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ABSTRACT Identity-by-descent (IBD) mapping tests whether cases share more segments of IBD around a putative causal variant than
do controls. These segments of IBD can be accurately detected from genome-wide SNP data. We investigate the power of IBD mapping
relative to that of SNP association testing for genome-wide case-control SNP data. Our focus is particularly on rare variants, as these
tend to be more recent and hence more likely to have recent shared ancestry. We simulate data from both large and small populations
and find that the relative performance of IBD mapping and SNP association testing depends on population demographic history and
the strength of selection against causal variants. We also present an IBD mapping analysis of a type 1 diabetes data set. In those data
we find that we can detect association only with the HLA region using IBD mapping. Overall, our results suggest that IBD mapping may
have higher power than association analysis of SNP data when multiple rare causal variants are clustered within a gene. However, for
outbred populations, very large sample sizes may be required for genome-wide significance unless the causal variants have strong
effects.

THE idea of using identity-by-descent (IBD) haplotype
sharing to detect signals of disease-causing variants in

population samples is not new (Houwen et al. 1994; Te
Meerman et al. 1995); however, the greatly increased den-
sity of SNP markers now makes it possible to detect much
smaller segments of IBD. New statistical methods for detect-
ing such IBD have been proposed (Purcell et al. 2007; Kong
et al. 2008; Thomas et al. 2008; Leibon et al. 2008; Gusev
et al. 2009; Albrechtsen et al. 2009; Thompson 2009; Bercovici
et al. 2010; Browning and Browning, 2010, 2011; Han and
Abney 2011; Brown et al. 2012), and it is possible to deter-
mine pairwise IBD sharing in a large sample over the whole
genome to a resolution of approximately 2 cM (Browning and
Browning 2011). In this article we investigate the power of
IBD mapping to detect associations for complex diseases and
compare this with the power of SNP association mapping.

Throughout this article, IBD is genomic-location specific.
That is, we have information from genetic data on whether

two individuals share alleles identical by descent at a certain
genomic position. We focus on segments of IBD that are due
to recent shared ancestry. For example, IBD segments from
shared ancestry 25 generations ago have average length of
2 cM.

Two classes of statistics have been proposed for IBD
mapping. The first, which we call “pairwise” statistics, use
IBD detected between pairs of individuals. The rate of IBD
in case/case pairs is compared to the rate of IBD in either
control/control pairs or non-case/case pairs (control/control
and control/case pairs) (Purcell et al. 2007). The pairwise
approach is somewhat similar to affected relative pair linkage
analysis, with important differences. Affected relative pair
linkage analysis involves pairwise IBD, but only within rela-
tive pairs, not across relative pairs. Also, control individuals
are not needed in affected relative pair linkage because the
background rate of IBD (the rate of IBD in pairs of unaffected
relatives of the same type) is assumed to be known. In IBD
mapping, the exact degree of relationship is unknown, and
the rate of detected IBD tends to vary along the genome due
to differences in informativeness and stochastic differences in
haplotype genealogies. The use of control individuals allows
the analysis to account for these differences in background
rates of IBD.
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The second class of statistics, which we call “clustering”
statistics, cluster haplotypes into IBD classes at a locus. All
haplotypes within a class are IBD with each other at the
locus. An individual is a member of two IBD classes at a locus
because the individual has two haplotypes, although the two
classes will be the same if the individual is homozygous by
descent. Clusters are tested for association with case-control
status (Gusev et al. 2011). The clustering approach is diffi-
cult because IBD is not usually estimated with 100% cer-
tainty or 100% power. Thus one must determine how to
resolve inconsistencies, such as when haplotypes A and B
are estimated to be IBD, and B and C are estimated to be
IBD, but A and C are not estimated to be IBD. Also, for IBD
due to recent ancestry the IBD clusters will be very small in
an outbred population, so that testing individual clusters
will tend to have low power.

Whichever statistic is used, IBD mapping focuses on
signals from rare variants. That is because coalescence times
will be shorter for haplotypes carrying the same recent
(hence rare) variant, resulting in larger segments of IBD that
are more detectable. In small populations, all coalescence
times are relatively short, so the variants need not be as rare.
Various methods are available for detecting IBD segments.
Resolution of the methods differs, but generally power is
low for detecting segments shorter than 2 cM with current
genome-wide SNP panels in Europeans (Browning and
Browning 2011).

IBD mapping is performed on data that are also suitable
for standard association analysis. If the data are sequence
data, with all rare variants genotyped, then the data contain
perfect information about IBD for the purposes of determin-
ing association. Variants that are identical can be assumed to
be IBD; even if there is recurrent mutation and the identical
variants are not IBD, it is only the identity of the variant that
matters when directly testing a putative causal variant. Hence
detected IBD segments cannot add further information. Thus,
for sequence data, standard single-variant association testing
should be more powerful than IBDmapping. From the point of
view of merely comparing testing procedures, standard single-
variant association testing pays the cost of higher multiple
testing correction, but IBD mapping suffers from incomplete
information (not all IBD is detected) and added noise. For the
pairwise IBD statistics, the background rate of IBD provides
noise; for the clustering statistics, IBD clusters that do not
represent actual variants provide noise. The pairwise statistics
allow aggregation from several causal variants located prox-
imally (e.g., within the same gene), which can add power.
With sequence data, specialized association tests can aggre-
gate over multiple rare variants and have the advantage that
functional information, such as whether a variant is a missense
mutation, can be utilized (Li and Leal 2008; Madsen and
Browning 2009; Wu et al. 2011).

