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ABSTRACT Antiviral immunity in insects and plants is mediated by the RNA inter-
ference (RNAi) pathway in which viral long double-stranded RNA (dsRNA) is pro-
cessed into small interfering RNAs (siRNAs) by Dicer enzymes. Although this pathway
is evolutionarily conserved, its involvement in antiviral defense in mammals is the
subject of debate. In vertebrates, recognition of viral RNA induces a sophisticated
type I interferon (IFN)-based immune response, and it has been proposed that this
response masks or inhibits antiviral RNAi. To test this hypothesis, we analyzed viral
small RNA production in differentiated cells deficient in the cytoplasmic RNA sensors
RIG-I and MDA5. We did not detect 22-nucleotide (nt) viral siRNAs upon infection
with three different positive-sense RNA viruses. Our data suggest that the depletion
of cytoplasmic RIG-I-like sensors is not sufficient to uncover viral siRNAs in differenti-
ated cells.

IMPORTANCE The contribution of the RNA interference (RNAi) pathway in antiviral
immunity in vertebrates has been widely debated. It has been proposed that RNAi
possesses antiviral activity in mammalian systems but that its antiviral effect is
masked by the potent antiviral interferon response in differentiated mammalian
cells. In this study, we show that inactivation of the interferon response is not suffi-
cient to uncover antiviral activity of RNAi in human epithelial cells infected with
three wild-type positive-sense RNA viruses.
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The RNA interference (RNAi) pathway is the primary antiviral pathway in insects,
nematodes, plants, and fungi, whereas mammals have evolved sophisticated type

I interferon (IFN)-based innate and adaptive immune responses to combat viruses. The
hallmark of an antiviral RNAi response in insects is the processing of viral double-
stranded (dsRNA) into 21-nucleotide (nt) viral small interfering RNAs (vsiRNAs) by
the RNase III enzyme Dicer-2 and its cofactor R2D2 (1, 2). These vsiRNAs are loaded
into the Argonaute 2-containing RNA-induced silencing complex (RISC), after which
one of the strands (passenger) is eliminated and the other strand (guide) is retained
to guide the recognition and cleavage of complementary viral RNAs (1, 2).

In differentiated mammalian cells, viral pathogen-associated molecular patterns are
sensed by pattern recognition receptors to induce IFN expression. For example, viral
dsRNA and other nonself RNA signatures are recognized by the DEAD box helicases
RIG-I (retinoic acid-inducible gene I) and MDA5 (melanoma differentiation-associated
protein 5) (3). Sensing of dsRNA by these RIG-I-like receptors activates a signaling
cascade that leads to transcriptional induction of type I IFN genes and ultimately to an

Received 26 July 2017 Accepted 27 July
2017 Published 16 August 2017

Citation Schuster S, Tholen LE, Overheul GJ,
van Kuppeveld FJM, van Rij RP. 2017. Deletion
of cytoplasmic double-stranded RNA sensors
does not uncover viral small interfering RNA
production in human cells. mSphere 2:e00333-
17. https://doi.org/10.1128/mSphere.00333-17.

Editor Glenn Randall, University of Chicago

Copyright © 2017 Schuster et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Ronald P. van Rij,
Ronald.vanRij@radboudumc.nl.

OBSERVATION
Host-Microbe Biology

crossm

July/August 2017 Volume 2 Issue 4 e00333-17 msphere.asm.org 1

http://orcid.org/0000-0003-0221-4689
https://doi.org/10.1128/mSphere.00333-17
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:Ronald.vanRij@radboudumc.nl
http://crossmark.crossref.org/dialog/?doi=10.1128/mSphere.00333-17&domain=pdf&date_stamp=2017-8-16
msphere.asm.org


antiviral and proinflammatory response (3). IFN activates autocrine and paracrine
signaling through the JAK/STAT pathway, resulting in the production of hundreds of
interferon-stimulated genes (ISGs), which possess a wide range of antiviral activities,
including the degradation of nucleic acids by the 2=,5=-oligoadenylate synthetase
(OAS)–RNase L system (4, 5).

