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Brain aging is central to late-onset Alzheimer’s disease (LOAD), although themechanisms

by which it occurs at protein or cellular levels are not fully understood. Alzheimer’s disease

is the most common proteopathy and is characterized by two unique pathologies:

senile plaques and neurofibrillary tangles, the former accumulating earlier than the

latter. Aging alters the proteostasis of amyloid-β peptides and microtubule-associated

protein tau, which are regulated in both autonomous and non-autonomous manners.

Microglia, the resident phagocytes of the central nervous system, play a major role in the

non-autonomous clearance of protein aggregates. Their function is significantly altered

by aging and neurodegeneration. This is genetically supported by the association of

microglia-specific genes, TREM2 and CD33, and late onset Alzheimer’s disease. Here,

we propose that the functional characterization of microglia, and their contribution to

proteopathy, will lead to a new therapeutic direction in Alzheimer’s disease research.

Keywords: Alzheimer’s disease, microglia, neurodegeneration, amyloid-beta peptide, tau protein,

neuroinflammation, proteopathy

INTRODUCTION

Aging results in a loss of proteostasis that is characteristic of many neurodegenerative disorders.
During aging, the mechanisms responsible for protein synthesis, post-translational modifications,
and clearance, cumulatively known as “proteostasis,” become dysregulated in the central nervous
system (CNS). Impairments in proteostasis result in the accumulation of misfolded proteins as
intracellular aggregates, such as neurofibrillary tangles and Lewy bodies, or extracellular plaques,
such as senile and prion plaques, which ultimately lead to conditions termed “proteopathies.”
Alzheimer’s disease (AD) is diagnosed with the development of two unique pathologies, senile
plaques and neurofibrillary tangles. A comprehensive understanding of the brain cells responsible
for the clearance of protein aggregation due to dysfunction is critical to fully elucidate the
etiology of AD. This mechanism is largely understood to be a cell autonomous process, namely
executed by neurons. However, non-autonomous processes that may also be involved have
recently become the subject of extensive investigation. One representative cell type controlling
brain proteostasis is microglia. Interestingly, their functions are largely affected by aging. This
is genetically supported by the significant genome-wide association of microglia-specific TREM2
gene with LOAD (Guerreiro et al., 2013; Jonsson et al., 2013). Microglia are the resident phagocytes
of the CNS and are implicated in the pathogenesis of many neurocognitive disorders, including
neurodevelopmental and neurodegenerative diseases. They are implicated in the phagocytosis and
degradation of pathological protein aggregates. Numerous studies have been published recently

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2017.00680
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2017.00680&domain=pdf&date_stamp=2017-12-12
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tikezu@bu.edu
https://doi.org/10.3389/fnins.2017.00680
https://www.frontiersin.org/articles/10.3389/fnins.2017.00680/full
http://loop.frontiersin.org/people/503702/overview
http://loop.frontiersin.org/people/492434/overview
http://loop.frontiersin.org/people/100536/overview


Clayton et al. Microglial Dysfunction in Proteopathy and Alzheimer’s Disease

depicting the changes that cause microglia to become
dysfunctional during aging and disease. Once microglia become
dysfunctional, they further contribute to CNS destabilization in
response to protein aggregates, which ultimately leads to brain
degeneration. One prominent aspect of microglial dysfunction
is their role in chronic neuroinflammation, a phenomenon
in which immune cells recognize and pervade the ailing
tissue causing damage through both antigen-specific and non-
specific mechanisms. Several groups have recently provided a
comprehensive characterization of microglial phenotype in order
to elucidate the mechanisms by which microglial dysfunction
disrupts the CNS microenvironment (Matcovitch-Natan et al.,
2016; Keren-Shaul et al., 2017; Krasemann et al., 2017).

These new concepts considering the causal relationships
betweenmicroglial dysfunction, neuroinflammation, and protein
aging, introduce the question of how novel therapies may halt or
reverse the contribution ofmicroglia to the spread of proteopathy
and neurodegeneration. Here, we summarize clinical and
preclinical studies aimed to prevent protein aggregation or
restore homeostatic microglial function. Furthermore, we
overview the physiological function of microglia, their changes
in response to aging, and their specific neurodegenerative
phenotype leading to proteopathy in AD.

Aging and Proteopathies
Most neurodegenerative disorders are pathologically
characterized as proteopathies (Walker and LeVine, 2000).
Aging can impact multiple aspects of proteostasis: production,
folding, posttranslational modification, and clearance in
several pathways, including secretion and autophagosomal,
endolysosomal, and proteasomal degradation (Kaushik and
Cuervo, 2015), all of which are demonstrated to affect protein
aggregation when impaired. Aggregated proteins, such as
amyloid-beta peptides (Aβ), are inherently cytotoxic in vitro,
causing stress and stimulating synaptic loss, mitochondrial
dysfunction, and eventually apoptosis in neurons (Sakono and
Zako, 2010). We will mainly describe the metabolism of Aβ and
tau in this review.

The production of Aβ from amyloid precursor protein
(APP) is the most well-studied component of AD development,
especially in early-onset Alzheimer’s disease (EOAD) (Rovelet-
Lecrux et al., 2006; Sleegers et al., 2006; McNaughton et al.,
2012). In addition to the well-known mutations proximal to
the α, β, and γ-processing of APP, several mutations in the
promoter region of APP have been reported and contribute to
enhanced APP gene expression (Athan et al., 2002; Theuns et al.,
2006; Hooli et al., 2012; Rodgers et al., 2012). However, the
majority of sporadic cases do not show increased expression of
APP by aging. Rather, there is a reduction in the amount of Aβ

in the cerebrospinal fluid (CSF), suggesting its absorption into
amyloid plaques, rather than export to the periphery. Researchers
have increasingly argued that sporadic or late-onset AD is more
likely caused by a reduction in clearance of Aβ than by its
overproduction (Mawuenyega et al., 2010).

There is also a possibility for an age-related shift in
APP processing toward the amyloidogenic rather than non-
amyloidogenic pathway. This results in the production of

pathogenic Aβ, as opposed to the non-pathogenic p3 peptide.
One study reported that age did not have an effect on γ-
secretase production of Aβ42 (Dewachter et al., 2000). However,
the expression of beta-site APP converting enzyme 1 (BACE1),
the enzyme designated as β-secretase, is elevated in the AD
brain (Li et al., 2004; Zhao et al., 2007). Furthermore, primary
cortical neurons were shown to up-regulate BACE1 expression
in response to Aβ42 exposure (Mamada et al., 2015). This
suggests that Aβ42 production may be self-perpetuating via
up-regulation of BACE1 expression in neurons. Given that
BACE1 acts on APP primarily in endosomal compartments,
age-related increases in early endosome volume could result
in increased BACE1 processing of APP (Cataldo et al., 2000).
Another possibility is the reduced activity or expression of α-
secretase, ADAM10, a component of the non-amyloidogenic
pathway. Reduced non-amyloidogenic processing of APP was
reported to occur as a result of cellular aging (Kern et al.,
2006), although overall activity and expression was increased in
cognitively normal subjects (Schuck et al., 2016). This suggests
that an age-dependent reduction of ADAM10 function is specific
to AD subjects.

Reduced clearance of Aβ has emerged as the central
mechanism of amyloid plaque formation in AD. Aβ is thought
to be cleared via interstitial fluid (ISF) drainage into the blood
vessels, and brought across the blood brain barrier (BBB)
into the peripheral bloodstream. There are mutations in APP
reported in AD cases that appear to reduce transport of Aβ

from the CSF into the blood (Monro et al., 2002). Receptor
for advanced glycation end products (RAGE) is proposed to be
expressed in the BBB and responsible for shuttling Aβ from
the bloodstream into the brain, while LRP1 is responsible for
efflux of Aβ42 out of the brain (Deane et al., 2009). However,
LRP1 expression in the BBB is reduced in rodents, primates,
and humans (Shibata et al., 2000; Deane et al., 2004; Zerbinatti
et al., 2004; Donahue et al., 2006). For this reason, RAGE
antagonists, which have already been proposed to have effective
anti-inflammatory properties, are being further explored for
clinical development (see Table 1). In addition to the transport
of Aβ out of the ISF to the blood, the CNS is equipped
with several other clearance mechanisms, principally mediated
via Aβ degrading enzymes. These include enzymes derived
from the M13 zinc-binding membrane metalloendopeptidase
(such as insulin degrading enzyme), Type II integral membrane
bound glycoproteins (NEP-2, ECE-1), membrane-bound zinc
metalloproteinase (such as matrix metalloproteinase 2 and
9), thiol-metalloendopeptidase, matrix metalloproteinase, and
members of the serine and cysteine protease families (see
Miners et al., 2011 for a complete list). One well-investigated
protease, neprilysin (NEP), appears to be critical in this pathway,
demonstrated by the effectiveness of a combination of NEP
inhibitors, over-expression of NEP, and genetic disruption of
NEP in increasing proteolytic cleavage and clearance of Aβ (Marr
et al., 2003; Dolev and Michaelson, 2004; Nisemblat et al., 2008;
Hafez et al., 2011; Takamatsu et al., 2014). Aβ clearance also
occurs extracellularly, via microglia-mediated phagocytosis. The
effect of aging on this process is further discussed in following
sections.
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TABLE 1 | A comprehensive list of all of the drugs in clinical development that aim to reduce either Aβ pathology, tau pathology, or inflammation within the past five years

categorized by treatment strategy and drug class.

