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AbstrAct
Inducible T cell costimulator (ICOS, cluster of differentiation 
(CD278)) is an activating costimulatory immune 
checkpoint expressed on activated T cells. Its ligand, 
ICOSL is expressed on antigen- presenting cells and 
somatic cells, including tumour cells in the tumour 
microenvironment. ICOS and ICOSL expression is linked 
to the release of soluble factors (cytokines), induced 
by activation of the immune response. ICOS and ICOSL 
binding generates various activities among the diversity 
of T cell subpopulations, including T cell activation and 
effector functions and when sustained also suppressive 
activities mediated by regulatory T cells. This dual role in 
both antitumour and protumour activities makes targeting 
the ICOS/ICOSL pathway attractive for enhancement of 
antitumour immune responses. This review summarises 
the biological background and rationale for targeting ICOS/
ICOSL in cancer together with an overview of the principal 
ongoing clinical trials that are testing it in combination 
with anti- cytotoxic T lymphocyte antigen-4 and anti- 
programmed cell death-1 or anti- programmed cell death 
ligand-1 based immune checkpoint blockade.

IntroduCtIon
Immune responses are tightly regulated 
by a variety of coinhibitory and costim-
ulatory pathways that can be targeted in 
cancer immunotherapy. Using agonistic or 
antagonistic antibodies (Abs) to manipu-
late normal immune regulatory pathways, 
it has been shown that this can reinvig-
orate or generate de novo memory immune 
responses to the tumour. This memory then 
functions to recognise over the long- term 
circulating, disseminated or residual tumour 
cells expressing tumour- associated antigens 
(Ags). Remarkable benefit from immuno-
therapy has been observed in specific subsets 
of cancer patients, highlighting the need to 
optimise patient selection for treatments as 
well as improve their effectiveness and activity 
in different settings to broaden the patient 
population deriving benefit.

Cancer immunotherapy challenges clini-
cians not only for the differential diagnosis 
and management of patients1–3 but also for 
the new spectra of emerging and poten-
tially long- lasting toxicities it induces.1–3 In 

addition, the timing for optimal assessment 
of responses are variable,4 different organ 
sites may have peculiar patterns5 and abscopal 
effects can occur6 with responses obtained in 
non- irradiated sites after radiotherapy (RT). 
Another research priority is to overcome resis-
tance to cancer immunotherapy7 and further 
potentiate its activity and effectiveness by 
using combinational approaches. Currently, 
a variety of combinations use the established 
anti- cytotoxic T- lymphocyte Ag-4 (CTLA-4) 
and anti- programmed cell death-1 (PD-1) 
and its ligand (PD- L1) Abs with other treat-
ments, including chemotherapy, targeted 
therapy, RT and other immune checkpoint 
modulators.

The inducible costimulator (ICOS or 
cluster of differentiation (CD278)) of T cells 
and its ligand (ICOSL) play important roles 
in memory and effector T cell development 
and specific humoral immune responses. 
Although their role in cancer is still a subject 
of investigation, this pathway has been shown 
to potentiate immunosuppression mediated 
by some CD4+ T cell subsets, such as regula-
tory T cells (Tregs).8 Interactions between 
ICOS and ICOSL can have antitumour 
effects as increases in both CD4+ICOS+ and 
CD8+ICOS+ T cell subpopulations, which 
paralleled an increased ratio of effector T 
cells (Teff)/Tregs in the tumour microenvi-
ronment (TME), were observed in patients 
treated with anti- CTLA-4 Ab.8 Thus, a poten-
tial role for this pathway in improving the 
effectiveness of cancer immunotherapy is 
being investigated in early phase trials using 
agonistic or antagonistic Abs administered 
alone or more often in combination with 
other immunotherapeutic treatments.