It is hotly debated whether RNAi contributes to antiviral defense in mammals (6–13).
Although several studies found little accumulation of vsiRNAs upon infection of somatic
cells with different viruses (14–16), recent publications suggest that this evolutionarily
conserved pathway possesses antiviral activity under specific experimental conditions
(7–9). Several hypotheses have been proposed about the specific conditions under
which antiviral RNAi is detectable in mammals. First, vsiRNAs of �22 nt, the expected
length of mammalian Dicer products, were identified in several mammalian cell types
and suckling mice infected with viruses lacking their viral suppressor of RNAi (VSR) (7,
8, 17). In these studies, vsiRNAs were not detectable when wild-type viruses were used,
suggesting that VSRs efficiently suppress vsiRNA production. Second, vsiRNAs could
also be detected in undifferentiated mouse embryonic stem cells (mESCs) infected with
wild-type encephalomyocarditis virus (EMCV) (9). Interestingly, vsiRNA production was
lost after differentiation of mESCs into an ectodermal cell lineage, suggesting that
certain features associated with stemness allow recognition of viral RNA by the RNAi
machinery (9). One of these features could be the absence of an efficient innate antiviral
immune response. mESCs do not produce type I interferons (IFNs) and express lower
levels of ISGs than fibroblasts upon viral infection and stimulation with dsRNA mimics
(18, 19). Similarly, it was shown that human ESCs possess an attenuated cytoplasmic
dsRNA response and fail to induce IFN-� expression (20).

A third hypothesis to explain the absence or presence of antiviral RNAi is that the
IFN response masks or inhibits RNAi in differentiated mammalian cells (13). Similarly, as
RIG-I and MDA5 have been shown to stably bind to viral RNA (21, 22), physical
competition between Dicer and RIG-I-like receptors for dsRNA may occur. Indeed, a
recent study found that RNAi was efficient in MAVS- and IFNAR1-deficient cells upon
treatment with synthetic dsRNA (13), but it had not been directly tested whether
genetic inactivation of the interferon response results in production of vsiRNAs.

In this study, we tested the hypothesis that the type I IFN response competes with
RNAi-dependent processing of viral dsRNA. To this end, we analyzed vsiRNA production
of three positive-sense RNA viruses in cells lacking both of the cytosolic RNA sensors
RIG-I and MDA5. For our study, we chose wild-type viruses from three distinct virus
families, Sindbis virus (SINV; Togaviridae), yellow fever virus 17D vaccine strain (YFV17D;
Flaviviridae), coxsackievirus B3 (CBV3; Picornaviridae). SINV and YFV are arthropod-
borne viruses for which it has been shown that viral dsRNA is efficiently processed into
vsiRNAs in their mosquito vector (2). For another Picornaviridae family member, EMCV,
vsiRNA production has been demonstrated in mESCs. Although previous studies found
that inactivation or deletion of VSRs renders viruses sensitive to antiviral RNAi (7–9), we
specifically chose to analyze wild-type viruses here, to directly assess whether inacti-
vation of the IFN response is sufficient to uncover vsiRNA production. Although a VSR
has been proposed in one of the viruses used (YFV [23]), no VSR has been identified to date
in SINV and CBV3 (see Text S1 in the supplemental material). Moreover, using luciferase-
based RNAi reporter assays, we were unable to detect RNAi-suppressive activities in HeLa
cells infected with SINV, YFV17D, and CBV3 (see Fig. S1 in the supplemental material).

We used clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9
technology to generate a HeLa clonal cell line that is deficient in both RIG-I and MDA5.
Sanger sequencing confirmed a 64-bp out-of-frame deletion in exon 2 in the RIG-I gene
(Fig. 1A). For MDA5, CRISPR-Cas9 induced cleavage around the predicted site in exon
1, resulting in an in-frame deletion of 64 amino acids in the CARD domains (Fig. 1A).
Western blot analysis confirmed the absence of detectable RIG-I and MDA protein upon
poly(I·C) stimulation for the RIG-I–MDA5 knockout (KO) cell line (Fig. 1B and S2).