Category Drug class Mechanism Compound

name

Current status

Inflammation Anti-inflammatories (Ferretti

et al., 2012; Tawakol et al.,

2014; Hori et al., 2015)

Anti-inflammatories act through a variety of

interactions.

Cromoglicic acid Approved (alternate

indication)

ALZT-OP1 Approved (alternate

indication)

CHF 5074 Phase 2

RAGE Antagonists (Srikanth

et al., 2011; Gilham et al.,

2016)

RAGE increases pathogenic pro-inflammatory

signaling in diabetes, AD, and cancer. Antagonists

may alleviate the deleterious effects, but may also

reduce amyloid deposition.

Rilapladib

ALZT-OP1

Phase 2

Phase 3

GSK2647544 Phase 1

Minocycline Approved (alternate

indication)

Azeliragon Phase 3

Tumor necrosis factor alpha

inhibitor (Butchart et al.,

2015; Gilham et al., 2016)

Traditionally a cancer drug, Etanercept may lower

the effects of heightened levels of tumor necrosis

factor alpha and deleterious inflammation.

Etanercept Approved (alternate

indication)

Tau-related pathology Microtubule Stabilizers

(Mitchell et al., 2016)

Dysfunction of phosphorylated tau results in

impaired microtubule stabilizing function, synaptic

shrinkage, and eventually neuronal death.

Microtubule-stabilizing agents may alleviate the

deficit caused by tau phosphorylation.

TPI-287 Phase 1

Inhibitors of Tau Aggregation

(Harrington et al., 2015)

Small molecules that bind pathological versions of

tau and prevent aggregation may help reduce

overall toxicity.

TRx0237 Phase 3

Vaccine against Tau

(Theunis et al., 2013;

Kontsekova et al., 2014)

Use second-generation immunotherapy to stimulate

the brains innate immune system to increase

neurofibrillary tangle clearance.

AADvac1

ACI-35

Phase 2

Phase 1

Src/abl family of kinases

inhibitor (Nygaard et al.,

2014)

Fyn phosphorylates tau after exposure to

pathogenic Aβ. Therefore, inhibitors may prevent or

reduce the generation of pathological tau.

Saracatinib Phase 2

Antibodies against Tau Antibodies against pathogenic Tau seek to utilize

the brain’s natural immune system to clear Aβ faster.

ABBV-8E12 Phase 2

RO7105705 Phase 1

Reduction in Aβ BACE Inhibitors (He et al.,

2013; Eketjäll et al., 2016)

Inhibits the action of pathogenic β-secretase

cleavage of APP, reducing overall amyloid burden.

AZD3293 Phase 3

JNJ-54861911 Phase 2/3

LY3202626 Phase 2

CNP520 Phase 2/3

E2609 Phase 3

Antibodies against Aβ (Bard

et al., 2000; Dodel et al.,

2013)

Antibodies against pathogenic Aβ seek to utilize the

brain’s natural immune system to clear Aβ faster.

BAN2401 Phase 2

Gantenerumab Phase 3

GSK933776 Phase 2

LY3002813 Phase 1

LY3303560 Phase 1

MEDI1814 Phase 1

SAR228810 Phase 1

AAB-003 Phase 1

Aducanumab Phase 3

Crenezumab Phase 3

Gamunex Approved (alternate

indication)

KHK6640 Phase 1

Small Molecule Aβ inhibitors

(McLaurin et al., 2006;

Habchi et al., 2016)

Small molecules are believed to either bind Aβ42

and Aβ40 peptides early, preventing nucleation, or

inhibiting organization of higher-level tertiary and

quaternary structures.

ELND005 Phase 2

(Continued)
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TABLE 1 | Continued

Category Drug class Mechanism Compound

name

Current status

RXR-selective analogues

(Tai et al., 2014)

These receptors ameliorate loss-of-function

associated with ApoE, decreasing Aβ burden and

improving synaptic viability.

Bexarotene Approved (alternate

indication)

Phosphodiesterase 9

Inhibitors (Su et al., 2016)

PDE9 inhibitors halt Aβ aggregation, thus reducing

abundance and associated toxicity of senile

plaques.

BI 409306

BPN14770

Phase 2

Phase 1

Beta amyloid vaccines

(Wiessner et al., 2011)

Using second-generation immunotherapy to

stimulate the brain’s innate immune system to

increase Aβ clearance.

CAD106 Phase 2/3

MER5101 Phase 1

UB-311 Phase 2

ACI-24 Phase 1/2

Purinoceptor P2Y6 agonists

(Koizumi et al., 2007)

Stimulation of the P2Y6 receptor increases microglia

phagocytosis and associated clearance of Aβ.

GC021109 Phase 1

Gamma Secretase

Modulators (Imbimbo et al.,

2009; Imbimbo and

Giardina, 2011)

Modulate γ-secretase to process pathological Aβ42

more readily into non-toxic forms.

NGP 555

CHF 5074

EVP-0962

Phase 1

Phase 2

Phase 2

Inhibitors of Aβ synthesis

(Maccecchini et al., 2012)

Binding of APP mRNA prevents translation, thus

reducing amyloid burden in the subject.

Posiphen Phase 1/2

Sigma 2 receptor ligands

(Izzo et al., 2014)

These ligands bind to the sigma 2 receptor,

inhibiting binding of Aβ fragments and associated

synaptic toxicity.

CT1812 Phase 1/2

Glutaminyl cyclase inhibitors

(Morawski et al., 2014)

Glutaminyl cyclase is a metalloenzyme that

catalyzes the cyclization of pathogenic Aβ, forming

pGlu-Ab, which is a highly toxic constituent of senile

plaques.

PQ912 Phase 2

Dihydropyridine calcium

channel blocker

Serves as an anti-hypertensive with Aβ deposition

prevention properties (Paris, 2010).

Nilvadine Phase 3

SNRI (Chalermpalanupap

et al., 2013)

Reducing NET activity has the potential to reduce

amyloid burden.

Atomoxetine Phase 2

Drugs in green are already approved by the FDA for a condition separate from AD. Drugs in red have been granted Fast Track privileges for AD clinical development.

Microglial Origin and Presence in the CNS
This first reports of cells exhibiting microglia-like phenotypes
came from the work of Nissl and Robertson in the late
nineteenth century (Gomez-Nicola and Perry, 2015). It wasn’t
until the late 1930’s that these cells were differentiated from
other glial cells and received the name of “microglia” by Pio del
Rio-Hortega. Hortega used silver staining techniques to describe
microglial morphology and introduced the idea of microglia
as ramified resting cells (Ginhoux et al., 2013). He pioneered
the idea that microglia have the ability to change morphology,
migrate, and proliferate in response to their microenvironment
and described their basic functional roles as phagocytic cells
(Ginhoux et al., 2013). AlthoughHortega introduced the idea of a
mesodermal origin of microglia, a more recent study showed that
microglia differentiate from yolk-sac derived myeloid precursor
cells (Ginhoux et al., 2010). Utilizing fate mapping technology,
Ginhoux et al. have demonstrated that microglia progenitor
cells infiltrate into the brain from the yolk sac during early
embryonic development and continue to migrate and mature in
the early stages of post-natal brain development. Support for the
yolk sac hypothesis of microglia origin has prompted scientists
to investigate the mechanisms by which microglia maintain
homeostatic presence in the CNS throughout the lifetime.

Several studies have found that microglia are largely maintained
by proliferation, while circulating peripheral monocytes only
contribute to the microglia population in disease conditions
(Ginhoux et al., 2010; Bruttger et al., 2015). In adulthood,
microglia make up approximately 0.5–16.6% of all cells in the
brain, depending on brain sub-regional variations (Mittelbronn
et al., 2001). They are widely present in the entire CNS, including
the brain and spinal cord.

Microglia Morphology: a Correlation with
Functional Profiles?
One particularly essential characteristic of microglia is their
ability to rapidly change morphology and function in response
to changes in their microenvironment (Karperien et al., 2013).
Several studies have suggested that microglia morphology falls
on a spectrum, ranging from amoeboid to ramified (Stence
et al., 2001; Fontainhas et al., 2011). Additionally, newer studies
have introduced a third morphological classification; reactive
or “alternatively” activated microglia, characterized by thick
retracted processes, typically directed toward a lesion or site
of protein aggregation (Franco and Fernández-Suárez, 2015).
Morphologically, this state falls in between amoeboid and
ramified. Ramified microglia, frequently defined as homeostatic
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or surveying microglia, are characterized by dynamic thin
processes extending out from a relatively circular-shaped soma
(Kreutzberg, 1996; Fontainhas et al., 2011; Karperien et al.,
2013). Surveying microglia are involved in CNS homeostasis by
actively making contacts with surrounding synaptic elements.
Interestingly, several studies have demonstrated that the most
complex microglia appear to be seen in compromised conditions
and may be subtly activated, suggesting that ramified microglia
may also be slightly reactive (Hinwood et al., 2012; Karperien
et al., 2013). Amoeboid microglia display the greatest level of
motility, facilitated by a retraction and reduction of processes
(Kreutzberg, 1996; Karperien et al., 2013). Amoeboid microglia
are most commonly found during the early stages of brain
development, before they undergo morphological differentiation
to ramified microglia during brain maturation (Harry and Kraft,
2012; Ginhoux et al., 2013). They are also occasionally reported in
inflammatory and phagocytic conditions, although their specific
function in these states remains unclear (Karperien et al., 2013).
Microgliamorphology is strongly influenced by neurotransmitter
activity. Excitatory neurotransmission significantly increases the
ramification of microglia via ATP signaling (Fontainhas et al.,
2011). This evidence suggests that microglial processes are
highly susceptible to external cues. Although numerous studies
have attempted to elucidate the correlation between amoeboid
and ramified microglia and their roles in physiological and
pathological conditions, the exact functional profiles of different
morphological states remain widely debated.