In genome-wide SNP array data, many rare variants are
not typed, allowing the possibility of a power advantage for
IBD mapping. For non-IBD-based testing, both single-SNP
and haplotypic tests are possible. Haplotypic tests can be

useful because haplotypes can tag rare variants that have
not been genotyped. The line between IBD mapping and
haplotypic testing with long haplotypes is somewhat blurred.
The IBD clustering tests are similar to haplotype clustering
tests (Browning 2006), while the IBD pairwise tests are sim-
ilar to haplotype sharing tests (Van Der Meulen and Te
Meerman 1997). Although haplotypic association tests have
theoretical advantages over SNP association tests for detect-
ing associations with rare variants, several practical issues
have limited their usefulness. First, haplotypic tests are very
susceptible to differential genotype error between cases and
controls that can create apparently unusual haplotypes pri-
marily carried by either cases or controls (Browning and
Browning 2008). IBD mapping is less susceptible to this prob-
lem because genotype errors generally can make it more
difficult to detect IBD but would not usually induce false-
positive IBD. Thus a small rate of genotype error at a locus,
even if differentially distributed between cases and controls,
will not be likely to create false-positive IBD mapping sig-
nals. Second, haplotypic tests (and IBD mapping tests) are
focused on the effects of rare variants. However, power is
low to detect association with a rare variant unless it has a
very strong effect. Although aggregation over multiple rare
variants is possible for haplotypic tests (Zhu et al. 2010),
and may add power, the effectiveness of the aggregation is
reduced because of the lack of functional information about
the rare variants being tagged by the haplotypes. Pairwise
IBD tests also aggregate over variants, and one advantage of
this approach is that one does not need to decide which var-
iants to aggregate, as the aggregation is done automatically by
the test.

Some causal rare variants may have large effect sizes
relative to the typically small effect sizes seen for common
variants in complex traits (Manolio et al. 2009), as rare
variants tend to be recent and thus have had less time to
be removed from the population by natural selection. If the
rare variant effects are very large (such as in fully penetrant
Mendelian diseases), these effects would have been found
through previous family-based linkage studies. However,
there may be a middle ground in which multiple rare
variants of moderate effect size play a key role in the etiol-
ogy of some diseases. Such situations may be ideal for IBD
mapping.

Few published studies have attempted IBD mapping in
unrelated samples. Albrechtsen et al. (2009) and Moltke
et al. (2011) analyzed small numbers (five to seven) of un-
related, mostly Danish, breast and ovarian cancer patients
who were known to carry the same BRCA1 mutation and
showed that these individuals were detectably IBD around
the gene. Gusev et al. (2011) applied DASH, a haplotype-
testing/IBD mapping program, to data from samples from
the island of Kosrae (a small founder population) and to
case-control data from the UK, and found known associa-
tions and some novel associations, including one in the Kos-
rae data that replicated in a European cohort. Francks et al.
(2010) used PLINK’s IBD mapping method on two cohorts of
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400–500 schizophrenia cases and similar numbers of controls
and obtained a P-value of 1.6 · 1025 on chromosome 19q. By
adding approximately 1000 familial bipolar cases and a sim-
ilar number of controls they were able to strengthen the sig-
nal to P = 2.6 · 1026. It remains to be seen whether this
signal will replicate in other data sets.

Methods

Pairwise IBD test

Our IBD test compares rates of IBD in case/case pairs of
individuals and non-case/case pairs of individuals. At each
position we calculate the rate for each of the two groups
(the group of case/case pairs and the group of non-case/
case pairs) and subtract off the genomic average for each
group; we then take the difference between the two groups.
We perform a one-sided test: that is, we test for case/case
pairs having a higher adjusted rate of IBD than non-case/
case pairs. Because IBD segments are not independent
between pairs, we use permutation of case-control labels
to assess significance. This testing procedure is the same as
in Purcell et al. (2007). Python programs implementing the
IBD test that we used for the WTCCC type 1 diabetes data
can be downloaded from http://faculty.washington.edu/
sguy/ibdmapping.html.

SNP association test

For comparison with the pairwise IBD test, we consider
allelic association tests. The power of these tests is reduced
if there is allelic heterogeneity (multiple causal mutations in
a gene), because each single-marker test is likely to tag at
most one of the causal variants. Power also tends to be low
for rare causal variants, because these are not well tagged by
genome-wide SNP panels.

Genome-wide association analyses involve hundreds of
thousands of association tests. Thus, multiple-testing cor-
rection is required to avoid obtaining large numbers of false-
positive results. The multiple-testing correction depends on
the panel of SNPs used for testing as well as on the
population from which the sample is derived. Gao et al.
(2010) find that a nominal P-value of 1.4 · 1027 corre-
sponds to an adjusted P-value of 0.05 for Illumina 1 M data
in European American data while the corresponding nomi-
nal P-value threshold for Affymetrix 500K data are 2.5 ·
1027. Dudbridge and Gusnanto (2008) extrapolate from
WTCCC (UK) data to a P-value threshold of 7.2 · 1028 for
infinitely dense SNP data with allele ascertainment match-
ing that of the Affymetrix 500K data. Pe’er et al. (2008)
estimate a multiple testing threshold for all common SNPs
(frequency .5%) of around 1027 in Europeans and 5 ·
1028 in Africans. Recently, a threshold of 5 · 1028 has be-
come a de facto standard regardless of the populations being
studied (e.g., Lowe et al. 2009).