The aim of this review is to summarise 
the biological background and rationale 
for targeting the ICOS/ICOSL pathway in 
tumours, as well as the principal ongoing 
trials testing it in combination with anti- 
CTLA-4 and anti- PD-1 or anti- PD- L1 based 
immune checkpoint blockade (ICB).
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Figure 1 Biology of ICOS in the tumour microenvironment. ICOS is expressed by different T lymphocyte subpopulations, 
comprising CD8+ cytotoxic T lymphocytes (CTL), CD4+ helper T cells (Th), including Th1, Th2, Th17 and follicular helper T 
(Tfh) cells and CD4+ FoxP3+ regulatory T cells (Tregs). Its main ligand, ICOSL is expressed by antigen- presenting cells (APCs, 
including B lymphocytes) and by somatic (including tumour) cells. The interaction between ICOS and ICOSL has agonistic/
stimulating activities, promoting an antitumour response by Th1, CTL and Tfh and of a protumour response mediated by Tregs 
and Th2 in the tumour microenvironment. Figure represents the crosstalk between ICOS+ T cell subsets and ICOSL- expressing 
cells and the effects of ICOS/ICOSL interaction. In red: protumour activities or effects; in blue: antitumour activities or effects.

ICoS bIology
ICOS, first identified in humans 20 years ago, is the 
third member of the CD28 coreceptor family, which are 
all involved in regulating T cell activation and adaptive 
immune responses.9 ICOS has significant homology 
with the other two family members, costimulatory CD28 
and coinhibitory receptor CTLA-4. Furthermore, T cells 
costimulated by ICOS can achieve levels of activation 
comparable to CD28. ICOS signals induce production 
of a wide spectra of cytokines by CD4+ T helper (Th) 
cells, CD4+ forkhead box P3 (FoxP3+) Tregs and CD8+ 
cytotoxic T lymphocytes (CTL) that function to enhance 
their proliferation and direct memory cell development 
(figure 1).

Unlike CD28, which is constitutively expressed on both 
naïve and a majority of memory T cells, ICOS expression 
is induced after activation with only a small fraction of 
resting memory T cells expressing it at low levels. ICOSL, 
the unique ligand of ICOS, is constitutively expressed by 
professional antigen- presenting cells (APCs), including B 
cells, macrophages and dendritic cells (DCs).10 In contrast 
to the restriction of the CD28 and CTLA-4 ligands (CD80 
and CD86) largely to lymphoid tissues, ICOSL is widely 
expressed on somatic cells (figure 1). It can be induced 
by tumour necrosis factor-α on many non- lymphoid cells 
including endothelial cells, lung epithelial cells, fibro-
blasts, mesenchymal stem cells and tumour cells.11–15

ICOS costimulation, in contrast to the CD28 pathway, 
results in inefficient IL-2 production by activated T cells; 
however, other cytokines including IL-4, IL-10 and IL-21 

are often more efficiently induced (figure 1).9 16 This 
confers a specific role for ICOS in regulating Th cell 
subset differentiation in the early stages of activation. 
The requirement for ICOS signalling has been most 
studied in Treg and follicular Th cell (Tfh) differentia-
tion. ICOS is highly expressed on human tonsillar PD-1hi 
CXCR5hi Tfh, whose function is to promote high- affinity 
Ag- specific B cell responses (figure 1). In the peripheral 
blood, CD25hiFoxP3+ Tregs express the highest levels of 
ICOS with ICOS+ circulating Tfh a subpopulation shown 
increased in autoimmune diseases.17 Furthermore, the 
differentiation of the Th2 and Th17 subpopulations is 
also dependent on ICOS and ICOS costimulation can effi-
ciently induce Th1 cytokine expression. In mouse models 
of infection, ICOS deficiency or ICOS/ICOSL signal-
ling disruption using blocking Abs can either reduce or 
increase IFN-γ+ Th1 and thereby have an effect on both 
Th1 and Tregs.18

In human cancer, ICOS expression on FoxP3+ Tregs 
is well established. In comparison to their counterparts 
in the periphery, Treg tumour- infiltrating lymphocytes 
(TIL) express increased levels of FoxP3 and several other 
markers including CTLA-4, glucocorticoid- induced TNFR 
family related gene and ICOS in addition to secreting 
higher levels of IL-10 and TGFβ (figure 1). ICOShi Tregs 
isolated from melanoma had superior immunosuppres-
sive activities compared with ICOSlo Tregs and were 
capable of converting CD4+CD25– T cells (non- Tregs) 
into IL-10 expressing suppressive type-1 regulatory T 
cells (Tr1).19 Freshly isolated ICOS+ Tregs also displayed 
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Table 1 Compounds targeting ICOS currently under clinical investigation

