 0.666, respectively). Serum NSE had the highest predictive

value among the single parameters (area under the curve (AUC) 0.912, sensitivity 70.7% for

maintaining 100% specificity). The combination of a DWI parameter (mean ADC or PV400)
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and NSE had better prognostic performance than the combination of the CT parameter

(GWR) and NSE. The addition of the GWR to a DWI parameter and NSE did not improve

the prediction of neurological outcomes.

Conclusion

The GWR (� 24 hr) is weakly correlated with the mean ADC (� 7 days) and NSE (highest

between 48 and 72 hr). The combination of a DWI parameter and NSE has better prognostic

performance than the combination of the GWR and NSE. The addition of the GWR to a DWI

parameter and NSE does not improve the prediction of neurological outcomes after CA

treatment with TTM.

Introduction

The prediction of neurological outcomes after cardiac arrest (CA) is challenging and critically

important [1]. Targeted temperature management (TTM) between 32 and 36˚C for at least 24

hr, for both shockable and nonshockable rhythms, is generally considered standard care after

CA. Even though TTM can improve neurological outcomes and survival [2–8], two-thirds of

patients will die after CA due to hypoxic-ischemic brain injury [9]. However, the leading cause

of death is the withdrawal of life-sustaining treatment (WLST) because of failure to awaken

[10–12]. Therefore, special precautions should be taken to avoid false outcome predictions,

which affect the decisions regarding WLST [9].

Unimodal approaches, using clinical examinations, neuron-specific enolase (NSE), somato-

sensory evoked potential (SSEP), electroencephalography (EEG), brain computed tomography

(CT) and diffusion-weighted magnetic resonance imaging (DW-MRI), have been tested as

predictors of neurological outcomes [13–23]. However, no single test can predict poor neuro-

logical outcomes with a 0% false-positive rate (FPR) in patients treated with TTM. Therefore,

the combination of multiple modalities is recommended to avoid premature WLST and mini-

mize the risk of an erroneous prognostication of poor outcomes [24, 25]. Several multimodal

prognostication studies have been reported using different prognostic tools [26–28]; however,

the ideal combination is unknown.

We have previously reported that brain CT and brain DW-MRI can predict poor neurologi-

cal outcomes in patients treated with TTM after CA [21, 29]. The purpose of this study was to

determine whether combinations of multiple tests would perform better than individual tests

in patients treated with TTM after CA. The combination of NSE and neuroimaging, which

was used in the largest number of patients in our hospital, was an ideal model for testing this

hypothesis. We hypothesized that the combination of NSE and neuroimaging could improve

outcome prediction after CA treated with TTM. We performed a retrospective analysis to test

whether the combination of NSE, a quantitative analysis of brain CT calculated by the gray

matter to white matter attenuation ratio (GWR) and a quantitative analysis of brain DW-MRI

could improve diagnostic performance for predicting outcomes after CA.

Methods

Study design and setting

This retrospective observational study using prospectively collected data was performed at

Seoul St. Mary’s Hospital in Seoul, Korea, between January 2009 and December 2017. This
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study was approved by the Institutional Review Board of Seoul St. Mary’s Hospital; waiver of

consent was allowed because of the retrospective nature of the study. We included patients

who underwent at least one NSE value measurement between 48 and 72 hr after return of

spontaneous circulation (ROSC) and received both a brain CT scan within 24 hr after ROSC

and DW-MRI within 7 days after ROSC. The exclusion criteria were as follows: age<18 yr, CA

due to trauma or intracranial hemorrhage, a previous history of neurological disease and CT

or DW-MRI with a poor image quality.

All patients who were comatose after ROSC were treated according to our previously pub-

lished post-CA care protocols [30]. The induction and maintenance of TTM were performed

using an endovascular cooling device (Thermoguard, ZOLL Medical Corporation, Chelms-

ford, MA, USA) or ArticSun (Bard Medical, Louisville, CO, USA) to obtain a target tempera-

ture of 33˚C, which was maintained for 24 hr. Sedative (midazolam) and paralyzing

(rocuronium) agents were immediately administered to control shivering before induction,

followed by continuous infusion during the entire TTM phase. After 24 hr at 33˚C, the patients

were slowly rewarmed to 37˚C at a rate of 0.25˚C/h.