The effective population size to consider for SNP associ-
ation testing is different than that for IBD testing, as the

relevant time interval differs. IBD testing concerns mostly
the effective population size in the past G generations,
where G = 25, for example (the recent effective population
size), whereas SNP association testing is concerned with
much larger timescales (the long-term effective population
size). For a population of changing size, the relevant effec-
tive population size is close to the minimum (effective) pop-
ulation size over the time period of interest (Wright 1931).
Thus population bottlenecks, for example during the out-of-
Africa migration(s), can have a large impact on long-term
effective population size, and hence on the multiple testing
correction for SNP association tests.

Results

Simulation study

We performed a simulation study to compare standard SNP
association testing with pairwise IBD testing. We used
SFS_CODE (Hernandez 2008) to generate sequence data
from a base population of constant size N = 10,000. The
population size influences the scaled rates of mutation, 4Nm,
and selection, 2Ns. When we doubled the population size to
N = 20,000 and halved the selection coefficient s we ob-
served essentially identical results (data not shown). The
mutation coefficient we used was m = 1028 (rate of muta-
tions per base pair, per meiosis). The recombination rate was
1028 per base pair per meiosis. Figure 1 shows the simula-
tion scheme. The output of the simulations was 100 com-
mon SNPs spread evenly over a 200-kb region (one SNP per
2 kb) and a variable number of causal SNPs (see Table 1)
located within the central 9 kb of the 200-kb region.

The causal SNPs were subject to negative selection with
selection coefficient s during the generation of the base pop-
ulation. Individuals carrying one or more of these variants
have the disease with probability 0.1 (the penetrance). Indi-
viduals not carrying any of these variants have the disease
with probability 0.01 (the sporadic rate). These parameters
were chosen to obtain good power with reasonable sample
sizes while being somewhat realistic. The ratio of pene-
trance to sporadic rate determines power. Thus increased
power could be obtained either by increasing penetrance
or decreasing the sporadic rate. If the penetrance is ex-
tremely high (such as 0.5) then strong familial aggregration
will be seen and a family-based sampling approach would be
more appropriate than a population-based sample. On the
other hand, very low sporadic rates are unrealistic for com-
plex diseases because the sporadic rate includes both non-
genetic causes and genetic causes at other loci.

We consider a range of selection coefficients. If the
selection coefficient is too low, most individuals will carry
a causal variant, so the model considered here is not suitable.
With N = 10,000 and s = 0.0002, a majority of individuals
carry a causal variant. Thus, the smallest selection coefficient
we consider is s = 0.0005, for which approximately 10–20%
of individuals carry a causal variant, resulting in a prevalence

IBD Mapping in Case-Control Studies 1523

http://faculty.washington.edu/sguy/ibdmapping.html
http://faculty.washington.edu/sguy/ibdmapping.html


of approximately 2–3% for the disease. If the selection co-
efficient is very high, the causal variants will tend to be very
rare, and very large sample sizes are required to detect asso-
ciation, particularly with the SNP association test. The largest
selection coefficient that we consider is 0.005. For each se-
lection coefficient we generated 100 independent data sets,
which were used as base populations for all the forward sim-
ulations described below. Table 1 shows the distributions of
frequencies of causal variants and numbers of causal variants
from the simulations.

After generating a base population with SFS_CODE, we
ran our own forward simulator for 25 or 100 generations
without selection or mutation or recombination, and with
a different population size corresponding to a recently
expanded population (Nrecent = 100,000) or a population
that has gone through a recent bottleneck (Nrecent =
1000). Omission of selection, mutation, and recombination
during this 25 or 100 generation time period is not signifi-
cant because of the short timescale. Our forward simulator
generated each new generation by sampling with replace-
ment from the existing pool of haplotypes. When there were
no causal variants segregating in the population after the
final generation, the sampling process was rerun.

The purpose of the final generations of simulation using
our own forward simulator was to determine IBD status.
Haplotypes deriving from the same ancestral haplotype G
generations ago (where G = 25 or G = 100) are considered
to be detectably IBD (see Appendix). Current methods for
IBD detection from SNP data can detect a majority of IBD
segments arising from a shared ancestor within the past 25
generations. With improving SNP data and further develop-
ments in IBD detection methodology, it may soon be possible

to detect IBD arising from shared ancestry 50 or even 100
generations ago.

In real data, ability to detect IBD depends on the number
of generations to the common ancestor only through the
length of the IBD segment. More recent common ancestry
tends to result in longer IBD segments, which are easier to
detect. However, the distribution of IBD lengths given the
number of generations to the common ancestor is highly
variable as it approximately follows an exponential distri-
bution. Using a cut-off in terms of number of generations to
common ancestor in place of a cut-off in terms of length of
region simplifies the simulation procedure and gives some
sense as to the properties of analysis of real data. When
comparing a threshold of G = 25 generations in simulated
data with a threshold of 2 cM in real data, say, on the one
hand some IBD segments due to common ancestry 25 gen-
erations ago will be too short to be detectable in real data,
while on the other hand some segments due to ancestry
more than 25 generations ago will be long enough to be
detected in real data, with these two effects cancelling each
other to some extent.

Cases and controls were generated by sampling with
replacement from the final generation until sufficient
numbers were obtained. The numbers of cases and controls
were chosen to achieve at least moderate power for both
SNP association and IBD tests. In many instances the
number of cases is much larger than would seem reasonable
given the effective population size. However, in real life the
actual population size is typically larger than the effective
population size. Also, many human populations have un-
dergone rapid expansion in the past few generations (due to
improved medical care, etc), which again allows for realistically

Figure 1 Simulation scheme. Each sim-
ulated region is made up of 100 simu-
lated segments of length 1 kb with gaps
of length 1 kb between them. The cen-
tral five segments can contain causal
SNPs. Causal SNPs are those that the
simulation program designates as pro-
tein-changing mutations. These SNPs
have been subject to negative selection
at a specified rate. Only the causal SNPs
and one SNP per segment with

highest minor allele frequency (MAF) are retained. The causal SNPs are used to determine disease status, while the high MAF SNPs are tested in the
association analysis. IBD status is determined through further simulation, as described in the main text.