To validate that the KO cell line was deficient in RIG-I and MDA5 activity, we
stimulated the cells with the dsRNA mimic poly(I·C) and measured IFN-�, ISG15, and
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OAS1 mRNA expression by reverse transcription-quantitative PCR (RT-qPCR) (Fig. 1C).
Upon poly(I·C) stimulation, the RIG-I- and MDA5-deficient cells expressed significantly
lower levels of IFN-�, ISG15, and OAS1 than the control cells, confirming that these cell
lines are functionally deficient in dsRNA sensing (Fig. 1C). To confirm these data, we
infected KO and control cells with YFV17D, infection of which is sensed by both RIG-I
and MDA5 (24). Indeed, we found that IFN-� induction was strongly reduced in KO cells

FIG 1 Functional validation of RIG-I- and MDA5-deficient cell line generated by CRISPR-Cas9 technology. (A) Schematic representation of the RIG-I and MDA5
domain structure, the guide RNAs, and the Sanger sequence obtained. CTD, C-terminal domain. (B) Western blotting for RIG-I, MDA5, and tubulin as a loading
control. Control and RIG-I- and MDA5-deficient (KO) cells were mock treated or stimulated with 200 ng poly(I·C) for 24 h. See Fig. S1 in the supplemental material
for the complete image. (C) Control and KO cells were treated with 200 ng of poly(I·C) or mock treated for 24 h, and the induction of IFN-�, ISG15, and OAS1
mRNA was measured by RT-qPCR. (D) Control and KO cells were infected with yellow fever virus 17D (YFV17D) at an MOI of 0.1, and the induction of IFN-�
mRNA was measured by RT-qPCR over time (hpi, hours postinfection). Data are presented as means and standard deviations from biological triplicates. One
representative experiment of three independent repeats is shown. Statistical significance was determined using Student’s t test (***, P � 0.001; **, P � 0.01;
*, P � 0.05).
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at all time points (Fig. 1D). Taken together, these results indicate that the RIG-I–MDA5
cell line is deficient in RNA sensing upon virus infection and direct stimulation with
dsRNA.

We next investigated whether an antiviral RNAi response is induced in an interferon-
deficient background by analyzing small RNAs by deep sequencing. Specifically, pro-
cessing of viral dsRNA by human Dicer is expected to produce vsiRNA of 22 nt in size
(7–9). We first established the replication kinetics for SINV, YFV17D, and CBV3 in control
and KO cells (Fig. S3) to select time points at which the viruses replicate to high levels
but do not yet cause extensive cell death. We next generated deep-sequencing libraries
of size-selected RNA (19 to 30 nt) from control HeLa cells and the RIG-I- and MDA5-
deficient KO cells infected with SINV, YFV17D, or CBV3. As expected, the majority of
unmapped reads of all libraries ranged in size from 21 to 24 nt (Fig. S4), with a clear
peak at 22 nt. As expected, the 22-nt fraction consists mainly of cellular microRNAs
(miRNAs), as 89 to 94% of the reads mapped to human miRNAs. In contrast, virus-
derived small RNAs revealed a broad distribution of reads, ranging in size from 17 to
31 nt for all viruses, without enrichment for 22-nt reads (Fig. 2). Moreover, viral small
RNA reads were strongly biased for reads mapping to the sense strand of the viral
genome, unlike Dicer-dependent vsiRNAs of RNA viruses in insects and mammals,
which map to the viral sense and antisense strands in similar numbers (2, 7, 9, 17).

Together, our results suggest that mammalian RNAi does not contribute to antiviral
immunity in RIG-I- and MDA5-deficient cells, although we cannot rule out that other cell
types or specific cellular niches support Dicer-dependent processing of viral long
dsRNA into vsiRNAs. As it had been proposed previously that the interferon response
masks or inhibits the RNAi-dependent processing of viral dsRNA (13), we analyzed viral
small RNAs in wild-type virus infections of a clonal cell line deficient in both RIG-I and
MDA5 sensors. We found no evidence for vsiRNA accumulation, suggesting that the
interferon response is not sufficient to explain the lack of vsiRNA production in
differentiated epithelial cells. Our study thus confirms and extends previous studies in
differentiated cells (14, 15) by suggesting that RIG-I and MDA5 do not compete with
Dicer-dependent processing of viral dsRNA. Our results fit the observation that human
Dicer lacks the processivity required for efficient vsiRNA production (10), unlike the
truncated Dicer variant lacking the N-terminal helicase domain found in mouse oocytes
(25).