The Function of Microglia in
Synaptogenesis and Synaptic Plasticity
Microglia are known to play an important role in synaptogenesis
and synaptic wiring and maintenance, which is crucial for
functional brain connectivity (Ginhoux et al., 2010; Paolicelli
et al., 2011). Lim et al. have recently shown that microglia-
mediated release of IL-10, a pro-inflammatory molecule, led to
an increase in dendritic spines (Lim et al., 2013). Concurrently,
in a second study, they demonstrated that hippocampal neurons
expressed IL-10 receptors during the early stages of brain
maturation (Lim et al., 2013). Together, these studies suggest
a causal role of microglia in synaptogenesis through microglia-
mediated IL-10 signaling. Microglia maintain the ability to
modulate synaptic circuits into early adulthood. A study by
Parkhurst et al. revealed a microglia-dependent effect on
learning-related synaptogenesis (Parkhurst et al., 2013). In
addition to their role in synaptic wiring and refinement,
microglia are also key modulators of synaptic plasticity. In a
study investigating plasticity in the visual system, microglia-
mediated synaptic remodeling in layers II/III of the V1
was shown to be activity-dependent (Tremblay et al., 2012).
Additional studies have focused on other synaptic functions,
such as long term potentiation (LTP), suggesting that microglia
actively participate in strengthening neuronal connections
through Hebbian plasticity (Penn et al., 1998). Furthermore,
several studies have been published highlighting chemokine
fractalkine receptor (CX3CR1) signaling and secretion of
soluble molecules enhancing NMDA receptor function as key

effectors in microglia-mediated modulation of synaptic plasticity
(Hayashi et al., 2006; Justin et al., 2011). A study investigating
the role of microglia in ocular dominance columns found
that microglia modulate experience-driven plasticity in the
monocular deprivation model through synaptic pruning (Sipe
et al., 2016). Moreover, microglia were shown to have an indirect
effect on synaptic strength through upregulation of TNF-α
(Lewitus et al., 2016). Together, these findings reinforce the role
of microglia in modulating cortical plasticity throughout the
lifetime.

Pruning: Microglia-Mediated Phagocytosis
of Excess, Inactive or Dysfunctional
Synapses
Microglia provide crucial supportive functions in the CNS
development starting early embryonic stages and persisting
into adulthood. In their steady state, microglia play important
roles in synaptic maintenance by serving as phagocytic cells,
pruning excess or dysfunctional synapses (Tremblay et al., 2010).
These processes are controlled by three principal mechanisms:
the complement system, chemokine pathway, and activity-
dependent signaling.

The complement system, a part of the innate immune
response, facilitates phagocytosis in response to antigens.
Complement proteins are highly expressed in neurons and
glia, but selectively localized to immature synapses (Stevens
et al., 2007). Microglia express complement C3 receptor CR3
(aka CD11b, Itgam, and Mac-1), which recognizes activated C3
fragments tagged to excess, immature, or dysfunctional synapses,
consequently initiating phagocytosis (Carroll, 2004; Gasque,
2004; Ransohoff and Perry, 2009).

Several studies have found that microglia-mediated pruning
is dependent on fractalkine signaling, which promotes survival
in monocytes (Landsman et al., 2009). CX3CR1 is specific to
microglia in the brain and subset of peripheral monocytes,
and responds to pruning cues from surrounding neurons.
Knock out (KO) of CX3CR1 was associated with a brief
reduction in microglia and subsequent deficit in synaptic
pruning, which resulted in an excess of excitatory synapses,
as well as an increase in spine density and PSD95 expression
(Paolicelli et al., 2011). These findings suggest that disruptions
in microglia-mediated synaptic pruning are sufficient to induce
deficits in brain maturation, resulting in impaired functional
connectivity.

Additionally, studies have shown that pruning is activity-
dependent and persists into adulthood (Tremblay et al., 2010;
Schafer et al., 2012). Recently, one study has found that synaptic
pruning is negatively altered in disease conditions and results
in microglia-mediated synaptic loss (Hong et al., 2016). This
evidence confirms the crucial role microglia play in shaping
neuronal circuits throughout the lifetime, in both physiological
and pathological conditions.

Microglial Phagocytosis of Cellular Debris
Microglia are known to phagocytose biological waste and
a variety of pathogens, including apoptotic bodies, cellular
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debris, and exogenous particles, through various well-established
phagocytic pathways (Chan et al., 2001; Fu et al., 2014). This
phagocytic function is crucial in both health and disease (Aderem
and Underhill, 1999). Ravishadran has established a four-step
model for the phagocytosis of apoptotic neurons: apoptotic cells
first release “find me” signals attracting microglia, followed by
the “eat me” process, mediated by specific receptors expressed by
targets, the “digest me” phase, resulting in degradation of cellular
materials, and finally, the post-phagocytic phase, which involves
inflammatory consequences, such as cytokine and chemokine
release (Ravichandran, 2010). Additionally, the fifth step, which
occurs in proteopathies, has been proposed (Figure 1). Different
signaling pathways are implicated in the phagocytosis of various
targets (Fu et al., 2014). Extracellular nucleotides, such as ATP
and UTP, are the most common “find me” signals released by
apoptotic cells. UTP degradation yields UDP, which interacts
directly with microglia via P2Y6 receptors (Nimmerjahn and
Ravetch, 2006; Koizumi et al., 2007). Fractalkine signaling
has also been shown to contribute to microglia-mediated
phagocytosis of apoptotic cells (Truman et al., 2008; Noda et al.,
2011; Sierra et al., 2013). “Eat me” signals are expressed by targets
to initiate recognition by receptors expressed on the microglial
cell surface. Toll-like receptors (TLRs) and Fc receptors are
commonly implicated in microglia-mediated phagocytosis of α–
synuclein (Okun et al., 2010; Hanke and Kielian, 2011; Cao
et al., 2012), whereas triggering receptor expressed on myeloid
cells 2 (TREM2), is known to control microglia-mediated Aβ

compaction, and phagocytosis of apoptotic neurons (Piccio et al.,
2007; Takahashi et al., 2007; Yuan et al., 2016). Complement and
scavenger receptors are expressed by microglia and astrocytes,
specifically in the pathophysiology of AD, multiple sclerosis, and
amyotrophic lateral sclerosis (Husemann et al., 2002; Alarcón
et al., 2005; Keren-Shaul et al., 2017). Together, these studies
indicate that various types of stimulus are able to differentially
trigger microglia-mediated phagocytosis via a wide range of
signaling pathways. In addition to their role in phagocytosing
apoptotic cells, microglia also have an established role in
initiating cell death, in a process termed “phagoptosis” (Brown
and Neher, 2012). Interestingly, some studies have shown that
microglia-mediated “phagoptosis” can have deleterious effects in
neurodegenerative diseases by triggering phagocytosis of viable
neurons (Kao et al., 2011). These findings suggest that microglia-
mediated phagocytosis can have both protective and deleterious
effects in disease states (Fu et al., 2014).

Microglial Antigen Presentation
In homeostatic physiological conditions, the blood brain barrier
(BBB) prevents most peripheral infectious agents, as well as
peripheral immune cells, from reaching the CNS. Consequently,
the brain depends on its’ own immune cells, microglia, to fulfill
the roll of peripheral immune cells. As such, microglia have been
shown to act as antigen presenting cells (APCs) upon activation
in response to immune-related insults (Gottfried-Blackmore
et al., 2009). In homeostatic conditions, major histocompatibility
complex class II (MHC-II) expression is virtually non-existent
in microglial populations (Ford et al., 1995). In inflammatory
or neurodegenerative conditions, however, microglial MHC- II

expression is quickly upregulated (Perry et al., 1987; Kreutzberg,
1996; Gottfried-Blackmore et al., 2009). One of the largest
barriers to comprehending this mechanism comes from the
observation that microglia are unable to travel to the lymph
nodes, limiting their ability to act as APCs. Several studies
have proposed that the CNS fulfills the role of a functional
lymphatic system, where antigen-presenting microglia can come
into contact with peripheral APCs in the meninges and choroid
plexus, effectively playing an active role in T-cell mediated
acquired immunity in the CNS (Louveau et al., 2015). However,
recently it is speculated that antigens can be delivered to
meningeal lymphatic vessels, where meningeal macrophages
reside (Raper et al., 2016). There is no evidence of microglial
presence in this region, suggesting their limited role for antigen
presentation (Mildner et al., 2017).