Table 1 Properties of simulated causal variants

s No. of variants Variant frequencies Haplotype carrier frequencies Max R2

0.0005 11–16 0.00015–0.0060 0.045–0.13 0.91–1.00
0.001 9–14 0.00010–0.0031 0.019–0.050 0.28–1.00
0.002 8–13 0.00010–0.0020 0.0097–0.031 0.06–0.52
0.005 7–10 0.000088–0.0011 0.0045–0.011 0.03–0.16

Interquartile ranges (IQR; lower quartile to upper quartile) from the 100 simulations with selection coefficient s are shown for several quantities of interest. The second
column gives the number of causal variants per simulation. The third column gives the frequencies of the causal variants. The fourth column gives the proportion of
haplotypes that carry a causal variant. The final column gives the maximum squared correlation coefficient between any one of the 100 common variants tested in the
association test with any one of the causal variants. All results are from the base simulation population of 10,000 individuals.
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increased sample sizes beyond the typical population size in
the past 25–100 generations.

For the SNP association test, the retained common SNPs
were tested for association with disease status using Fisher’s
exact allelic test. The minimum P-value over the 100 com-
mon SNPs was compared to a genome-wide significance
threshold of 5 · 1028. The tested SNPs are common, while
the causal SNPs tend to be rare. Table 1 shows that for low-
selection coefficients many simulations contain at least one
tested common variant that is very highly correlated with at
least one causal variant, whereas for high-selection coeffi-
cients (very rare causal variants) the correlations tend to be
low.

For the IBD test, the IBD status was determined by
ancestry at the beginning of the final G generations of sim-
ulation, as described above. The difference between case/
case and non-case/case IBD proportions was calculated, and
5 million permutations of case-control status were per-
formed to obtain a P-value, which was compared to a ge-
nome-wide significance threshold of 2 · 1026 for G = 25 or
5 · 1027 for G = 100 (see the Appendix for derivation of
these thresholds). Note that G = 25 corresponds approxi-
mately to the current resolution of IBD detection in SNP
data, whereas G = 100 corresponds to improved resolution
that may be achievable with denser data or improved meth-
ods. In the simulations the IBD status is the same at each of
the simulated segments; thus a single IBD test covers the
whole region.

For each parameter setting, 100 replicate data sets were
generated using the 100 base populations generated with
SFS_CODE. SNP association and IBD mapping tests were
performed on the same data sets. The final generations of
simulation were performed independently for the G = 25
and G = 100 generation simulations.

Table 2 shows results for a large recent effective popula-
tion size (Nrecent = 100,000). It can be seen that the IBD test
with G = 25 is more powerful than the SNP association test
when the selection against causal variants is sufficiently
strong; however, once selection becomes too strong the var-
iants are so rare that very large sample sizes are required to
obtain reasonable power. The IBD test with G = 100 is at
least as powerful as the SNP association test for all selection

coefficients considered here. Within the model framework
considered here, we cannot consider weaker selection and
hence more common causal variants. SNP association test-
ing would have superior power to IBD testing if one com-
mon causal variant dominated the effect of the gene on the
disease.

By comparing results with G = 25 and G = 100 gener-
ations as the IBD detection cut-off we can see the effects of
increased marker density on the power of IBD mapping. The
G = 25 results correspond roughly to IBD detection with
500,000 common SNPs genome-wide. We do not yet have
good data on the extent to which IBD detection power will
improve with increased marker density and inclusion of
lower frequency variants. The G = 100 results may corre-
spond to very-high-density SNP data. The results in Table 2
show that improved IBD detection due to increased marker
density has the potential to significantly expand the range of
scenarios in which IBD mapping has more power than stan-
dard single-marker association testing. However, as noted in
the introduction, IBD mapping cannot improve upon appro-
priate association testing (which may consist of rare-variant
aggregation testing) in high-quality sequence data.

Table 3 shows results for a bottleneck that occurred 25
generations ago, when we can detect IBD arising from
shared ancestry within the past G = 25 generations. The
IBD test is more powerful than the SNP association test for
all values of selection considered in this recent bottleneck
scenario. Unless a causal variant is very common, it will tend
to be represented by only a very small number of initial
haplotypes and thus the IBD test has good power. On the
other hand, during the time that the population is small,
some haplotypes are lost and thus linkage disequilibrium
increases between common SNPs and remaining haplo-
types. This increases the power of the SNP association test,
although not to a large enough extent to match the IBD
test.