Name Characteristics
Clinical trial 
phase Company

Anti- ICOS agonists

  GSK3359609 Anti- ICOS agonist monoclonal antibody (humanised IgG4) Phase I, II GlaxoSmithKline

JTX-2011 Anti- ICOS agonist monoclonal antibody (humanised) Phase I Jounce Therapeutics

Anti- ICOS antagonists

MEDI-570 Anti- ICOS monoclonal antibody (Fc- optimised humanised IgG1) Phase I National Cancer Institute (NCI)

KY1044 Anti- ICOS monoclonal antibody (fully human) IgG1κ Phase I/II Kymab Limited

Fc, fragment crystallisable; ICOS, inducible T cell costimulator.

high proliferation (Ki67) rates, indicating in vivo activa-
tion at the tumour site.20 21 Plasmacytoid pre- DCs (pDCs) 
are particularly poised to express ICOSL upon matura-
tion and regulate T cell IL-10 expression.22 Through 
ICOS/ICOSL interactions, tumour- infiltrating pDCs or 
tumour cells themselves can support local Treg survival 
and sustain FoxP3 expression as well as IL-10 produc-
tion.13 20 23 In gastric cancer, despite a decrease in total 
FoxP3+ Tregs in parallel with intensifying tumour stages, 
the ICOS+ subset persisted and ICOS+ Treg TIL were asso-
ciated with shorter survival.24 In primary and secondary 
liver tumours, a significant Tr1 presence was detected and 
correlated with intratumoral pDC abundance.25 Similarly, 
ICOSL signalling from pDCs was shown to be critical for 
IL-10 induction in lymphocyte- associated gene 3+FoxP3– 
CD4+ TIL, indicating a functional role of pDCs in gener-
ating Tr1 through ICOS activation.

In addition to regulatory TIL populations, a few studies 
have linked ICOS expression to other Th subsets infil-
trating human tumours. Dominant ICOS expression was 
detected on Th1 TIL expressing the Th1 transcription 
factor T- bet and producing IFN-γ in colorectal cancer.14 
Further, they found that high levels of ICOS expression 
were associated with improved clinical outcomes and 
ICOSL was highly expressed on macrophages. In breast 
cancer (BC), our studies revealed that activated Treg TIL 
express high levels of ICOS (ICOShi) and intermediate 
levels of PD-1 (PD-1int), while PD-1 high (PD-1hi) effector 
CD4+ TIL (including CXCL13+IL21+ Tfh) express inter-
mediate levels of ICOS (ICOSint) (figure 1).21 Both popu-
lations are characterised by prominent proliferation and 
are positively correlated with one another, except for a 
few tumours containing unbalanced, high levels of Tregs. 
ICOS expression on CD8+ TIL is less intense than on CD4+ 
TIL, due to the absent versus low expression of FoxP3. 
Interestingly, we found that PD-1hiICOSint CD8+ BC TIL 
are similar to their CD4+ counterparts and notably express 
CXCL13 (Gu- Trantien, unpublished observation; Noël 
et al, manuscript in preparation). ICOS ligation is also 
critical for generating polyfunctional IFN-γ-coexpressing 
human Th17 that are capable of mediating effective anti-
tumour functions.26

ICOS was also shown to be an important element in the 
persistence of CD4+ chimeric Ag receptor (CAR) T cells, a 

form of passive immunotherapy which is currently in use 
in clinical trials, particularly for haematological malig-
nancies.27 A recent study demonstrated that the intracel-
lular signalling domain of ICOS could enhance the in 
vivo persistence of CD4+ CAR T cells, which in turn main-
tain CD8+ T cells in mouse tumour models.28 The most 
effective antitumour activity was reached when ICOS was 
coupled with the intracellular signalling domain of the 
costimulatory receptor 4- 1BB in CAR T cells.