Microglial Chemotaxis
Resting microglia are known to exhibit dynamic behavior,
surveying their environment and making contacts with
surrounding cells in order to execute a variety of functions.When
activated, microglia become highly motile cells, migrating toward
pathological stimuli such as debris and lesions. Chemotaxis from
chemo- (chemical) and -taxis (movement), defines the ability
of a cell to move in response to chemical triggers. Microglial
migration is modulated by microglia-expressed receptors and
gradients of different chemoattractant chemokines released by
targets in inflammatory conditions (Dijkstra et al., 2004; Wang
et al., 2008). The signaling pathways involved in microglia
chemotaxis are highly complex. Briefly, studies have highlighted
the specific roles of extracellular signal–regulated kinases
(ERK1/2), protein kinase A (PKA), phospholipase A2 (PLA2),
phosphoinositide 3-kinase (PI3K), and ATP/purinergic receptor
signaling pathways in regulating microglial migration (Fan
et al., 2017). Monocyte chemoattractant proteins (MCPs) are
of particular interest in neuroinflammatory conditions. The
expression of CCL2, aka MCP-1, has been associated with
microglia activation in the pathogenesis of multiple sclerosis
(Simpson et al., 2000) and AD (Conductier et al., 2010).
Additionally, neuron-derived Fractalkine (CXCL1) stimulates
microglia migration through CX3CR1 receptors (Harrison
et al., 1998). Interestingly, CXCL1 is implicated in a variety of
neurodegenerative disorders by acting as an anti-inflammatory
agent, which may prove to be an interesting therapeutic target
(Desforges et al., 2012).

A Role of Microglia in Neuroinflammatory
Conditions
A key function of microglia is their ability to respond rapidly
to immune-mediated insults and physical damage in the
brain. Microglia modulate the stress response to a variety of
pathological triggers in CNS diseases reviewed extensively by
Streit and Graeber et al. (Streit et al., 2004; Graeber et al.,
2011). It is well-established that physiological responses to
infection in the periphery are propagated through microglia
in the CNS directly without the help of a cellular messenger
(Chen et al., 2012), a response that is largely reduced after
microglia depletion (Elmore et al., 2014). The propensity of
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FIGURE 1 | Described are five steps of apoptotic cell clearance via phagocytes. Trace chemicals and molecules associated with cell necrosis and apoptosis stimulate

the chemotaxis of phagocytes up their concentration gradient to the source. From there, the phagocyte engulfs the apoptotic debris and begins degradation.

Eventually, it will release anti-inflammatory and reparative signals such as TGF-β, IL-10, and PGE2. In neurodegenerative diseases of protein aggregation, protein seed

aggregates are packaged into exosomes where they can be shuttled to different regions of the CNS.

the brain to propagate an inflammatory response is increased
naturally due to aging (Rosczyk et al., 2008). These triggers
range from autoimmune damage, such as demyelination from
multiple sclerosis (Vowinckel et al., 1997; Ponomarev et al.,
2005), CNS infection (Rock et al., 2004), protein aggregation
(such as amyloid plaques) (Kamphuis et al., 2012), or cellular
debris from neurodegeneration (Fraser et al., 2010), to physical
damage from trauma or ischemia. Microglia also contain a
number of purinergic receptors that respond to extracellular
ATP and ADP, which are signs of possible necrosis and
cellular injury (Inoue and Tsuda, 2012). Upon activation,
microglial physiological function is altered, characterized by
changes in morphology, coupled with upregulation of cell
surface receptors and expression of chemokines and cytokines,
all dependent on the triggering event (Perry and Teeling,
2013). The have been a subject of intense debate for the
past few decades. Studies have demonstrated that microglia
activation, independent of other cytotoxic elements, impacts
synaptic function (Selkoe, 2002; Di Filippo et al., 2008) and
has neurotoxic effects (von Bernhardi et al., 2015b) that
correlate with neurodegeneration and decline in cognitive
abilities (Cagnin et al., 2001; Kim and de Vellis, 2005). However,
it is also widely believed that transient microglia activation
is beneficial in neuroinflammatory conditions by promoting
neuron survival (Neumann et al., 2006) and repair after
brain injury (Kitamura et al., 2004) through anti-inflammatory
signaling.

How Do Microglia Sense Damage?
Microglia activation in neuroinflammatory conditions is
mediated by a variety of complex signaling pathways, recently
reviewed in Kaminska et al. (2016). Pathogen associated
molecular patterns (PAMPs) and damage or danger -associated
molecular patterns (DAMPs) activate PRRs (pattern recognition
receptors) (Janeway, 1992; Kigerl et al., 2014), triggering
crucial responses to immune-related insults and physical
injury. PAMPs are expressed by microorganisms and play
a critical role in innate immunity. DAMPs are produced
by damaged cells and trigger a microglial response to brain
injury. PAMPs and DAMPs have been reported to mediate
microglia activation and immune response via a variety of
PRRs, including Toll-like receptors (TLRs) and nucleotide
oligomerization domain (NOD)-like receptors (NLRs) (Kigerl
et al., 2014). TLRs are commonly activated in CNS injury
and promote transcription of pro-inflammatory cytokines via
activation of NF-κB and MAP kinase signaling pathways (Akira
and Takeda, 2004). Lipopolysaccharide (LPS) is a PAMP of
particular relevance to neurodegenerative diseases. It exerts
its function through TLR4 and results in the production of
several pro-inflammatory cytokines (Lu et al., 2008). TLR4
mutations were shown to reduce microglia activation, while
stimulation of TLR4 modulated cytokine expression in AD
models (Jin et al., 2008). NLRs trigger the formation of large
protein complexes that activate caspace-1, an essential molecule
in the production of pro-inflammatory cytokines (Martinon
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et al., 2002; Kigerl et al., 2014). NLRP3 is expressed on microglia
and participates in microglia activation in AD and several
prion diseases (Halle et al., 2008; Kigerl et al., 2014). Microglia
activation is also mediated by purines, such as ATP and UTP,
released by apoptotic cells. These induce chemotaxis and
phagocytosis via ubiquitously expressed purinergic receptors
on microglial cell surfaces (Koizumi et al., 2013). Additionally,
research has shown that in neuroinflammatory conditions,
neurotransmitters have the capacity to mediate microglia-
neuron interactions (Mead et al., 2012). Microglia express
glutamate receptors, which allows them to sense neuron-released
extracellular glutamate, a potent neurotoxic factor (Taylor
et al., 2005). Interestingly, studies have reported that upon
activation, microglia are self-producers of glutamate, which
induces excito-neurotoxicity in neurons and contributes to the
pathology of several neurodegenerative diseases (Takeuchi et al.,
2006). This suggests that microglia are capable of autocrine
signaling and supports the idea of a self-renewing neurotoxic
cycle in chronic inflammatory conditions. Microglia activation
is also initiated by the absence of certain signaling pathways.
CD200 is expressed by neurons and interacts via CD200R
expressed on microglial cell surfaces. This interaction maintains
microglia in a resting, inactive state (Hoek et al., 2000). CD200
expression is downregulated with age and contributes to
increased microglia activation and neuroinflammation (Lyons
et al., 2007).

Brain Aging
Aging is the single most dominant risk factor for all
neurodegenerative disorders, resulting in an impairment in
protein production, homeostasis, chaperone-mediated folding,
trafficking, stability, clearance, and autophagy. It is important
to note that the CNS undergoes several changes during aging
including, the shrinking of cortical areas (Salat et al., 2004; Raz
et al., 2005), restricted neurogenesis (Praag et al., 2005), reduction
in synaptic density, reduction in cognitive and psychomotor
function in both in humans and in mice (Godbout et al., 2008;
Hayashi et al., 2008), and reduction in glucose metabolism in
various regions (Salmon et al., 2003; Kalpouzos et al., 2009;
Hsieh, 2012). Additionally, aging also typically leads to an overall
increase in the level of proinflammatory cytokines, such as IL-1β,
IL-6, CD68, CD11b, and Toll-like receptors (TLRs) (Maher et al.,
2004; Godbout et al., 2005), and a decrease in anti-inflammatory
cytokines, such as IL-10 and IL-4 (Maher et al., 2005; Nolan et al.,
2005). Furthermore, overall brain volume normally decreases
by approximately 20% by the time a person turns 100 years
old. It is also worth noting that the aged brain frequently has
impaired vasculature, resulting in reduced oxygen and nutrient
delivery to the CNS that may be exacerbated in certain brain
regions (Montagne et al., 2015). Moreover, studies have suggested
that blood-brain-barrier (BBB) permeability is increased by aging
(Blau et al., 2012; Enciu et al., 2013), suggesting a greater
susceptibility to external factors.

The natural propensity of the CNS to adopt a more
inflammatory microenvironment during aging earned it the
nickname “inflamm-aging” (Franceschi et al., 2000; De Martinis
et al., 2005). This may be due in part to the increase in reactive

oxygen species (ROS) that is evident in the aged brain. Microglia
are largely responsible for the production of these species,
which include lipid peroxides, superoxide anions, and hydroxyl
radicals (Coatrieux et al., 2007). These molecules, in turn, lead to
increased oxidative stress and elicit neurotoxic effects. Oxidative
stress is known to initiate neuronal cell death in vitro and via
a high calorie diet in vivo (Bros et al., 2014; Treviño et al.,
2015). Conversely, some anti-inflammatory factors are known to
also increase in concentration in the aged CNS. For example,
TGF-β1 is a potent anti-inflammatory factor upregulated in the
aged brain (Blobe et al., 2000; Tichauer et al., 2014). TGF-
β1 has been shown to promote microglial phagocytosis of Aβ

(Wyss-Coray et al., 2001). When considering the effect of age
on various CNS responses to different stressors, aged mice,
in comparison to young mice, appeared to frequently exhibit
exaggerated or prolonged release of proinflammatory cytokines,
worsened cognitive decline, as well as age-dependent anxiety-like
behavior and sociability changes (Shoji et al., 2016).