NSE

Blood samples were obtained at 48 and 72 hr after ROSC. We used the highest NSE values

obtained between 48 and 72 hr after ROSC in this study because they are known to have simi-

lar predictive values for predicting poor neurological outcomes [15]. In the majority of the

patients, at least one sample was collected between 48 and 72 hr after ROSC, which minimized

the effect of missing data from a single time point.

CT

Brain CT scans were obtained on a 64-channel scanner (Light Speed VCT scanner; GE Health-

care, Milwaukee, Wisconsin, USA) with 5 mm slices. The GWR was calculated by a blinded

investigator as previously reported [21]. Briefly, Hounsfield units (HU) were recorded in the

caudate nucleus, putamen, genu of corpus callosum, and posterior limb of the internal capsule

at the basal ganglia level, as well as the medial cortex and medial white matter at the cerebrum

and high convexity area. The average gray matter to white matter ratio (aGWR), which was

defined as the mean of the basal ganglia GWR and cerebrum GWR, was used in the current

analysis. Patients were divided into three groups according to their aGWR: severe edema

(aGWR < 1.1), mild edema (aGWR 1.1–1.2) and no edema (aGWR� 1.2).

DWI

Brain DWI-MR images obtained within 7 days after ROSC were analyzed. The imaging proto-

col and analysis were the same as those published previously [30]. Briefly, the standard of

b = 1000 s/mm2 was used for all DW images, and apparent diffusion coefficient (ADC) maps

were created with commercial software and a workstation system (Leonardo MR Workplace;

Siemens Medical Solutions, Erlangen, Germany). The images were processed and analyzed on

a PC using the FMRIB Software Library (Release 5.0 (c) 2012, The University of Oxford),

which can extract brain tissue images from the skull and optic structures and measure the

mean ADC of the extracted brain image or the absolute volume of voxels that have a prede-

fined ADC range. The ADC is a measure of the diffusion coefficient of water molecules within

tissue and is calculated using MRI with DW imaging. The images were retrieved in Digital

Imaging and Communications in Medicine (DICOM) format from picture archiving and

communication system (PACS) servers at the hospital and converted into NITFI format using

the program MRIcron (http://www.nitrc.org/projects/mricron). To exclude artifacts or
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cerebrospinal fluid, voxels with ADC values below 50−6 mm2/s or above 1200−6 mm2/s were

excluded from the analysis. The % voxels of a low ADC value (PV), meaning the percentage of

voxels below different ADC thresholds, was calculated. Previous studies have shown that

PV400, which represents the % voxel below the ADC value of 400×10−6 mm2/s, is strongly

associated with neurological outcomes after CA; therefore, this value was used in the current

study [30].

Outcome assessment

The outcome of this study was a poor neurological outcome at 6 months after CA, defined as a

cerebral performance category (CPC) between 3 and 5. Follow-up was performed either face

to face or via the telephone. The CPC scale ranges from 1 to 5: 1 represents good cerebral per-

formance or slight cerebral disability, 2 represents moderate disability or independent activi-

ties of daily life, 3 represents severe disability or dependence on others for daily support, 4

represents a comatose or vegetative state, and 5 represents death or brain death.

Statistical analysis

Continuous data are presented as the median and interquartile range (IQR) when nonnor-

mally distributed, and categorical variables are presented as counts and percentages. To com-

pare differences in patient characteristics and outcomes, chi-square tests or Fisher’s exact tests

were performed for categorical variables, and Mann-Whitney U tests were performed for con-

tinuous variables.