The situation in which the change in population size
occurs at exactly the point in time at which the IBD
reckoning begins is unrealistic. For the large population
size, increasing the number of generations for which the
population had the larger size to say 125 has little effect on
either test because this is not enough time to add new

Table 2 Simulated power results: Large population size

s No. of cases No. of controls Power assoc. Power IBD25 Power IBD100 Assoc. vs. IBD25 Assoc. vs. IBD100

0.0005 500 500 0.87 0.57 0.81 assoc. NS
0.001 500 500 0.65 0.53 0.81 NS IBD
0.002 1000 1000 0.53 0.87 0.93 IBD IBD
0.005 3000 3000 0.47 0.90 0.84 IBD IBD

From an equilibrium population size of N ¼ 10,000, the population was expanded to a recent effective size of Nrecent ¼ 100,000. The selection coefficient, s, used in
simulating the equilibrium population is given in the first column. The second and third columns give the sample sizes. The fourth column gives the estimated power of the
SNP association test with G ¼ 25 generations at the recent effective population size; the power of the SNP association test with G ¼ 100 generations was not significantly
different (data not shown). The fifth and sixth columns give the estimated power of pairwise IBD tests with IBD determined from G ¼ 25 and G ¼ 100 generations at the
recent effective population size, respectively. All power estimates are from 100 replicates; the standard errors are 0.03–0.05. The seventh column states whether the SNP
association test or IBD test with G ¼ 25 is more powerful if the difference is significant (two-sided paired t-test P, 0.05) or NS (nonsignificant) otherwise. Similarly the eighth
column compares the SNP association test and IBD test with G ¼ 100.
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haplotypes, and haplotypes do not tend to get lost in large
populations over such relatively short timescales. On the
other hand, for the small recent population size, increasing
the amount of time over which the population is small has
little effect on the power of the IBD test but significantly
increases the power of the SNP association test because
linkage disequilibrium is increased. Table 4 shows results
with 100 additional generations (125 generations total) at
size Nrecent = 1000. Selection was applied during the for-
ward simulation for these simulations. The power of the
SNP association test is higher than that with the recent bot-
tleneck, while the change in the power of the IBD test is not
significant. As a result, the SNP association test is more
powerful than the IBD test, in contrast to the recent
bottleneck.

Analysis of Wellcome Trust Case Control Consortium
(WTCCC) type 1 diabetes data

We analyzed the Wellcome Trust Case Control Consortium
(WTCCC) type 1 diabetes data (Wellcome Trust Case Con-
trol Consortium 2007) to determine whether we could de-
tect signals with IBD mapping that could not be detected
with SNP association testing in these data. This data set is
fairly large and homogeneous, with approximately 3000
controls and 2000 cases, all of whom are of European an-
cestry from the United Kingdom. Type 1 diabetes is a rela-
tively good candidate for IBD mapping: it has relatively
low prevalence (�0.4%; Mehers and Gillespie 2008), and
high heritability (�88% heritability on the liability scale;
Hyttinen et al. 2003). The major genetic contribution comes
from the HLA (human leukocyte antigen) region, but other
genes have also been implicated through association studies
(Barrett et al. 2009). Multiple rare variants in one gene,

IFIH1 (interferon induced with helicase C domain 1), are
associated with the disease (Nejentsev et al. 2009). How-
ever, the IFIH1 variants are protective, which will tend to
increase IBD in control/control pairs, while our IBD test
looks for increased IBD in case/case pairs.

Before performing the analysis, we called the genotypes
from the signal intensity data using BeagleCall, as described
previously (Browning and Yu 2009). Highly accurate geno-
types are critical for detecting IBD, and BeagleCall utilizes
linkage disequilibrium information to significantly improve
the genotype accuracy. Stringent quality control filters were
also applied to the markers during the calling process. In
total, 458,204 autosomal SNPs were analyzed in 1963 cases
and 2938 controls.

The fastIBD module of Beagle 3.3.1 (Browning and
Browning 2011) was used to detect IBD segments. We com-
bined results from 10 runs of the program and used a thresh-
old on the fastIBD score of 10210. In total, 4.1 million
segments were found, or 0.42 per pair of individuals (0.1
per pair of haplotypes) over the autosome. The average
number of SNPs covered by a segment was 464, while the
average segment length was 3.2 cM (genetic distances
obtained by interpolation from HapMap estimates; McVean
et al. 2004). Figure 2 shows the distribution of lengths of
detected segments. The genome average proportion of pairs
IBD at a given location was 0.0003441 for non-case/case
pairs and 0.0003447 for case/case pairs.

To perform the IBD test, we calculated the difference in
IBD proportions between case/case pairs and non-case/case
pairs and compared this difference to that obtained from 5
million permutations of case-control status. We calculated
this difference and the corresponding permutation P-value
at every tenth SNP along the autosomes. In addition, we

Table 3 Simulated power results: Small population size, very recent bottleneck

s No. of cases No. of controls Power assoc. Power IBD25 Assoc. vs. IBD25

0.0005 200 200 0.53 0.64 IBD
0.001 400 400 0.60 0.73 IBD
0.002 400 600 0.51 0.60 NS
0.005 400 1000 0.33 0.46 IBD

From an equilibrium population size of N = 10,000, the population was contracted 25 generations ago to a recent effective size of Nrecent = 1000. The selection coefficient, s,
used in simulating the equilibrium population is given in the first column. The second and third columns give the sample sizes. The fourth column gives the estimated power
of the SNP association test, while the fifth column gives the estimated power of pairwise IBD test with IBD determined from the final G = 25 generations. All power estimates
are from 100 replicates; the standard errors are 0.04–0.05. The sixth column states whether the SNP association test or IBD test is more powerful if the difference is significant
(two-sided paired t-test P , 0.05) or NS (nonsignificant) otherwise.

Table 4 Simulated power results: Small population size, older bottleneck

s No. of cases No. of controls Power assoc. Power IBD25 Assoc. v. IBD25

0.0005 200 200 0.71 0.55 Assoc.
0.001 400 400 0.76 0.67 NS
0.002 400 600 0.76 0.57 Assoc.
0.005 400 1000 0.73 0.51 Assoc.