 targeted agentS under development
The ICOS/ICOSL axis has been shown to promote either 
antitumour T cell responses (when activated in Th1 and 
other Teff) or protumour responses when triggered in 
Tregs. Therefore, both agonistic and antagonistic mono-
clonal Abs (mAbs) targeting this pathway are being inves-
tigated for cancer immunotherapy (table 1).29–31

In preclinical studies, ICOS agonistic mAbs potentiate 
the effects of anti- CTLA-4. ICOS knockout mice do not 
respond well to anti- CTLA-4,32 suggesting that ICOS 
signalling is required for effective antitumour responses, 
likely mediated by Teff (figure 2). Thus, concomitant 
CTLA-4 and ICOS stimulation had a superior antitumour 
effect compared with anti- CTLA-4 alone.33 Interestingly, 
mice and patients treated with anti- CTLA-4 or anti- PD-1 
expanded the ICOShi (FoxP3–) CD4+ and CD8+ T cell 
subpopulations, signalling a treatment benefit33–40 with 
ICOShi T cells potentially an important biomarker for 
clinical response.39 41 ICOS alone appears to be less potent 
compared with other pathways targeted by cancer immu-
notherapies, primarily because of the predominance of 
CD4+ Tregs. Using ICOS agonistic or antagonistic Abs in 
combination with CTLA-4 or PD-1/PD- L1 has the poten-
tial to generate potent synergistic effects (figure 2).33 42

The first- in- human trial, INDUCE-1 (NCT02723955), 
used an ICOS agonist Ab administered alone (part 1) or 
in combination with an anti- PD-1 (pembrolizumab; part 
2) in patients with advanced solid tumours and had prom-
ising results in terms of tolerability, toxicity profile and 
clinical activity.43 The most frequent treatment- related 
adverse events (AEs) were: fatigue (15%), fever (8%), 
elevation of hepatic enzymes (5%, representing also 
the most frequent grade 3–4 AE) and diarrhoea (3%). 
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Figure 2 Targeting regulatory and/or effector T cells with ICOS agonistic or antagonistic antibodies. ICOS can be targeted 
by either agonist (in green) and antagonistic (in red) antibodies (Abs). ICOS agonists are usually administered in concomitance 
with anti- CTLA-4 or anti- PD-1 Abs, for their ability to synergistically inhibit the suppressive activity of regulatory T cells 
(Tregs) and to potentiate the antitumour activity of effector T cells (Teff), including CD4+ and CD8+ subpopulations. One 
main mechanism of action of ICOS antagonistic Abs is to inhibit Tregs by stimulating the antibody- dependent cell- mediated 
cytotoxicity (ADCC) mediated by natural killer (NK) cells. CTLA-4, cytotoxic T- lymphocyte Ag-4; PD-1, programmed cell 
death-1.

One dose limiting grade 3 pneumonitis occurred.44 The 
ICONIC trial (NCT02904226) investigated the role of an 
ICOS agonist Ab (JTX-2011) given alone (mono arm) or in 
combination with an anti- PD-1 (nivolumab; combo arm) 
in patients with relapsed/refractory tumours. Currently, 
the data show this compound is safe, well tolerated and 
can generate antitumour responses in heavily pretreated 
gastric cancer and triple- negative BC patients. The most 
common dose limiting toxicities were an increase in the 
hepatic enzymes and pleural effusion in patients from 
the mono arm. Grade 3–4 drug- related AEs were 8% in 
the mono, 13% in the combo; immune- related AEs were 
4% in the mono, 21% in the combo; infusion- related AEs 
were 12% in the mono and 19% in the combo. Interest-
ingly, peripheral blood CD4+ICOShi T cell subpopulations 
appear to be a promising biomarker of response.45