The IFN and RNAi responses coexist in somatic cells; however, Maillard et al.
suggested that a functional IFN pathway masks or inhibits the activity of RNAi (13).
These authors showed that differentiated mouse embryonic fibroblasts (MEFs) deficient
in the signaling molecule MAVS or the IFN-�/� receptor (IFNAR1) were able to process
exogenously provided dsRNA for sequence-specific gene silencing. In accordance,
�22-nt siRNAs could be detected by Northern blot analysis in IFNAR1-deficient cells
upon dsRNA transfection. However, it remained to be established whether dsRNA of
viral origin would likewise be processed in the absence of an IFN response. Our study
now provides evidence that the absence of an interferon response is not sufficient to
uncover vsiRNA production, suggesting that other features regulate antiviral RNAi in
mammals. In line with our observations, Argonaute 2 inactivation in MAVS-deficient
cells did not result in consistent increases in replication of several RNA viruses, including
influenza A virus (IAV) lacking its interferon/RNAi suppressor protein NS1 (IAV ΔNS1)
(13). Yet, the latter observation is at odds with a recent study that identified AGO2-
associated vsiRNAs upon infection with IAV ΔNS1 and observed RNAi-dependent
restriction of viral replication (8). The basis for the discrepancy between these studies
remains to be resolved.

Although our data suggest that RNAi does not have antiviral activity in differenti-
ated IFN-deficient cells, it has been proposed that RNAi has antiviral activity in stem
cells, which are also less responsive to IFN. For example, it was shown that (nonviral)
dsRNA is processed into siRNAs in mESCs, mouse embryonic teratocarcinoma cell lines,
and oocytes (26–28). Moreover, EMCV infection of mESCs resulted in Dicer-dependent
accumulation of �22-nt vsiRNAs that are incorporated into AGO2, which was lost upon
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differentiation (9). The IFN response pathway is attenuated in mESCs (18, 19), and it
therefore needs to be established whether the lack of the interferon response or other
stem cell characteristics contribute to the antiviral activity of RNAi in those cells.

One aspect that should be taken into consideration is the choice of viruses used in
these studies. Recent studies have suggested that inactivation of VSR activity in a virus
uncovers antiviral RNAi in mammalian cells, including differentiated somatic cells (7, 8,
17). In contrast to previous work in which VSR-deficient viruses were used (7, 8, 13), we
have chosen to study wild-type viruses to establish whether inactivation of the inter-
feron response is sufficient to uncover vsiRNAs. To date, no suppressors of RNAi have
been identified for SINV or CBV3, two of the viruses used in this paper. A recent report
proposed that capsid protein of YFV binds dsRNA to suppress RNAi in mosquitoes,
although this had not yet been demonstrated in an authentic YFV infection (23). We do
note, however, that in plants and insects vsiRNAs are readily detected in infections with
viruses that are known to encode VSRs (2), indicating that a sufficiently potent antiviral
RNAi response would produce vsiRNAs even in the presence of VSRs.

FIG 2 Size profile of viral small RNAs obtained from control cells and RIG-I- and MDA5-deficient (KO) cells
after infection for 24 h with SINV at an MOI of 0.1, for 48 h with YFV17D at an MOI of 0.1, or for 16 h with
CBV3 at an MOI of 0.01. Small RNAs were mapped to the sense (blue bars) and antisense (red bars) strands
of the viral genome, allowing 1 mismatch. Sense and antisense reads are presented on different scales, as
antisense reads were very scarce. RPM, reads per million.
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Although our results suggest that cytosolic RNA sensors do not compete with Dicer
for dsRNA, complex interactions between small RNA pathways and the interferon
response seem to exist. For example, activation of the IFN response by viral infection
led to the inactivation of AGO2 and derepression of miRNA-mediated repression of ISGs
(29). The ongoing dissection of small RNA pathways in mammals will undoubtedly
uncover more complexities and lead to a better understanding of their contribution to
antiviral immunity.