Microglia in Aging
Microglia undergo changes in their morphology, phagocytic
activity, chemotactic activity, surveying activity, and
inflammatory responses that could be relevant to their
involvement in disease. Research suggests age-related changes
prime microglia to polarize and cause damage in response to
disease-related insults. When trying to understand the true
nature of pathological conditions, it is important to distinguish
the changes resulting from the disease itself, vs. normal
age-related variations.

Microglia undergo key morphological changes during aging.
Microglial surveying processes are reported to be less dynamic,
less complex, and to travel more slowly as mice age (Sierra
et al., 2007; Damani et al., 2011). This suggests that responses to
pathogens, aggregated proteins, or injury will be delayed in aging
brains in comparison to younger mouse brains. In the aged brain,
microglia appear to have enhanced proliferation in response to
injury, shown in a facial nerve axotomy study in rats (Conde
and Streit, 2006). Migration velocity of microglia in response to
injury also appears to be affected by aging (Damani et al., 2011;
Hefendehl et al., 2014). Studies have shown that in aged animals,
microglia survey the environment at a lower speed (Hefendehl
et al., 2014), possess thinner and fewer distal branches, and
contain spheroids within the major processes (Egensperger et al.,
1998; Simmons et al., 2007; Streit et al., 2009). It is possible that in
these conditions, myelin fragmentation significantly contributes
to the formation of these spheroid inclusions in microglia
(Safaiyan et al., 2016). Furthermore, aging reduces microglia
cell soma volume and results in decreased tissue distribution
homogeneity. (Euler and Schuitemaker, 2012; von Bernhardi
et al., 2015b). These characteristics are typically referred to as
microglial dystrophy, and are considered to be a normal age-
dependent phenotypic state. Recently, a new characterization
termed “darkmicroglia” was established (Bisht et al., 2016). These
microglia, identified by their extremely electron-dense soma,
become more prominent with age and are especially present in
disease states. It is suggested that this may represent a senescent
state of microglia. Dark microglia are thought to be caused by a
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build-up of lipofuscin and increased mtDNA mutations (Wong,
2013).

As microglia age, they undergo many changes at the
expression level that confer a heightened inflammatory response.
For instance, aged microglia express more MHC-II, as well as
mouse CD68 (Godbout et al., 2005; Henry et al., 2009). CD200,
a membrane glycoprotein expressed on neurons, astrocytes, and
oligodendrocytes, acts as a resting or pro-ramification signal
for microglia, which express CD200R. Research has shown that
CD200 is decreased in the human AD brain (Walker et al., 2009).
CX3CL1 is a cytokine present in neurons that appears to have
similar functions as CD200 in promotingmicroglial ramification.
CX3CL1 interacts with CX3CR1, which is also widely expressed
in microglia (Fuhrmann et al., 2010). Several studies have
suggested that Fractalkine signaling appears to be reduced in the
aged brain (Lyons et al., 2009; Bachstetter et al., 2011; Vukovic
et al., 2012). Smad3, responsible for the canonical signaling
pathway for TGFβ and its anti-inflammatory effects, is reduced in
the aged brain (von Bernhardi et al., 2015a). Furthermore, IFN-γ,
a potent activator of microglia and initiator of pro-inflammatory
gene transcription (Rock et al., 2004; Klegeris et al., 2005),
is increased in the aged brain. Genes conventionally known
to influence microglia maturation were found to be master
regulators of age-dependent changes in microglial phenotype
(Wehrspaun et al., 2015). In many species, Iba-1 expression is
increased in microglia due to age, often accompanied by a less
ramified morphology (Streit et al., 2004), suggesting a more
proliferative microglial state. It is also important to note age-
related changes in astrocytes, which include an increase in glial
fibrillary acidic protein (GFAP) expression, indicating a more
pro-inflammatory phenotypic state (Godbout et al., 2005).

Researchers have sought to further elucidate age-associated
changes by investigating the number and dynamics of existing
microglia in the CNS. There does not appear to be a change
in the overall number of microglia as the brain ages. However,
during aging, as microglia generally become dysfunctional, they
remain in the brain for longer periods of time (Mosher andWyss-
Coray, 2014). A recent study suggested that some microglia can
live to be as much as 40 years old, with an average lifespan of
4.2 years and typical yearly turnover rate of 28% (Réu et al.,
2017). Furthermore, the effect of peripheral monocyte infiltration
on microglia phenotype must be taken into account, given that
the cytokine-release profile can differ between the two (Ritzel
et al., 2015). A previous study in rats has shown an age-associated
increase in blood-derived monocytes, identified as CD11b+
CD45high cells (Blau et al., 2012).

Research investigating the effect of long-term intraperitoneal
LPS injection has suggested that some of these changes may
be more prominent in certain brain regions (Hart et al., 2012).
Indeed, recent studies have revealed that the effect of aging
on the transcriptome of microglia is highly dependent upon
location within the CNS (Grabert et al., 2016). Given that
neurodegenerative diseases frequently follow a region-specific
onset, it is important to consider the idea that region-specific
microglia priming could contribute to this phenomenon. The fact
that the cerebellum is significantly less susceptible to amyloid
deposition (Johnson-Wood et al., 1997), while microglia appear

to exhibit a hyper immune-alert phenotype (Grabert et al., 2016)
during aging in this region, supports this notion.

During aging, microglia generally seem to exhibit an enhanced
response to both CNS and peripheral insults. In vivo, aged
mice appear to undergo an exaggerated inflammatory response
to peripheral LPS injection, defined as an increased release
of pro-inflammatory cytokine IL-1β (Godbout et al., 2005).
Although immunoreactivity of microglia seems to be increased,
age also appears to promote a senescent phenotype in microglia
that reduces their functional capabilities, which appears to be
accentuated in vitro. One study pointed out the propensity of
isolated microglia to be more ramified, and exhibit a reduction
in chemotaxis, phagocytosis, autophagic capacity, and overall
reactivity (Caldeira et al., 2014) after aging in vitro. These findings
were recently reproduced in the context of amyloid pathology,
where microglia exhibited reduced phagocytic capabilities after
2 weeks in culture (Caldeira et al., 2017). Primary microglia
isolated from 15 month old C57BL/6 were shown to have
increased secretion of IL-6 in response to LPS, as well as a reduced
ability to phagocytose Aβ oligomers, when compared to younger
mice (Njie et al., 2012). A decrease in the ability to migrate
was also noted, along with a more senescent phenotype, and
less complicated inflammatory response. Furthermore, primary
microglia isolated from aged mice exhibit increased release of
pro-inflammatory TNF-α, IL-1β, IL-6, and IL-10 in response
to challenge with LPS (Sierra et al., 2007). Aged microglia also
tend to secrete more ROS, while those from young animals
predominantly secrete NO (Tichauer et al., 2014). It can be
difficult to distinguish whether these established changes in
microglia in vitro are due to age or due to the effects of
changing from the in vivo to in vitro environment. Nonetheless,
these findings present strong evidence that aged microglia are
more readily primed for activation, may be easily triggered by
pathological elements in neurodegenerative diseases.

Microglial Polarization
Microglia activation in vitro is often classified into two
categories, M1 pro-inflammatory classical activation and M2
anti-inflammatory alternative activation (Colton, 2009). This
bipolar model has evolved and is now understood to represent
a spectrum, where activation status can fall anywhere between
M1 and M2 (Mantovani et al., 2005; Martinez and Gordon,
2014). Pro-inflammatory molecules, such as IFN-γ, TNFα, and
LPS, induce the M1 classical activation of microglia (Delgado
and Ganea, 2003; Martinez and Gordon, 2014). Microglia in
the pro-inflammatory state secrete a variety of inflammatory
cytokines, including TNF, IL-6, IL-12, IL-23, IL-1β, as well as
other cytotoxic molecules, such as ROS and NO, all of which
promote neurotoxicity and reinforce the inflammatory response
(Delgado andGanea, 2003; Cherry et al., 2014). Oxidative stress is
implicated in nearly all neurodegenerative disorders (Gandhi and
Abramov, 2012). Studies have suggested that the accumulation of
reactive oxidative species results in neuronal damage and triggers
apoptosis (Gilgun-Sherki et al., 2001). LPS has been show to
mediate activation-induced production and secretion of ROS and
reactive nitrogen species (RNS) in microglia (Dimayuga et al.,
2007). Using a co-culture system of microglia and fetal neuronal
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cells, Chao and collaborators revealed that both LPS and IFN-
γ stimulation resulted in the production of NO, which induced
neurotoxicity in neuronal cells. The production of ROS and
NOS was later shown to be dependent on nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase activity in microglia
(Qin et al., 2004; Block and Hong, 2007). In vivo, mice deficient
of NADPH oxidase were demonstrated to experience reduced
nigrostriatal degeneration in response to systemic LPS injection
(Qin et al., 2013), suggesting that microglia are capable of being
modulated to prevent harmful activation.