To evaluate and compare the equivalence of the area under the curve (AUC) using the

Delong test, the predictive performance was determined using a receiving operating character-

istic (ROC) curve established with logistic regression models. First, we determined the AUC of

the following single parameters using ROC curves: GWR, mean ADC, PV400 and highest NSE

level. Then, the AUC was obtained by combining two single tests. Finally, the AUC was calcu-

lated by combining three single tests (i.e., GWR + mean ADC + highest NSE value and

GWR + PV400 + highest NSE value). To evaluate the prognostic values of a single test and a

combination of multiple tests, sensitivities, specificities, positive predictive values and negative

predictive values, as well as their 95% confidence intervals, were calculated. Statistical analyses

were performed using SPSS 20.0 (Chicago, IL) and MedCalc 15.2.2 (MedCalc Software, Maria-

kerke, Belgium). P values� 0.05 were considered statistically significant.

Results

Patient demographics

Of the total of 355 subjects who underwent TTM during the study period, 246 were excluded

owing to the lack of CT imaging (n = 85), a poor imaging quality (n = 28), death within 48 hr

(n = 39), the lack of DWI imaging, due to the alert, hemodynamically unstable, refused treat-

ment or brain death (n = 79), or the lack of NSE (n = 15). All three tests were performed in 109

subjects who were ultimately included in this study (Fig 1). The median age was 53 (IQR 40.5,

60.5) years, and 74 (67.9%) subjects were male (Table 1). Ventricular fibrillation was the initial

rhythm for 37 (33.9%) subjects. A pulseless electrical activity was observed in 23 (21.1%) sub-

jects; an asystole was recorded in 45 (41.3%) subjects; and the initial rhythm was unknown in

the remaining 4 (3.7%) subjects. The cardiac cause of arrest was diagnosed in 63 (57.8%) sub-

jects. The rest had a respiratory cause of arrest (34 subjects, 31.2%), other medical causes (10

subjects, 9.2%), submersion (1 subject, 0.9%), drug intoxication (1 subject), and an unknown
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Fig 1. Flowchart for included patients.

https://doi.org/10.1371/journal.pone.0239979.g001

Table 1. Baseline characteristics of subjects.

Good Poor P

N = 34 N = 75

Age (year) 53 (40.8–62.3) 53 (40.0–66.0) 0.799

Sex, male 25 (73.5) 49 (65.3) 0.508

Past history

Healthy 22 (64.7) 43 (575.3) 0.531

HTN 9 (26.5) 18 (24.0) 0.813

DM 3 (8.8) 17 (22.7) 0.111

Witness 27 (79.4) 38(50.7) 0.006

Bystander CPR 19 (55.9) 39 (52.0) 0.836

VT/VF 22 (64.7) 15 (20.0) <0.001

Cardiac cause of arrest 31 (91.2) 32 (42.7) <0.001

Time from collapse to ROSC, min 20.0 (10.8–30.0) 36.0 (26.0–47.0) <0.001

Brain CT

Scan time, min 23.0 (13.5–36.8) 22.0 (14.0–33.0) 0.896

GW ratio 1.23 (1.19–1.28) 1.20 (1.16–1.26) 0.046

Brain DWI

Scan time, hr 73.0 (60.8–80.0) 68.0 (54.0–81.0) 0.391

Whole brain ADC, � 10−6 mm2/s 798.3 (769.6–833.1) 653.4 (554.1–735.9) <0.001

% Brain volume < 400 1.10 (0.44–2.44) 8.77 (2.60–20.86) <0.001

Highest NSE, μg/L 23.0 (16.0–36.1) 102.0 (56.4–186.0) <0.001

LOS, day 15 (9–22) 10 (5–20) 0.019

Data are expressed median (interquartile range) or percentage.

Abbreviation: HTN = Hypertension, DM = Diabetes, CPR = Cardiopulmonary resuscitation, ROSC = return of

spontaneous circulation, CT = computed tomography, GW = gray to white matter, DWI = diffusion weighted

imaging, ADC = apparent diffusion coefficient. NSE = neuron specific enolase, LOS = length of stay.

https://doi.org/10.1371/journal.pone.0239979.t001
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cause (1 subject). Thirty-four subjects (31.2%) experienced good neurological outcomes at 6

months after CA.

The median brain CT scan time was 23 min for the good outcome group and 22 min for

the poor outcome group. The GWR was significantly lower in the poor outcome group

(median 1.20, IQR 1.16–1.26) than in the good outcome group (median 1.23, IQR 1.19–1.28).