ICOS antagonistic Abs have shown limited antitumour 
activity via their abrogation of Treg- mediated immune 
suppression and thereby potentially enhancing CTL- 
mediated immune responses directed to tumour cells. 
These compounds principally prevent interactions 
between ICOS+ T cells (particularly CD4+ Tregs) and 
ICOSL+ pDCs. Their principal activity is to prevent pDC- 
induced proliferation, the accumulation of ICOShi Tregs 
and inhibit IL-10 secretion by CD4+ T cells. Noteworthy, 
fragment crystallisable optimisation has the advantage of 
inducing antibody- dependent cellular cytotoxicity.46

Overall, these data indicate that the ICOS pathway 
plays a critical role in effective responses to anti- CTLA-4 

and perhaps other ICB agents. Similar to T- cell immuno-
globulin and mucin- domain containing-3, ICOS mAbs 
are unlikely to be used as monotherapy because they do 
not independently induce cytotoxic immune responses.47

Current ongoIng ClInICal trIalS
Agonistic Abs are currently being administered either 
alone (NCT03447314, NCT02904226) or in combi-
nation with immunotherapy, including ICB as well as 
with chemotherapy (NCT03693612, NCT03447314, 
NCT02723955, NCT03739710, NCT02904226). In one 
trial, the anti- ICOS mAb MEDI-570 is being tested alone 
(NCT02520791), while in another, the anti- ICOS Ab 
KY1044 (NCT03829501) is being tested alone (phase I 
and II arms) or in combination with an PD- L1- based ICB 
(also phase I and II arms) (table 2). The principal mecha-
nisms of action by either ICOS agonists or antagonists are 
shown in figure 2. A summary of the early phase ongoing 
clinical trials is provided in table 2.

ConCluSIonS
The remarkable benefits observed by targeting the prin-
cipal inhibitory regulatory pathways of the immune 
response in a variety of haematological and solid tumours, 
including CTLA-4 and particularly PD-1 and PD- L1, 
have stimulated investigation of new targets associated 
with alternative, non- redundant modulatory immune 
checkpoints, including ICOS/ICOSL. The emergence 
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Table 2 Clinical trials testing ICOS targeting antibodies in a variety of tumour types

ClinicalTrial.gov 
identifier Tumour type Setting Phase Treatment arms

Target 
accrual

Anti- ICOS agonists

  NCT03693612
  (GSK3359609)

Advanced solid tumours (phase I); 
RR- HNSCC (phase II)

Advanced (phase I); RR 
(phase II)

I/II Part 1: GSK3359609 plus anti- CTLA-4 
tremelimumab; Part 2: GSK3359609 
plus tremelimumab versus active 
comparators → single agent standard 
of care (docetaxel or paclitaxel or 
cetuximab)

115

  NCT03447314
  (GSK3359609)

Advanced solid tumours; recurrent, 
locally advanced or metastatic 
HNSCC

Advanced; recurrent, 
locally advanced or 
metastatic

I Part 1B: GSK3359609 plus TLR-
4 agonist GSK1795091; Part 1: 
PK/Pharmacodynamic cohort 
(GSK1795091; GSK3174998; 
GSK3359609; anti- PD-1 
pembrolizumab); Part 2B: 
GSK1795091 plus GSK3359609

162

  NCT02723955 
(INDUCE-1)

  (GSK3359609)

Advanced solid tumours including: 
bladder/urothelial cancer of the 
upper and lower urinary tract; 
cervical; colorectal; esophageal, 
squamous cell; HNSCC; melanoma; 
malignant pleural mesothelioma; 
NSCLC; prostate; Microsatellite 
Instability- High/deficient mismatch 
repair tumour (Part 1B and Part 2B) 
and Human Papilloma Virus- positive 
or Epstein- Barr- positive tumour 
(Part 1B and Part 2B)

Locally advanced/
metastatic or RR

I Part 1A (dose escalation): 
GSK3359609; Part 1B 
(expansion): GSK3359609; Part 
2A (dose escalation/safety run- 
in GSK3359609): GSK3359609; 
OX40 agonist GSK3174998; anti- 
PD-1 pembrolizumab; docetaxel; 
pemetrexed plus carboplatin; 
paclitaxel plus carboplatin; 
gemcitabine plus carboplatin; 
fluorouracil plus carboplatin or 
cisplatin; Part 2B (expansion- 
GSK3359609): GSK3359609 plus 
fluorouracil (5- FU) plus carboplatin or 
cisplatin plus pembrolizumab