From an equilibrium population size of N = 10,000, the population was contracted 125 generations ago to a recent effective size of Nrecent = 1000. The selection coefficient,
s, used in simulating the equilibrium population is given in the first column. The second and third columns give the sample sizes. The fourth column gives the estimated
power of the SNP association test, while the fifth column gives the estimated power of pairwise IBD tests with IBD determined from the final G = 25 generations. All power
estimates are from 100 replicates; the standard errors are 0.04–0.05. The sixth column states whether the SNP association or IBD test is more powerful if the difference is
significant (two-sided paired t-test P , 0.05) or NS (nonsignificant) otherwise.
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calculated permutation P-values genome-wide for 1000 per-
mutations of case-control status, which allows us to deter-
mine the correct multiple-testing adjustment. The fifth
percentile of the distribution of minimum P-value over the
autosomes for the permuted data were 5.8 · 1026. This may
be compared to the approximate multiple-testing adjusted
thresholds calculated in the Appendix: 2 · 1026 for G = 25
(corresponding to the approximate resolution of detection of
2 cM), which equates to a 2.2% genome-wide significance
level in these data; or 4 · 1026 for G = 15 (corresponding to
the mean detected IBD segment length of 3.2 cM), which
equates to a 3.4% genome-wide significance level in these
data. Thus, use of the approximate genome-wide P-value
thresholds calculated in the Appendix would be somewhat
conservative in these data.

Figure 3 shows the unadjusted P-values. Because of the
limited number of permutations, the smallest achievable P-
value is 2 · 1027 = 1/(5 · 106). The HLA region is clearly
significant; however, this is not surprising given the ex-
tremely strong signal in this region. A region on chromosome
2 is almost significant (genome-wide adjusted P-value 0.20).
A recent review (Baker and Steck 2011) lists two known
associations with type 1 diabetes on chromosome 2. These
are IFIH1 at 2q24.2 and CTLA4 (cytotoxic T lymphocyte as-
sociated antigen 4) at 2q33.2. The closer of these is IFIH1,
which is 103 Mb away from IBD signal. The closest gene to
the IBD signal is BCL11A (B-cell CCL/lymphoma 11A), which
is 1.0 Mb away from the location of the smallest P-value on
chromosome 2. BCL11A has been suggestively associated
with type 2 diabetes (Zeggini et al. 2008) and affects pancre-
atic b-cell function (Simonis-Bik et al. 2010).

In the original SNP association analysis of these data
(Wellcome Trust Case Control Consortium 2007), four loci
were significant at a genome-wide significance threshold of
5 · 1028. These included the HLA region, with a P-value of
2 · 102134. In our IBD mapping analysis, the HLA region

achieved the smallest P-value possible with the limited num-
ber of permutations performed (P = 2 · 1027). Computa-
tional constraints preclude performing further permutations
to determine how small a P-value can be obtained with IBD
mapping in this region. Nevertheless, it is the achievement
of genome-wide significance, rather than the actual P-value,
that is important. Both IBD mapping and SNP association
testing achieved genome-wide significance in the HLA re-
gion. However, SNP association testing was able to find ge-
nome-wide significant association at further loci, while IBD
testing did not. Thus, SNP association testing found more
significant results than the IBD testing in these data.

Discussion

IBD mapping has potential advantages over standard SNP
association testing for detecting associations with rare
variants using SNP array data, particularly when multiple
rare variants are clustered within a gene. We showed
through simulations that there are scenarios in which IBD
mapping has higher power than SNP association testing. In
large outbred populations, IBD mapping can have higher
power when the level of selection against causal variants is
relatively high, so that most causal variants remaining in the
population are of recent origin. Because such variants are
rare, either they must have strong effect sizes or there must
be multiple causal variants clustered within a gene to have
power to detect the association with a reasonably sized
sample.

Our simulations also showed that IBD mapping has
higher power than SNP association testing in founder
populations provided that the founding event was very
recent. If the number of generations since the founding
event is approximately the same as the number of gener-
ations G for which shared ancestry can be detected, IBD
mapping has higher power. On the other hand, if the found-
ing event was further back, the SNP association test tends to
have higher power because the additional generations of
low population size significantly increase the level of linkage
disequilibrium in the population.

The multiple testing correction for IBD mapping is lower
than that for SNP association testing, and we derived
genome-wide significance levels for IBD mapping which
we used in our simulations and which could be used in
analysis of real data if permutation-based adjustment is not
feasible. The precise multiple testing adjustment depends on
the sensitivity of IBD detection, which depends on the IBD
detection method and on the characteristics of the data set,
such as the SNP density. In the type I diabetes WTCCC data,
the correct genome-wide significance threshold based on
permutation was higher (less stringent) than the theoretical
value that we had derived. Inference of IBD in real data are
influenced primarily by the length of the IBD segment, while
in our theoretical work IBD detection is based on depth of
coancestry. A significant proportion of IBD segments due to
common ancestry G = 25 generations ago will be shorter

Figure 2 Distribution of lengths of detected IBD segments in the WTCCC
type 1 diabetes data. IBD segments were detected using BEAGLE fastIBD.
Lengths greater than 8 cM are not shown.
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than 2 cM, and in real data many such segments will not be
detectable. The presence of very short IBD segments in the
theoretical data leads to a faster rate of transitions in the
IBD process, and hence to the need for a greater multiple
testing correction, which may explain the difference be-
tween the theoretical and real data results.

In the WTCCC type 1 diabetes data we were able to
detect an association with the HLA region using IBD
mapping. However, given the huge effect of the HLA region,
which is easily detected through SNP association tests, this
was not an outstanding achievement.