The median brain DWI scan time was 73 hr (IQR 60.8–80.0) for the good outcome group and

68 hr (IQR 54.0–81.0) for the poor outcome group. The mean ADC was higher in the good

outcome group (median 798.3 × 10−6 mm2/s; IQR 769.6–833.1) than in the poor outcome

group (median 653.4 × 10−6 mm2/s; IQR 554.1–735.9). PV400 was lower in the good outcome

group (median 1.1%; IQR 0.44–2.44) than in the poor outcome group (median 8.77%; IQR

2.6–20.86). The cutoff values for predicting neurological outcomes at 6 months after CA for

the GWR, mean ADC, PV400 and NSE, with 100% specificity, were 1.12, 610 × 10−6 mm2/s,

6.5%, and 62.64 μg/L, respectively.

Association between the GWR and other predictors

The average GWR was weakly correlated with NSE, the mean ADC and PV400 (Spearman’s

rho = 0.359 (p<0.001), -0.362 (p<0.001), and -0.263 (p = 0.006), respectively) (Fig 2). Among

the subjects with a GWR < 1.1, all (7) had an NSE level above 62.64 μg/L, a mean ADC below

610 × 10−6 mm2/s and a PV400 above 6.5% (Table 2). However, among the subjects with a

GWR� 1.2, 24 (36.9%) had an NSE level above 62.64 μg/L, 54 (81.8%) had a mean ADC

above 610 × 10−6 mm2/s, and 42 (63.6%) had a PV400 below 6.5%.

Association between NSE and DWI parameters

The NSE level was strongly correlated with the mean ADC and PV400 (Spearman’s rho =

-0.623 (p<0.001), and 0.666 (p<0.001), respectively) (Fig 2). Among the subjects with an NSE

Fig 2. Correlations between NSE and imaging parameters using Spearman’s correlation coefficient. A: Mean ADC-NSE

correlation coefficient r = -0.623. B: PV400-NSE correlation coefficient r = -0.666. C: GWR-NSE correlation coefficient r = -0.263. D:

Mean ADC-GWR correlation coefficient r = 0.359. E: PV400-GWR correlation coefficient r = -0.362. F: NSE-GWR correlation

coefficient r = -0.263.

https://doi.org/10.1371/journal.pone.0239979.g002
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level> 62.64 μg/L, 25 (47.2%) had a mean ADC below 610 × 10−6 mm2/s, and 41 (77.4%) had

a PV400 above 6.5% (Table 3). Among the subjects with an NSE level� 62.64 μg/L, 54 (96.4%)

had a mean ADC above 610 × 10−6 mm2/s, and 50 (89.3%) had a PV400 below 6.5%.

Prognostic value of a single modality

Table 4 shows the areas under the ROC curves of each single test. NSE had the highest predic-

tive value among the single tests (AUC 0.912, sensitivity 70.7% for maintaining 100% specific-

ity). The sensitivities of the GWR, mean ADC, PV400 and NSE for predicting neurological

outcomes after CA, with 100% specificity, were 12%, 36%, 62.7%, and 70.7%, respectively.

Prognostic value of combined modalities

Table 4 shows the areas under the ROC curves for single and multiple tests. The AUC

increased when the tests were combined. Of the two test combinations, the AUC (0.929, 95%

CI 0.880–0.978) was the highest when PV400 and NSE were combined. Of the three test com-

binations, the AUC (0.936, 95% CI 0.892–0.980) was the highest when the GWR, PV400 and

NSE were combined.

The sensitivity of the mean ADC and NSE combination for predicting neurological out-

comes after CA, with 100% specificity, was 73.3%. The sensitivity of the PV400 and NSE com-

bination for predicting neurological outcomes after CA, with 100% specificity, was 78.7%. The

addition of the GWR to a DWI parameter and NSE did not improve the sensitivity for the pre-

diction of neurological outcomes (Table 5).

Table 2. Association between GW ratio and other predictors.