500

  NCT03739710 RR advanced NSCLC RR advanced (previous 
first or second line of 
anti- PD-1/L1 allowed)

II GSK3359609 plus docetaxel versus 
docetaxel

105

  NCT02904226
  (ICONIC)
  (JTX-2011)

Advanced and/or refractory solid 
tumours

Advanced and/or 
refractory

I/II Part A: JTX-2011; Part B: JTX-2011 
plus anti- PD-1 nivolumab; Part C: 
JTX-2011; Part D: JTX-2011 plus 
nivolumab; Part E: JTX-2011 plus 
anti- CTLA-4 ipilimumab; Part F: JTX-
2011 plus ipilimumab; Part G: JTX-
2011 plus anti- PD-1 pembrolizumab; 
Part H: JTX-2011 plus pembrolizumab

498

Anti- ICOS antagonists

  NCT02520791
  (MEDI-570)

RR peripheral T- cell lymphoma- 
not otherwise specified; 
angioimmunoblastic T- cell 
lymphoma; follicular lymphoma: 
mycosis fungoides; cutaneous T- cell 
lymphoma

RR I MEDI-570 46

  NCT03829501
  (KY1044)

Advanced tumours
(NSCLC, HNSCC, hepatocellular 
carcinoma, melanoma, cervical, 
esophageal, gastric, renal, 
pancreatic, and triple- negative BC; 
advanced cancer)

Advanced I/II Experimental phase I: KY1044; 
experimental phase I: KY1044 
plus anti- PD- L1 atezolizumab ; 
experimental phase II: KY1044; 
experimental phase II: KY1044 plus 
anti- PD- L1 atezolizumab

412

BC, breast cancer;CTLA-4, cytotoxic T- lymphocyte Ag-4; HNSCC, head and neck squamous cell carcinoma; NSCLC, non- small cell lung 
cancer;PD-1, programmed cell death-1; PD- L1, programmed cell death – ligand 1; RR, relapsed/refractory; TLR, toll- like receptor.

of resistance to the initial drugs has paved the way for 
combination strategies using more than one immuno-
modulatory agent. The most active/successful combina-
tion thus far is anti- CTLA-4 plus anti- PD-1, despite their 
association with a significant increase in high grade 

toxicities. A multitude of new approaches are being 
considered and implemented in clinical trials. Targeting 
the ICOS/ICOSL pathway holds considerable promise 
primarily because of its role in modulating Treg/Teff 
functions, including inhibiting Treg interactions with 
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ICOSL (ICOS antagonists) or potentiating anti- CTLA-4 
and anti- PD-1 or anti- PD- L1 mAbs activities (ICOS 
agonists). The ICOS/ICOSL pathway can also modulate 
antitumour Teff responses by specifically modulating Th1 
and CTL activities. Early phase clinical trials testing ICOS 
agonist Abs in patients with advanced solid tumours have 
shown good safety profiles and promising antitumour 
activities, particularly when the compounds are given as a 
combination with anti- PD-1 agents (pembrolizumab and 
nivolumab). Dose- limiting toxicities were not common 
occurrences, reinforcing these agents as promising new 
targets for combination cancer immunotherapy.

A variety of questions concerning targeting ICOS/
ICOSL pathway in cancer immunotherapy remain unan-
swered. Studies are needed to understand how, at the 
fundamental level, targeting ICOS/ICOSL interactions 
impacts immune responses, including the generation 
of CD4+, CD8+ and B cell memory immune responses 
in tumour- associated tertiary lymphoid structures. In 
addition, more clinical information is needed on the 
optimal ICB target (anti- CTLA-4 versus anti- PD-1/PD- L1) 
for combination with ICOS/ICOSL, the identification 
of biomarkers for patient selection and the potential 
for combination with additional targets. More mature 
preliminary data from the current ongoing clinical trials 
should help to address some of these issues.
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