The M1 pro-inflammatory profile of microglia is counter
to the M2, anti-inflammatory activation state. Stein and
collaborators first reported the ability of microglia to adopt anti-
inflammatory properties upon stimulation by IL-4 (Stein et al.,
1992). Microglia activation by IL-4 has been shown to upregulate
IGF-1 production, leading to neuroprotective and regenerative
effects (Butovsky et al., 2006). Additionally, other Th2-associated
cytokines, such as, IL-10 and TGFα, as well as glucocorticoids,
have been reported to promote M2 activation in microglia
(Goerdt et al., 1999). M2 microglia have further been subdivided
into three functional subclasses: M2a, M2b, andM2c (Mantovani
et al., 2004; Chhor et al., 2013). M2a is induced in microglia
via IL-13 and IL-4 signaling and is primarily responsible for
Arg-1 production, a molecule known to participate in collagen
formation facilitating tissue repair (Chhor et al., 2013). Arg1
was also recently shown to increase uptake of Aβ (Cherry et al.,
2015). Microglia M2b phenotype is triggered by TLR agonists.
Interestingly, the M2b subtype is capable of producing both
pro- and anti-inflammatory cytokines (Bell-Temin et al., 2015).
The M2c subtype, induced by IL-10, TGFα, and glucocorticoids,
have two key functions following brain injury; termination of
the pro-inflammatory immune response (Bell-Temin et al., 2015)
and repair and regeneration after brain injury (Mantovani et al.,
2004). A more recent study validated microglia’s regenerative
role in disease states by showing that TGFα derived from M2
microglia encourages proliferation and maturation of neural
precursor cells in tissue damaged from ischemic stroke (Choi
et al., 2017).

The M1/M2 classification scheme contributes to a
basic understanding of well-defined microglia-mediated
immunological responses in vitro. Several experts, however,
have questioned its comprehensiveness in describing in vivo
processes and its validity in disease states (Butovsky et al., 2014;
Martinez and Gordon, 2014; Ransohoff, 2016). Microglia are
thought to be particularly hard to research, given that their gene
expression profiles can change fairly dramatically when taken
from the CNS and placed into the in vitro environment (Gosselin
et al., 2017). Particularly, there appears to be an increase in the
expression of genes associated with inflammation and stress.
SORL1, the receptor for APOE protein whose deficiency has
been noted in AD patients (Scherzer et al., 2004), appears
to be under-expressed in the in vitro environment (Gosselin
et al., 2017). Isolation of primary microglia is a tenuous and
complicated process. Immunohistochemistry in microglia is also
noted amongst researchers to be challenging, due to issues with
granular staining and autofluorescence (Koellhoffer et al., 2017).
Microglia are identified by a variety of markers to distinguish

them from other glial cells and neurons. Unfortunately, they
share a number of these markers with peripheral macrophages,
making them hard to distinguish. Recent research suggests a
third, new classification of microglia, may better reflect their in
vivo phenotypes, specifically in disease states.

Microglia in Neurodegeneration
Beyond normal aging, microglia in neurodegenerative conditions
experience a specific change in phenotypic state, which
researchers have struggled to characterize. Given that there are
clear distinctions between microglia that promote neurogenesis
and reverse atrophy, and those that release ROS and pro-
inflammatory cytokines, understanding the phenotypic state
responsible for mediating neuroinflammatory damage is of
paramount importance. Potential therapeutic interventions
should target the specific deleterious activities of harmful
microglia, while leaving beneficial neuroprotective mechanisms
unhindered.

Microglia activation is a necessary and beneficial function
in response to acute neuro-inflammatory events and aids in
sustaining brain homeostasis. Chronic activation, however, can
occur from excessive neuronal or immune-related damage in
various CNS diseases (Polazzi and Monti, 2010). This can lead
to the sustained release of pro-inflammatory molecules and
harmful production of ROS which results in detrimental effects.
Moderate increases in these cytokines are generally considered a
normal part of aging. However, large increases, as observed in
AD, lead to excessive neurotoxicity (Giunta et al., 2008; Glass
et al., 2010). In turn, increased neurotoxicity triggers additional
microglial activation, initiating a harmful loop of inflammation
and neuronal damage termed “reactive microgliosis” (Streit et al.,
1999). Microglia have been shown to be activated in nearly all
neurological disorders (Neumann et al., 2009). Signs of microglia
activation have been reported in autoimmune diseases, such as
multiple sclerosis (Goldmann and Prinz, 2013; Luo et al., 2017),
prion diseases, such as Creutzfeldt-Jakob Disease (CJD) (Aguzzi
and Zhu, 2017), neurodegenerative diseases, such as Parkinson’s
Disease (PD) and AD, as well as traumatic brain injury (TBI) and
ischemia (Jassam et al., 2017; Liu et al., 2017). Their implication
in the pathophysiology of such a wide variety of neurological
disorders has made them an interesting target for potential
therapeutic approaches.

With regards to AD, some observations can be confusing.
As mentioned in the previous section, aged microglia frequently
become “dystrophic” and are highly immunoreactive. However,
studies have reported reduced phagocytosis of Aβ in older AD
mice (Floden and Combs, 2011), which may be caused by
decreased expression of CD36, an Aβ interacting protein. In
AD patients, as well as mouse models of AD, Smad3 signaling
appears to be reduced (Tesseur et al., 2006; Ueberham et al.,
2006), likely resulting in the pathological activation of microglia.
Overall microglia number in both Alzheimer’s patients and AD
mouse models is increased and correlates with disease severity
(Olmos-Alonso et al., 2016). This suggests that disease pathology
promotes microglia proliferation. Microglia behavior in AD may
also depend heavily upon the stage of the disease. One study
reported that Aβ fibrils enhance microglia phagocytosis, while
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Aβ oligomers attenuate phagocytosis (Pan et al., 2011). This
finding suggests that microglia presence is more significant after
considerable protein deposition.

A recent study expanded current microglia classification
beyond the typical M1/M2 scheme. Researchers in this study
named this third category of microglia, “disease-associated”
microglia (MGnD), using a gene expression profile revealed
through K-means clustering. These microglia revealed a
reduction in the expression of 68 homeostatic microglial genes
and upregulation of 28 inflammatory molecules (Krasemann
et al., 2017). A large portion of these responses were
eliminated due to microglia-specific KO of APOE, suggesting
that APOE potently induces phenotypic changes in disease-
associated microglia and is up-regulated in the presence
of plaques (Krasemann et al., 2017). MGnD microglia also
exhibited a significant increase in miR-155 expression. MiR-
155, a significantly up-regulated microRNA in microglia after
challenge with an insult, is largely responsible for the release
of pro-inflammatory cytokines IL-6, IL-1β, NOS2, and TNFα
(Woodbury et al., 2015). Beyond microglia interaction, APOE
is important for maintaining hippocampal neurogenesis and
suppressing astrogenesis in mice, both of which are reduced
via APOE4 mutation (Li et al., 2009). TREM2 KO was
shown to have very similar effects on the gene expression
profile as the APOE KO, suggesting these two molecules
work concurrently to determine microglia phenotype. Another
large study utilizing single-cell RNA-seq to identify unique
microglia subpopulations present in 5XFAD mice found gene
expression profiles associated with increase in APOE, TREM2,
and Cst7 expression, amongst others, in disease-associated
microglia, referred to as “DAM.” These same microglia exhibited
decreased expression of homeostatic genes P2RY12 and CX3CR1
(Keren-Shaul et al., 2017). Lpl was selected as a consistent
marker for the disease associated microglia subtype, and
found to be present on phagocytic plaque-associated microglia
positive for Thioflavin-S. The expression of genes known to
influence microglia maturation and ramification such as RUNX1,
SALL 1, TAL1, and IRF8 is also affected by AD pathology
(Olmos-Alonso et al., 2016). It is important to recognize the
differences between MGnD and classically activated M1 or M2
microglia (Figure 2). MGnD are a result of chronic exposure to
disease pathology and can be distinguished from M1 microglia
by the presence APOE, TREM2, and M2-associated anti-
inflammatory markers such as arginase 1 (Arg1) and chitinase-
3-like protein (Ym1), as well as the absence of homeostatic
transcription factor Egr1 (Krasemann et al., 2017). In contrast,
M1 microglia activated through LPS down-regulate TREM2
expression (Kleinberger et al., 2017; Zhong et al., 2017b).
Furthermore, plaque-associated microglia exhibit a hyperactive
immune response to LPS injection in comparison to non-
plaque-associated microglia (Yin et al., 2017), suggesting their
contribution to neuroinflammation in disease states is more
detrimental.