Severe Edema Mild Edema No Edema

GW ratio < 1.1 GW ratio 1.1–1.2 GW ratio� 1.2

N = 7 N = 36 N = 66

NSE > 62.64 μg/L 7 (100%) 22 (59.5%) 24 (36.9%)

NSE� 62.64 μg/L 0 (0%) 15 (40.5%) 41 (63.1%)

Mean ADC� 610 � 10−6 mm2/s 7 (100%) 8 (22.2%) 12 (18.2%)

Mean ADC > 610 � 10−6 mm2/s 0 (0%) 28 (77.8%) 54 (81.8%)

PV400 > 6.5% 7 (100%) 16 (44.4%) 24 (36.4%)

PV400� 6.5% 0 (0%) 20 (55.6%) 42 (63.6%)

Abbreviation: GW = gray to white matter, NSE = neuron specific enolase, ADC = apparent diffusion coefficient.

https://doi.org/10.1371/journal.pone.0239979.t002

Table 3. Association between NSE and DWI parameters.

NSE > 62.64 μg/L NSE� 62.64 μg/L

N = 53 N = 56

Mean ADC� 610 � 10−6 mm2/s 25 (47.2%) 2 (3.6%)

Mean ADC > 610 � 10−6 mm2/s 28 (52.8%) 54 (96.4%)

PV400 > 6.5% 41 (77.4%) 6 (10.7%)

PV400� 6.5% 12 (22.6%) 50 (89.3%)

Abbreviation: GW = gray to white matter, NSE = neuron specific enolase, ADC = apparent diffusion coefficient.

https://doi.org/10.1371/journal.pone.0239979.t003
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Table 4. Areas under the receiving operator characteristic curves of single and several models combining different

outcome predictors.

Variable ROC area 95% CI

Single predictor

GWR 0.619 0.510–0.729

Mean ADC 0.830 0.753–0.907

PV400 0.882 0.820–0.943

NSE 0.912 0.860–0.964

Combining two predictors

GWR+Mean ADC 0.831 0.755–0.908

GWR+PV400 0.887 0.827–0.947

GWR+NSE 0.918 0.868–0.968

Mean ADC+NSE 0.919 0.866–0.972

PV400+NSE 0.929 0.880–0.978

Combining three predictors

GWR+Mean ADC+NSE 0.932 0.885–0.978

GWR+PV400+NSE 0.936 0.892–0.980

Abbreviation: GWR = gray to white matter ratio, ADC = apparent diffusion coefficient, NSE = neuron specific

enolase.

https://doi.org/10.1371/journal.pone.0239979.t004

Table 5. Sensitivity, specificity, PPV, NPV for predicting neurological outcome at 6 months after CA of single and multimodal approach.

Cutoff Poor Good Sensitivity Specificity PPV NPV

Single

GWR � 1.12 9 0 12 100 100 34

66 34 (5.6–21.6) (89.7–100) (63.1–100) (24.8–44.2)

ADC � 610 27 36 100 100 41.5

48 34 (25.2–47.9) (89.7–100) (87.2–100) (30.7–52.9)

PV400 > 6.5 47 0 62.7 100 100 54.8

28 34 (50.7–73.6) (89.7–100) (92.5–100) (41.6–67.6)

NSE > 62.64 53 0 70.7 100 100 60.7

22 34 (59.0–80.6) (89.7–100) (93.3–100) (46.6–73.6)

Multimodal Combination of two tests

GWR or mean ADC 29 0 38.7 100 100 42.5

46 34 (27.6–50.6) (89.7–100) (38.2–46.9)

GWR or PV400 47 0 62.7 100 100 54.8

28 34 (50.7–73.6) (89.7–100) (47.5–62.0)

GWR or NSE 53 0 70.7 100 100 60.7

22 34 (59.0–80.6) (89.7–100) (46.6–73.6)

Mean ADC or NSE 55 0 73.3 100 100 63.0

20 34 (61.9–82.9) (89.7–100) (53.9–71.2)

PV400 or NSE 59 0 78.7 100 100 68.0

16 34 (67.7–87.3) (89.7–100) (57.9–76.7)