Overall, while it is possible that IBD mapping will be
useful in some circumstances, it seems doubtful that it will
be worthwhile to routinely apply this approach. The best
scenario for IBD mapping is a disease that has allelic
heterogeneity (multiple causal variants within a gene, to
provide an advantage relative to single-marker association
testing), with low frequency causal variants (due to negative
selection, so that shared causal variants are likely to be of
recent origin and hence detectably IBD) and high heritabil-
ity (high effect sizes, for reasonable power with moderate
sample sizes). Our simulation results showed that IBD
mapping can have higher power than association mapping
in the case of moderately strong negative selection and
allelic heterogeneity. Diseases with very high heritability are
best suited to large-family studies, because ascertainment of
large families increases allelic homogeneity (within fami-
lies) and reduces the incidence of sporadic cases, thus
increasing power (Wijsman and Amos 1997). However,
when heritability is only moderately high, or when collec-
tion of family data are not practical, IBD mapping captures
some of the advantages of the family-based approach.

It may be that the advantages of IBD mapping would be
realized for very high sample sizes. IBD mapping is targeted
at rare variants, and, particularly for very rare variants, large
sample sizes are needed to see each such variant more than
once in the sample. Rare variants that occur only once in
a sample do not contribute to the IBD mapping statistic.

Unfortunately, one needs to have a fairly homogeneous
sample for IBD mapping, which is likely to preclude increasing
sample sizes to high levels. The existence of population struc-
ture within a sample can cause false-positive IBD detection,
and can also result in large differences genome-wide in IBD
rates between case/case pairs and non-case/case pairs. Such
structure need not be continental-level differences but can
be, for example, Wales vs. England (Browning and Browning
2011). Although genome-wide differences can be subtracted
out of the analysis, localized differences due to differences in
informativeness of the haplotypes present in the populations
may remain and cause false-positive IBD mapping signals.

As SNP array data become more dense, with arrays of
several million SNPs, IBD segment detection will improve,
and it will be possible to detect IBD due to more distant
ancestry. This increases the range of scenarios over which
IBD mapping can have good power, although such data will
also have improved power for standard association testing.
With high-quality sequence data, IBD mapping becomes
irrelevant. This is because in the context of association
testing (mapping), the usefulness of inferred IBD segments
is to provide information about untyped variants in the
vicinity of genotyped SNPs.
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Appendix

In the theoretical work that follows we assume that the
genome-wide case/case and non-case/case rates of IBD are
the same. This assumption is wrong (Devlin and Roeder
1999; Voight and Pritchard 2005), but for a complex disease
will not be too far off, provided the samples really do come
from the same population. In analysis of real data we sub-
tract the genomic averages.

Background rate of IBD

The expected rate, r0, of IBD in controls depends on both the
population (in particular its effective size) and the power to
detect IBD. Power to detect IBD depends on the type of
genetic data, such as dense SNP array or sequence data,
and also on the algorithm used to detect the IBD. With
the Beagle fastIBD algorithm (Browning and Browning
2011) with Affymetrix 500K array data in the UK population
(WTCCC data), we found IBD at rate 3.4 · 1024 per pair of
individuals (or 8.5 · 1025 per pair of haplotypes) in con-
trols. Moreover we had high power to detect IBD segments
of size 2 cM or larger while controlling the false discovery
rate to be close to zero. With denser data we would expect
to be able to find much of the IBD of size 1 cM or larger. IBD
segments of size 1 cM are the expected size for common
ancestry 50 generations ago (100 meioses linking the pair
of individuals) while segments of size 2 cM correspond to 25
generations.

We note that the length of an IBD segment deriving from
a common ancestor G generations ago has approximately an
exponential distribution and thus has high variance. In prac-
tice, IBD detection depends on the length of the segment,
rather than on the number of generations to the common
ancestor. However, considering IBD detectability in terms of
the number of generations greatly facilitates the theoretical
analysis.

Let N be the effective size of the population (the equiva-
lent number of randomly mating individuals, which is gen-
erally smaller than the actual population size). Let fg be the

probability that two randomly chosen alleles at generation
0 (now) are IBD if all alleles are non-IBD at generation
g (g generations into the past). Then (Wright 1931)

fg ¼ 12
�
12

1
2N

�g

� 12 e2g=ð2NÞ � g=ð2NÞ:

Suppose we can detect IBD due to common ancestry back
to G generations ago. Then the approximate detectable rate
of IBD between haplotypes will be 12exp(2G/(2N)) �
G/(2N). For example, if G ¼ 25 and N ¼ 1.5 · 105, the
approximate IBD rate for pairs of haplotypes is 8.3 · 1025,
which is similar to the level we found in the United Kingdom
(Browning and Browning 2011).

Genome-wide significance level for IBD testing

In this section we derive an approximate genome-wide
significance level for IBD mapping. First consider only the
IBD process in the case/case samples. That is, assume that
we know the background rate of IBD and want to know
whether the case/case rate of IBD is significantly higher at
some point in the genome. We also assume that the rate of
IBD along the chromosome is constant under the null
hypothesis of no causal variants. To match notation used
elsewhere, we refer to distance along the chromosome as
“time.” Thus, in this section “time” refers to genetic distance
(measured in centimorgans) rather than to number of gen-
erations. Following Aldous (2010) (chapter B, Markov chain
hitting times) and Feingold (1993) we approximate the dis-
tribution of the hitting time of the IBD process with an
exponential distribution.