The MGnD and DAM phenotypes are largely dependent on
TREM2 expression, which is up-regulated in the microglia of
diseased brains and MGnD microglia specifically (Ofengeim
et al., 2017; Yin et al., 2017). This evidence suggests that the

APOE-TREM2 signaling cascade is responsible for the changes
in gene expression profile which induce the MGnD phenotype
in microglia (Keren-Shaul et al., 2017; Krasemann et al., 2017;
Yin et al., 2017). Two papers recently reported conflicting results
of TREM2 KO in different mouse models of tauopathy. In
hTau mice, prior to the time of expected significant neuronal
loss, TREM2 KO was reported to increase the deposition
of hyperphosphorylated tau and promote a less homeostatic
microglial phenotype (Bemiller et al., 2017). However, in a study
investigating PS19 mice with TREM2 KO, researchers found a
reduction in brain atrophy in the absence of any changes in
tauopathy or a reduction of MGnD-associated markers APOE
and Cst7 (Krasemann et al., 2017; Leyns et al., 2017). Collectively,
these recent studies support the idea that the APOE-TREM2
signaling pathway shifts microglia toward an MGnD phenotype,
which actively contributes to the tauopathy-induced reduction
of neuropil space in the entorhinal cortex of PS19 mice. During
aging in the CNS, microglia become more dystrophic, suffer a
reduction in functional characteristics, and begin to exhibit a
gene expression signature similar to that of MGnD microglia.
Although age is not required for the generation of the MGnD
phenotype, aged microglia are primed to make this transition.
Further research is necessary to generate a more concrete and
time-dependent understanding of the APOE-TREM2 signaling
complex as it relates to the MGnD phenotype.

Therapeutics Targeting Protein Misfolding
Several techniques exist allowing researchers to design
pharmacological agents aimed at reducing the buildup
of pathological Aβ. One validated method is to focus on
developing inhibitors of BACE1, which is the membrane
protease responsible for the beta-site cleavage of APP (Eketjäll
et al., 2016). Several of these compounds have been in clinical
trials in recent years, such as the Merck EPOCH trial in
patients with mild to moderate AD. This trial was speculated
to have failed because the drug was administered too late to
substantially address the pathology. Another obstacle in clinical
trials is heterogeneous patient enrollment, which introduces
the possibility of including patients that do not have AD, but
suffer from dementia due to a different disease. Instead of
inhibiting Aβ production, some compounds are being designed
to address the prion-like properties of amyloid aggregation
itself. This concept uses a small molecule, which binds to
nascent amyloid fibrils or aggregates, preventing nucleation
or further accumulation (McLaurin et al., 2006; Habchi et al.,
2016). Additionally, there are also antibodies designed to bind
pathological Aβ protofibrils, a passive immunization technique
in which the antigen, Aβ, is bound, leading to complement
activation and phagocytosis by neighboring phagocytes (Bard
et al., 2000). However, considerable evidence has suggested
this pursuit may be clinically ineffective—decreasing amyloid
burden in patients with an already significant degree of cognitive
deficits, and hence neurodegeneration, does not appear to
dampen the rate of decline (Holmes et al., 2008). This was
most recently found during Phase 3 of a clinical trial for
Solanezumab (Doody et al., 2014). Aducanumab, a fully human
IgG isolated from cognitively normal donors that binds a
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FIGURE 2 | Three common microglia phenotypes are described. Homeostatic microglia are found in the adult brain under non-infectious, non-diseased, and

non-aged conditions, exhibiting robust expression of homeostatic microglial markers: Tmem119, P2ry12, Tgfbr1, and transcription factor Sall1. During normal aging,

homeostatic markers gradually decline, resulting in reduced functional aspects, including proliferation, phagocytosis, ramification, and cytokine secretion. Finally, there

is a distinct microglia phenotype that is associated with neurodegeneration that possesses a more exacerbated dystrophic phenotype, but is specifically associated

with plaques and dystrophic neurites that cause neurodegeneration.

conformational epitope of Aβ, is currently in Phase 3 trials
(Sevigny et al., 2016). Neurofibrillary tangles (NFTs), the second
pathological hallmark of AD, are another promising target for
pharmacological intervention. Several classes of pharmacologic
agents may be effective in preventing both the aggregation and
spread of NFTs in AD. Small molecule drugs, that work by
binding to tau to inhibit its aggregation, are currently being
developed (Harrington et al., 2015). Additionally, several tau
vaccines are also currently in development, with one entering
Phase II of clinical trial (Theunis et al., 2013; Kontsekova et al.,
2014).

Pharmacological modulation targeting the intracellular
trafficking of APP via intervention on the enzymes involved in its
cleavage may also be successful in regulating Aβ accumulation.
APP is not exclusively found on the cell surface; it is most
frequently localized to the trans-Golgi network (TGN) (Caporaso
et al., 1994; Hartmann et al., 1997; Xu et al., 1997). After shuttling
to the plasma membrane, APP is reinternalized into endosomes
and, eventually, lysosomes (Haass et al., 1993a,b; Koo and
Squazzo, 1994), where Aβ production primarily occurs (Huse
et al., 2000, 2002). Therefore, enhanced sequestering of APP
to the plasma membrane and out of the TGN is a potential
therapeutic venue for AD. Currently, there are no drugs in
development targeting this mechanism. TPI-287, a microtubule-
stabilizing agent, is a unique drug, which influences APP
intracellular trafficking, and may also facilitate kinesin-mediated
axonal transport of APP (Zempel and Mandelkow, 2014).

Strategies for Targeting Microglia and
Neuroinflammation
Given the overwhelming evidence supporting the role of
microglia in the pathogenesis of neurodegenerative functions,
it is of interest to discuss potential therapeutic interventions
targeting the neurotoxic effects of microglia.

One strategy is to pharmacologically enhance microglial
clearance of protein aggregates. Sargramostim is a synthetic form
of the hematopoietic growth factor granulocyte-macrophage
colony-stimulating factor (GM-CSF), which is FDA approved to
increase white blood cell count after chemotherapy (Markovic
et al., 2008). Evidence suggests that GM-CSF stimulates
phagocytosis of Aβ via bone-marrow derived macrophages
and microglia (Mitrasinovic et al., 2001), although GM-CSF
may also potentially exacerbate their inflammatory response.
Sargramostimwas entered into two Phase 2 clinical trials to assess
treatment and safety in patients with mild cognitive impairment
or AD. One of these trials has since been withdrawn. Valproic
acid, an anticonvulsant medication which exerts its function
via inhibition of voltage-gated sodium channels and increases
levels of gamma-aminobutyric acid (Löscher, 2002), can enhance
microglial phagocytosis of Aβ, although it has not yet been
tested in clinical trials. Additionally, vasoactive intestinal peptide,
a multifunctional neuropeptide, which can enhance microglial
phagocytosis, while suppressing the production of TNF-α and
ROS (Song et al., 2012), could also be effective for restoring
homeostatic microglial functions.
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Gotz et al. previously demonstrates the acceleration of NFT
formation by Aβ injection into the mouse brain (Götz et al.,
2001). This finding was validated in a double transgenic mouse
model. The model was created by crossing P301L tau mice with
APP mice expressing the familial Swedish mutations of APP
(K670N and M671L), resulting in a marked acceleration in tau
pathology development (Lewis et al., 2001). The same result
was reported in a different double transgenic model, created
by crossed PS19 mice with APPV717F mice (Hurtado et al.,
2010). The potential contribution of microglia to accelerate tau
pathology in the presence of Aβ accumulation has yet to be
tested. The spread of pathogenic tau protein may be facilitated
by phagocytic microglia, which are activated by Aβ accumulation
in the brain.

Immune cells, including microglia, are highly efficient in
secreting extracellular vesicles, such as exosomes and ectosomes
(Robbins and Morelli, 2014; Greening et al., 2015). Research has
shown that microglia promote the spread of pathological protein
aggregates through exosomes (Sarko and McKinney, 2017; Soria
et al., 2017). Exosomes are extracellular vesicles that are between
30 and 150 nm in size (Zomer et al., 2010; Vlassov et al., 2012;
Thompson et al., 2016) and possess a myriad of roles in the
CNS and periphery (Budnik et al., 2016). They are frequently
excreted by antigen-presenting cells, such as microglia (Nair-
Gupta et al., 2014), but are also secreted by all other cells of the
CNS (Frühbeis et al., 2012). In AD, microglia have been shown
to congregate around senile plaques in order to phagocytose
them, consequently secreting Aβ oligomer-containing exosomes
(Rajendran et al., 2006). Exosomes isolated from AD brains
also contain hyper-phosphorylated tau oligomers (Saman et al.,
2012), which are interestingly found in the CSF of AD patients
(Saman et al., 2012; Fiandaca et al., 2015). In ALS, exosomal TDP-
43 is increased, suggesting that pathological protein-containing
exosomes play a role in several neurodegenerative disorders
(Iguchi et al., 2016). Exosomal spread is the proposedmechanism
through which microglia enhance tau propagation in mouse
models of AD (Asai et al., 2015). In this study, depletion of
microglia was demonstrated to reduce the spread of AAV-
induced tau pathology from the medial entorhinal cortex to the
dentate gyrus.