Combination of three tests

GWR or mean ADC or NSE 55 0 73.3 100 100 63.0

20 34 (61.9–82.9) (89.7–100) (53.9–71.2)

GWR or PV400 or NSE 59 0 78.7 100 100 68.0

16 34 (67.7–87.3) (89.7–100) (57.9–76.7)

Abbreviation: GWR = gray to white matter ratio, ADC = apparent diffusion coefficient, NSE = neuron specific enolase.

https://doi.org/10.1371/journal.pone.0239979.t005
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Discussion

The main findings of this study are as follows: 1) the GWR is weakly correlated with the mean

ADC, PV400 and NSE, whereas NSE is strongly correlated with the mean ADC and PV400; 2)

serum NSE has the highest predictive value among the single tests (AUC 0.912, sensitivity

70.7% for maintaining 100% specificity); 3) the combination of a DWI parameter (mean ADC

or PV400) and NSE has better prognostic performance than the combination of the CT

parameter (GWR) and NSE; and 4) the addition of the GWR to a DWI parameter and NSE

does not improve the prediction of neurological outcomes.

The multimodal approach is recommended to avoid premature WLST and minimize the

risk of erroneous prognostication of a poor outcome because no single test so far can predict

neurological outcomes with a 0% FPR [24, 25]. Several multimodal approach studies have

been reported with different combinations of prognostic tools, but the ideal combination is

not known [26–28]. Importantly, not all tests are required for all patients, and all tests cannot

be performed for all patients. The guidelines from the European Resuscitation Council and

European Society of Intensive Care Medicine suggested a prognostication algorithm for out-

come prediction after CA [24]. However, this algorithm should be tested further.

Brain CT is one of the most commonly used tools and has been widely evaluated for prog-

nostication [20–22, 31]. The advantage of CT is that it is relatively easy and safe to perform

even in comatose patients, and contrast is not needed in most cases. Brain CT should be per-

formed before TTM to detect intracranial abnormalities. However, brain CT performed at an

early stage (especially within 2 hr) has the disadvantage of a low sensitivity [20–22]. When

brain CT is repeated, the predictive value increases [32]. Therefore, when discussing the pre-

dictive power of brain CT for outcome prediction after CA, the scan time is a very important

issue. In our study, brain CT was mostly performed within 2 hr after ROSC. Therefore, the

predictive value was relatively low compared with that of other prognostic tools (AUC of a

GWR of 0.619; AUCs of the mean ADC, PV400 and NSE of 0.830, 0.882 and 0.912, respec-

tively). Furthermore, the addition of the GWR to a DWI parameter and NSE did not improve

the prediction of neurological outcomes after CA treatment with TTM. We do not suggest that

brain CT should not be used because it does not help with outcome predictions. This should

be limited to brain CT performed early (within 2 hr).

In our study, the sensitivity of the GWR for maintaining 100% specificity was 12%, consis-

tent with the results of previous studies. Lee et al. showed that the combination of brain CT

(median scan time 69.5 min) and serum NSE at 48 hr after ROSC had a better prognostic per-

formance than did either test alone in predicting poor neurological outcomes after CA treated

with TTM, which is contrary to our study results [33]. The difference between these studies

was that Lee et al. used NSE at 48 hr after ROSC, but it is not clear whether there was a differ-

ence in results. Further research is needed.

Brain DWI can reveal the structure in detail but has the disadvantage that it is difficult to

perform in critically ill patients. Similar to CT, the timing of the examination is important

because it is highly likely that no structural damage will be observed in the early stages [23, 34].

The whole-brain ADC was suggested by Wu et al. as an important variable for predicting the

neurological prognosis, and in their study, a cutoff value of 665 × 10−6 mm2/s for maintaining

100% specificity was suggested, which is slightly higher than the result of our study [35]. Wij-

man et al. suggested that the percentage of brain volume with an ADC value below 400 to

450 � 10−6 mm2/s could differentiate between survival with independent and impaired func-

tions [34]. Similar to this study, our previous study showed that PV400 was the best parameter

for determining neurological prognosis [29]. However, some researchers have suggested that a
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cutoff value below 650 × 10−6 mm2/s is good for predicting neurological outcomes after CA;

thus, further research is needed [36].