Let Xt be the number of case/case haplotype pairs that are
IBD at position t (position measured in genetic distance) on
the chromosome of interest. As an approximation, assume
that Xt is a Markov process with instantaneous transition
rates Q(i, i + 1) ¼ l0(n 2 i) and Q(i, i 2 1) ¼ l1i, where
n is the number of case/case haplotype pairs sampled. That
is, each non-IBD pair becomes IBD at rate l0 (moving along
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the chromosome) while each IBD pair becomes non-IBD at
rate l1. Let Tb be the location of the first point of the
chromosome at which Xt reaches or exceeds a threshold b,
where b is sufficiently large so that P(Xt $ b) is small.
Around the point b, we approximate the process by an
asymmetric random walk, with Q(i, i + 1) ¼ l0(n 2 b)
and Q(i, i 2 1) ¼ l1b. For such a random walk, the
expected sojourn time (distance) in state b is S(b) ¼
(l1b 2 l0(n 2 b))21. This sojourn time represents the ag-
gregation of several visits over a short time period (dis-
tance), or a “clump.” The expected time (distance along
the chromosome) between such clumps is also the expected
hitting time (assuming an exponential distribution) and is
thus E(Tb) ¼ S(b)/p(b), where p(b) is the proportion of
time spent in state b. For the Markov process described
above, p(b) is binomial (n, l0/(l0 + l1)). Note that this
makes it clear that we are assuming that the IBD status
of pairs are independent, which is not fully correct, but
is an approximation for small expected IBD proportion
r0 ¼ l0/(l0 + l1). Then the distribution of Tb is approxi-
mately exponential with rate

1=EðTbÞ ¼ ðl1b2 l0ðn2 bÞÞ
�
n
b

�
ð12r0Þn2brb0

Thus, given a total genetic length L, the multiple-testing
adjusted P-value corresponding to an observed number of
IBD pairs b is

Padj¼ P
�

max
0#t#L

Xt$b
�

¼ PðTb#LÞ
¼12 exp

�
2 Lðl1b2 l0 ðn2 bÞÞ

�
n
b

�
ð12r0Þn2brb0

�
:

The unadjusted P-value is a binomial probability

Punadj ¼ PðXt$bÞ;

where Xt follows a Binomial(n,r0) distribution. If we find
a value of b that gives an adjusted P-value of approximately
0.05, the corresponding unadjusted P-value (for the same
value of b) gives a genome-wide significance threshold for
unadjusted P-values.

For a value of G that gives the resolution of IBD detection
(IBD with a common ancestor within the past G genera-
tions), and with an effective population size of Ne, the rate
of IBD detection is r0 ¼ G/(2Ne) (derived in the previous

section). We could assume that the average size of IBD tract
is 100/(2G) cM, giving l*1 ¼ G=50/cM. This fits the expo-
nential assumption, but ignores the fact that most IBD tracts
actually result from a common ancestor occurring within,G
generations. In fact, given that a pair of haplotypes are IBD
at a given position (with common ancestor within the past
G generations), the time to the most recent shared ancestor
is approximately uniform on 1. . .G (assuming constant
population size). The length of IBD tract is then not
exponential, but the average rate out of IBD is l*  *1 ¼PG

t¼1ð1=GÞt=50 ¼ ðGþ 1Þ=100/cM. The rate l0 from non-
IBD to IBD can be found by solving r0 ¼ l0/(l0 + l1). Hence
l0 ¼ l1r0/(1 2 r0).

For each value of G considered, we investigated the value
of Punadj that gives a value of Padj =0.05. We tried various
values of effective population size N and large values of
number of case/case haplotype pairs n. We saw essentially
no effect of effective population size, but slightly higher (less
stringent) thresholds for smaller sample sizes. The values
given are for very large sample sizes (e.g., 400 million pairs
of haplotypes, corresponding to approximately 14 thousand
individuals). We used L ¼ 3000 cM. For l*1 we get a ge-
nome-wide P-value threshold of approximately 9.1 · 1026

for G ¼ 5, 2.7 · 1026 for G ¼ 15, 1.5 · 1026 for G= 25, 7.1 ·
1027 for G ¼ 50 and 3.3 · 1027 for G ¼ 100. For l*    *1 the
thresholds are slightly higher (less stringent) because the IBD
segments tend to be slightly longer: 1.6 · 1025 for G ¼ 5,
5.3 · 1026 for G ¼ 15, 3.1 · 1026 for G ¼ 25, 1.5 · 1026 for
G ¼ 50, and 6.9 · 1027 for G ¼ 50.

We now return to the question of the IBD test statistic,
which compares case and control rates of IBD. If X1 is the
number of IBD case/case haplotype pairs and X0 is the number
of IBD non-case/case haplotype pairs, then each has approxi-
mately the distribution described above. Moreover the behav-
ior of the normalized values (Xi divided by the number of pairs
of haplotypes interrogated) will have the same properties in
terms of P-value adjustment. Since the P-value adjustment
does not depend significantly on sample size, and the case/
case pairs are approximately independent of the non-case/case
pairs, the difference of the normalized values should also have
similar properties in terms of P-value adjustment.

It is important to emphasize that the discussion in this
section involves a great deal of approximation. Nonetheless,
the results look reasonable and will be useful for the
purposes of comparing power. On the basis of the results
presented above, we suggest a genome-wide P-value thresh-
old of 1 · 1025 for G ¼ 5, 4 · 1026 for G ¼ 15, 2 · 1026 for
G ¼ 25, 1026 for G ¼ 50, and 5 · 1027 for G ¼ 100.
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