CRISPR. Guide RNAs were designed using the online tool from the Zhang laboratory
at the Massachusetts Institute of Technology (MIT) (http://crispr.mit.edu/) (30). The
following guides were used: for RIG-I, guide 57 F, 5=-AAACAACAAGGGCCCAATGG-3=;
guide 57 R, 5=-CCATTGGGCCCTTGTTGTTT-3=; guide 59 F, 5=-CTAGGGCATCCAAAAAGC
CA-3=; and guide 59 R, 5=-TGGCTTTTTGGATGCCCTAG-3=; and for MDA5, guide 79 F,
5=-CGAATTCCCGAGTCCAACCA-3=; guide 79 R, 5=-TGGTTGGACTCGGGAATTCG-3=; guide
83 F, 5=-CGTCTTGGATAAGTGCATGG-3=; and guide 83 R, 5=-CCATGCACTTATCCAAGAC
G-3=. A 100 �M concentration of the forward and reverse oligonucleotides was phos-
phorylated using T4 polynucleotide kinase (PNK; Roche) for 1 h at 37°C. The mixture
was incubated at 95°C for 5 min and slowly cooled to room temperature. The pCRISPR-
hCAS9-1xgRNA-Puro plasmid was obtained from Martijn Langereis (31), digested with
SapI, and treated with calf intestinal alkaline phosphatase (CIP; Roche). The guides were
cloned into the vector and transformed into competent bacteria. Sanger sequencing
was used to validate the incorporation of the correct guide. HeLa cells were seeded at
a concentration of 1.5 � 105 cells/ml in 6-well plates in a volume of 2 ml of Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum (FCS; Gibco)
and penicillin-streptomycin (Gibco). Cells were transfected with 2.5 �g/well CRISPR-
hCAS9-1xgRNA-Puro plasmids in total (cotransfection of two guide RNAs) using 7.5 �l/
well FuGENE 6 (Promega). One day after transfection, 2 �g/ml puromycin was added to
the cells for 3 days. Surviving cells were seeded in single-cell dilutions, cultured, and
expanded into flasks. Genomic DNA was isolated from individual clones, and the
presence of a deletion in the MDA5 gene was analyzed on an agarose gel after a
diagnostic PCR using primers flanking the expected target sites (described below). In
the clones carrying the expected 192-nt deletion in MDA5, a deletion in the RIG-I gene
was introduced by repeating the transfection and selection procedure using two guide
RNAs. The deletions in RIG-I and MDA5 were validated by Sanger sequencing.

DNA sequencing. Genomic DNA of CRISPR-Cas9-edited cells was isolated using the
Quick-gDNA MiniPrep kit (Zymo Research). The genomic regions flanking the targeted
sites in RIG-I and MDA5 were PCR amplified and sequenced using the primers RIG-I F
(5=-CCAATGCTGTGACTTGGTAC-3=), RIG-I R (5=-TGTCTCAGACTAAGAGGCAT-3=), MDA5 F
(5=-AGACCCTGCTTCTCTAAGTG-3=), and MDA5 R (5=-GCCTGCTTTGCAAAATCTGC-3=).

Cell culture and poly(I·C) transfection. HeLa cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) with 4.5 g/liter D-glucose (Gibco), 50 U/ml penicillin,
50 �g/ml streptomycin (Gibco), and 10% FCS (Gibco) in 5% CO2 at 37°C. For poly(I·C)
transfections, cells were seeded at a density of 7.5 � 104 cells in 500 �l in a 24-well
plate. The next day, the cells were stimulated with 200 ng/well poly(I·C) (GE Healthcare)
for 24 h using 0.3 �l/well FuGENE 6 (Promega).