NSE is the most widely studied measure for predicting neurological outcomes after CA and

is most commonly used in clinical practice. The best time point for measuring NSE for out-

come prediction is 48 or 72 hr after CA [15]. However, NSE has a potential disadvantage called

hemolysis because NSE is normally found in red blood cells and platelets. To overcome this

issue, care should be taken when measuring NSE, and serial testing is recommended. One pre-

specified post hoc analysis of the TTM trial showed that the combination of head CT and the

highest NSE level at 48 and 72 hr had a higher sensitivity and specificity to predict poor out-

comes than CT alone, with no false positives [37]. However, in our study, the addition of the

GWR to a DWI parameter and NSE did not improve the prediction of neurological outcomes.

Therefore, the additional value of CT in the prognostic model needs further study.

Biomarkers have several advantages. They can be measured at the bedside, are not affected

by sedatives and provide a numeric result with little space to interpret. Higher brain biomarker

levels indicate more damage to neurons. However, they cannot indicate which part of the

brain is most affected. Recently, novel biomarkers, such as serum tau and serum neurofilament

light chain (NFL), have been studied, and some data have been published. In a substudy of a

TTM trial, Mattsson et al. stated that higher serum levels of tau at 24, 48 and 72 hr after CA

correlated with poor neurological outcomes after CA, and serum tau more accurately pre-

dicted a poor outcome than did serum NSE [38]. In another substudy of the TTM trial,

Moseby-Knappe et al. stated that serum NFL levels at 24, 48 and 72 hr after CA were highly

predictive markers of a long-term poor neurological outcome after CA [39]. Both studies used

a single molecule array (SIMOA) assay, which is able to accurately quantify proteins or pep-

tides present at low femtomolar concentrations, which are difficult to quantify using conven-

tional techniques. However, SIMOA assays are not yet available for clinical use in most

hospitals.

This study has several limitations. First, this was a single-center retrospective study, limiting

generalizability. Second, only 109 of the 355 patients who received TTM were included in the

final analysis, which could cause selection bias. Therefore, the results of this study may not be

generalizable to all CA patients. Third, only patients treated at 33˚C were included in this

study. Therefore, our findings cannot be extrapolated to patients who were treated with other

TTM temperature targets. Fourth, there may be some intermachine or interprotocol (MRI or

FSL program) bias. We did not perform anatomical analyses. For example, the cortex and

deep gray nuclei may show different results. Fifth, NSE has the following disadvantages. The

NSE threshold is dependent on the timing of the measurement, reflecting the kinetics after the

initial release. An additional cause of discrepancies is the variability of the technology used to

measure biomarkers, which can lead to significant systematic errors between technologies [40,

41]. Sixth, basal ganglia seem to be the best region to calculate the GWR for predicting a neu-

rological outcome after CA [42]. The AUC of the basal ganglia GWR for predicting the neuro-

logical outcomes of our cohort was higher than that of the cerebrum GWR and average GWR

(0.625 vs. 0.599 and 0.619, respectively). However, the difference was not statistically signifi-

cant (basal ganglia GWR vs. average GWR, p = 0.8286). Therefore, using the basal ganglia

GWR instead of the average GWR would not change the results of this study. Seventh, the

results of these tests were not blinded to the treating physician, potentially creating a self-ful-

filling prophecy. Finally, we did not test other prognostic modalities, such as neurological

examinations, SSEP, and EEG. Future studies should be conducted to determine the prognos-

tic value of these modalities.
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Conclusion

The GWR (� 24 hr) is weakly correlated with the mean ADC (� 7 days) and NSE (highest

between 48 and 72 hr). The combination of a DWI parameter and NSE has better prognostic

performance than the combination of the GWR and NSE. The addition of the GWR to a DWI

parameter and NSE does not improve the prediction of neurological outcomes after CA treat-

ment with TTM.
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