Inhibiting microglia-mediated exosome excretion may
show promising results in halting disease progression in
neurodegenerative disorders. Pharmacological inhibition, via
GW4869, of neutral sphingomyelinase 2 (nSMase2), which
synthesizes ceramide from sphingomyelin and is critical for
exosome synthesis, successfully halted the packaging of human
tau into exosomes in microglia (Asai et al., 2015). In addition
to preventing exosome-mediated tau propagation, GW4869
also attenuates the release of pro-inflammatory cytokines in
macrophages in response to LPS, while not appearing to have
potent cytotoxic affects (Essandoh et al., 2015). Increased
exosome secretion was demonstrated to enhance spread of prion
protein in cell culture (Guo et al., 2016), which was prevented
via treatment with GW4869. Evidence for the role of exosomes
in prion disease, including ALS, have been presented (Vella
et al., 2007; Guo et al., 2016; Iguchi et al., 2016). However,

administration of GW4869 in a mouse model of ALS expressing
human mutant TDP-43A315T (autosomal mutation of ALS),
appeared to worsen disease phenotypes, increase levels of
insoluble TDP-43, and cause cytoplasmic accumulation of
TDP-43 in neurons (Iguchi et al., 2016). GW4869 was also
reported to disrupt synaptic connections (Tabatadze et al.,
2010), suggesting potential CNS damage with this compound.
The compound impaired spatial memory, as assessed via the
Morris Water maze, but not spatial recognition memory,
tested in the Y maze. Chronic exposure of GW4869 was also
reported to have no effect on novel object recognition (Iguchi
et al., 2016), suggesting inconclusive results. An alternative
strategy is necessary for regulating exosomes synthesis and
secretion.

Preventing the pathogenic change in microglial phenotype
and infiltration of peripheral monocytes in neurodegenerative
conditions is another promising strategy. Long-term use of
non-steroidal anti-inflammatory drugs (NSAIDs) was classically
recognized to reduce the risk of developing AD and PD by
two meta-analysis studies (Chen et al., 2005; Vlad et al., 2008).
However, this was not fully reproduced in clinical trials (Vlad
et al., 2008; Imbimbo et al., 2010; Breitner et al., 2011).

Cumulatively, these studies have led scientists to question
whether microglia are insufficient for clearing proteinopathies,
or if they engage in a mechanism that progresses the pathology.
This question is complex and must incorporate the findings of
cutting-edge studies, which have used the depletion of microglia
via CSF1R inhibitors (PLX3397 and PLX5622 among others),
to assess the role of microglia in proteinopathies and disease
pathogenesis. These compounds are able to deplete virtually
all microglia in the CNS after as little as 1 week of oral
administration without significant side effects (Elmore et al.,
2014; Dagher et al., 2015; Olmos-Alonso et al., 2016). No
abnormal behaviors were observed in wild type mice, even
after two months of treatment with PLX3397, as evaluated by
contextual fear conditioning, elevated plus maze, open field, and
Barnes maze (Elmore et al., 2014). Microglia depletion appeared
to block disease-mediated increases in exploratory activity of
mice, suggesting this may have a beneficial effect on cognition
without significantly affecting amyloid burden (Grathwohl et al.,
2009; Dagher et al., 2015; Olmos-Alonso et al., 2016; Spangenberg
et al., 2016). CSF1R inhibitors are currently on clinical trials
for oncology and joint neoplasm indications, but not for AD or
other neurodegenerative disorders. No apparent side effects were
detected in treated groups. Cognitive evaluations of patients in
these trials will provide us with better information on the effects
of microglia have on mental capacity.

Interestingly, replacement of microglia was tested as a means
of protecting against excitotoxic injury with success (Vinet
et al., 2012). In this study, microglia-deprived hippocampal slice
cultures where infiltrated by exogenous microglia. Given that
ROS production in microglia is deleterious, one therapeutic
strategy may be to inhibit NOX (Altenhöfer et al., 2015).
NADPH oxidase is largely responsible for ROS production in
microglia in response to LPS (Qin et al., 2004). Furthermore,
NOX activity was found to correlate with cognitive impairment
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in AD, while KO of NOX was associated with a reduction in
cognitive impairment (Bordt and Polster, 2014). Studies have
reported that treatment with the NOX inhibitor apocymin leads
to a reduction in amyloid burden, reduced overall microglia
number, and reduced cerebral amyloid angiopathy in an AD
mouse model (Han et al., 2015). In addition, delivery of
adeno-associated virus (AAV) containing CD200, a glycoprotein
involved in maintaining a quiescent state in microglia, into
the hippocampus of 6-month old Tg2576 APP mice resulted
in increased neurogenesis and reduced amyloidosis (Varnum
et al., 2015). Microglia were also treated with CD200 in vitro,
which enhanced their phagocytosis and promoted an M2-
like phenotype. These studies support the notion that aged
microglia are largely ineffective in the brain and are incapable
of significantly reducing amyloid burden. Furthermore, their
inflammatory presence serves only to exacerbate cytotoxicity
of neurons, leading to increased neuronal loss and cognitive
impairment. More thorough assessment of these findings
may be necessary, but ample evidence exists to suggest that
microglia presence in the CNS is detrimental in the context of
neurodegenerative disease.

This notion should be considered when interpreting AD
research assessing microglial dysfunction, such as studies
examining the effect of TREM2 disruption in animal models
of amyloidosis. Results of these studies were controversial, with
some stipulating that TREM2 in microglia increase phagocytosis
and clearance of Aβ (Wang et al., 2015; Xiang et al., 2016;
Yuan et al., 2016), while others have suggested that disruption
of TREM2 reduces amyloid plaque load (Ulrich et al., 2014; Jay
et al., 2015; Krasemann et al., 2017). These differences could be
caused by the different functional role of TREM2 at the various
stages of Aβ accumulation in the brain. TREM2 is up-regulated
in the brains of AD patients and several mutations have been
identified risk factors for late-onset AD (Frischmeyer-Guerrerio
et al., 2013). TREM2 expression is increased in plaque-associated
microglia (Guerreiro et al., 2013) and in particular, in the
processes of microglia which are in direct contact with plaques
(Yuan et al., 2016). TREM2 disruption has also been shown
to reduce the overall amount of plaque-associated microglia
(Krasemann et al., 2017). These were unexpected results since
phagocytosis of not only Aβ, but a number of other molecules
recognized by phagocytes, is dependent on TREM2 (Kleinberger
et al., 2014; Xiang et al., 2016; Yuan et al., 2016; Varnum et al.,
2017). However, it is important to note that complete depletion
of microglia has repeatedly failed to influence overall amyloid
deposition (Grathwohl et al., 2009; Dagher et al., 2015; Olmos-
Alonso et al., 2016). If TREM2 KO confers a dysfunctional
microglia phenotype, which results in increased amyloid burden,
then this effect is likely to be caused by the functional activity
of microglia (Krasemann et al., 2017). One possibility is the
anti-inflammatory effect of TREM2 signaling. Expression of pro-
inflammatory cytokines IL-1β, IL-6, and TNF-α in response
to challenge with Aβ42 was shown to be drastically increased
due to knockdown with DAP12/TYROBP and synergized with
TREM2 KO (Zhong et al., 2017a). This also supports the notion
that Aβ42 is a ligand for TREM2, although one study reported

that the TREM2-TYROBP association is not affected by Aβ

presence in cell culture. However, it has also been shown that
TREM2 is down-regulated in primary microglia cultures in
response to Aβ42 (Zheng et al., 2016), which was prevented
with treatment with a JNK inhibitor (Zhong et al., 2017a).
JNK inhibitors are proposed as a possible therapeutic target
for AD (Yarza et al., 2015) and have entered clinical trials
for a number of indications, but have no approvals to date.
Nonetheless, research has repeatedly suggested that TREM2 is
upregulated in disease-associated microglia (Frank et al., 2008;
Frischmeyer-Guerrerio et al., 2013; Krasemann et al., 2017).
These findings support the notion that dysfunctional microglia
in disease contribute to a cytotoxic environment through the
release of pro-inflammatory cytokines and ROS. The connection
between APOE, TREM2, and microglia will continue to be
investigated.

The contribution of circulating peripheral monocytes to
the microglia population in the CNS has been thoroughly
investigated and shown to function through parabiotic
mechanisms. In these experiments, the blood streams of
two mice are connected, where one mouse contains a reporter in
circulating monocytes that allows them to be distinguished from
those of the partner. One study found low levels of monocyte
infiltration after full body irradiation in mice (Hess et al., 2004),
while another study attempted the same experiment and did
not find evidence of any CNS penetration (Ajami et al., 2007).
Two mouse models of microgliosis, facial nerve axotomy and
mSOD, did not provide any evidence of CNS penetration
either. Reports were also released with evidence suggesting
that bone-marrow transplanted myeloid cells can penetrate
the CNS mainly when the BBB is compromised (Eglitis and
Mezey, 1997; Brazelton et al., 2000; Ajami et al., 2007; Mildner
et al., 2009). To test the effect of peripheral lymphocytes on
amyloid clearance in brain, parabiosis experiments have been
conducted in which the blood supply of young WT mice was
connected to that of older APP mice. These experiments did
not result in a reduction in amyloid burden, suggesting that
immune infiltration of circulating monocytes is not a significant
factor (Middeldorp et al., 2016). If circulating monocytes are
unable to penetrate the BBB without significant damage to
the BBB, this is unlikely to be a factor in neurodegenerative
diseases, but could be applicable to other neurologic disorders
with BBB impairment, such as traumatic brain injury or
stroke.

CONCLUSION

Microglia are an important aspect of CNS homeostasis, damage
repair, proteinostasis, and proteopathy in aging. The aged brain
shows changes in microglial phenotype, which are associated
with changes in protein clearance, misfolding, aggregation, and
spread. Proteopathy and neuronal cell loss in neurodegenerative
conditions also contribute to a shift in microglial phenotype
from homeostatic to pathological, which permanently leads
to harmful inflammatory responses and further promotes
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cortical degeneration. This mechanism provides us with novel
therapeutic targets for AD and related proteopathies.
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