RT-qPCR. RNA was isolated from poly(I·C)-stimulated samples using RNA-Solv re-
agent (Omega Biotek) or the NucleoSpin 96 RNA Core kit (Macherey-Nagel) according
to the manufacturers’ protocols. RNA was treated with DNase I, and cDNA was gener-
ated using TaqMan reverse transcription reagents with random hexamers (Thermo
Fisher) according to the manufacturer’s instructions. Gene expression was measured by
RT-qPCR using the GoTaq qPCR master mix (Promega) and primers IFN-� F (5=-GCTTG
GATTCCTACAAAGAAGCA-3=), IFN-� R (5=-ATAGATGGTCAATGCGGCGTC-3=), ISG15 F (5=-
AAGGCGCAGATCACCCAGAAGAT), ISG15 R (5=-TCAGAGGTTCGTCGCATTTGTCCA), OAS1
F (5=-TTCCTGAAGGAAAGGTGCTTCCGA), OAS1 R (5=-AAGACAACCAGGTCAGCGTCAGAT),
actin F (5=-CCTTCCTGGGCATGGAGTCCTG-3=), and actin R (5=-GGAGCAATGATCTTGATC
TTC-3=). Experiments were analyzed using the threshold cycle (ΔΔCT) method (32).
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SDS-PAGE and Western blotting. HeLa control cells and RIG-I–MDA5-deficient
cells were seeded in 6-well plates at a density of 1.5 � 105 cells/ml in 2 ml of
medium. Cells were stimulated with 200 ng/well poly(I·C) for 24 h using FuGENE 6
(Promega). Cells were collected in lysis buffer (10 mM Tris-HCl [pH 7.5], 150 mM NaCl,
0.5 mM EDTA, 2.5 mM MgCl2, 0.1% SDS, 1% Triton, 1% sodium deoxycholate), rotated
at 4°C for 30 min, and centrifuged for 30 min at 15,600 � g. Primary antibodies
anti-MDA5 (33), anti-RIG-I (ProSci), and antitubulin (Sanbio) were diluted 1:10,000,
1:500, and 1:1,000, respectively, in phosphate-buffered saline (PBS) containing 0.1%
(vol/vol) Tween and 2.5% (wt/vol) nonfat dry milk. Secondary antibodies IRDye anti-
rabbit (Li-Cor Biosciences) and IRDye anti-mouse (Li-Cor Biosciences) were diluted
1:5,000 in PBS containing 0.1% (vol/vol) Tween, 2.5% (wt/vol) nonfat dry milk, and
0.01% (wt/vol) SDS.

Preparation of small RNA libraries. HeLa control cells or RIG-I- and MDA5-deficient
cells were seeded at a density of 1.5 � 105/ml in 2 ml of medium in two wells of a 6-well
plate. Cells were infected with Sindbis virus for 24 h at a multiplicity of infection (MOI)
of 0.1, yellow fever virus 17D strain for 48 h at an MOI of 0.1, and coxsackievirus B3 for
16 h at an MOI of 0.01. Samples were harvested in RNA-Solv reagent (Omega Biotek).
Total RNA was isolated and separated by electrophoresis on a 15% acrylamide-
bisacrylamide, 7 M urea, 0.5� Tris-borate-EDTA (TBE) gel flanked by radioactive RNA
size markers of 19 nt, 24 nt, and 33 nt. The 19- to 30-nt fraction of each sample was
excised and used to prepare small RNA libraries using the Illumina small RNA TruSeq kit
according to the manufacturer’s instructions. The libraries were sequenced on an Illumina
HiSeq 4000 system as 50-nt single-end reads according to Illumina’s instructions. The
following quality controls were performed: base quality (Q30), base sequence content,
duplicated reads, and FastQScreen. Small RNA sequences were analyzed using the Galaxy
ToolShed at https://usegalaxy.org (34). The Bowtie for Illumina version 1.1.2 tool was
used for mapping against the following genomes and miRNAs: SINV pTE3=2J (35),
YFV17D (GenBank accession no. X03700.1), CBV3 (GenBank accession no. JX312064.1),
and Homo sapiens (GRCh38) miRNA stem-loops, retrieved on 20 June 2017 from
miRBase (36), allowing 1 mismatch in the first 28 nucleotides.

Accession number(s). Small RNA sequence data have been deposited in the NCBI
Sequence Read Archive under BioProject accession number PRJNA397310.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/
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FIG S2, PDF file, 2.1 MB.
FIG S3, PDF file, 0.8 MB.
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